organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o891-o892

Crystal structure of (E)-4-hy­dr­oxy-N′-(3-hy­dr­oxy­benzyl­­idene)benzohydrazide monohydrate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bFioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 May 2014; accepted 22 May 2014; online 1 August 2014)

In the title benzohydrazide hydrate, C14H12N2O3·H2O, the dihedral angle between the aromatic rings is 58.11 (6)° and the C=O and N—H groups adopt an anti orientation. The main twist in the mol­ecule occurs about the C(=O)—Car (ar = aromatic) bond, with an N—C(=O)—Car—Car torsion angle of −43.5 (2)°. In the crystal, the components are linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds. These inter­actions generate [10-1] chains, with adjacent organic mol­ecules linked by inversion symmetry generating either pairs of N—H⋯O links [R22(16) loops] or pairs of O—H⋯O links [R22(20) loops]. Pairs of water mol­ecules are located in the R22(20) loops and form their own O—H⋯O and O—H⋯N hydrogen bonds to adjacent organic mol­ecules in the chain. Finally, an inter­chain O—H⋯O hydrogen-bond link from the 4-hy­droxy group generates (010) sheets.

1. Related literature

For a related structure, see: Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]). A survey of the Cambridge Structural Database (Version 5.35 of November 2013; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) revealed no fewer than 581 distinct benzohydrazide fragments with different substituents on the aromatic rings and/or other chemical species in the crystal: all bond lengths for the central fragment of the title compound lie close to the mean values for these structures. The only parameter in the metrical survey that shows significant variation is the dihedral angle between the aromatic rings, with the most common value close to zero, and a roughly linear decrease to 90°.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H12N2O3·H2O

  • Mr = 274.27

  • Triclinic, [P \overline 1]

  • a = 7.1826 (5) Å

  • b = 9.2043 (6) Å

  • c = 10.7568 (7) Å

  • α = 91.847 (7)°

  • β = 102.433 (7)°

  • γ = 110.191 (8)°

  • V = 647.37 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.09 × 0.05 × 0.02 mm

2.2. Data collection

  • Rigaku Saturn CCD diffractometer

  • 8728 measured reflections

  • 2962 independent reflections

  • 2038 reflections with I > 2σ(I)

  • Rint = 0.049

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.105

  • S = 1.06

  • 2962 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.922 (18) 2.044 (19) 2.9357 (19) 162.2 (16)
O1—H1O⋯O4ii 0.92 (2) 1.68 (2) 2.6025 (18) 172.6 (17)
O3—H3O⋯O2iii 0.92 (2) 1.83 (2) 2.7512 (17) 178.1 (17)
O4—H1W⋯N2 0.86 (2) 2.16 (2) 3.018 (2) 172.5 (19)
O4—H2W⋯O2iii 0.89 (2) 1.98 (2) 2.8676 (17) 170.5 (18)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Inc., Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Synthesis and crystallization top

Equimolar qu­anti­ties of 4-hy­droxy­benzohydrazide and 3-hy­droxy­benzaldehyde were refluxed in ethanol for several hours and then cooled to room temperature. Colourless chips of the title compound were obtained by slow evaporation of the solvent at room temperature after several days.

Refinement top

O- and N-bound H atoms were located in difference Fourier maps and their positions were freely refined. C-bound H atoms were placed in idealized positions (C—H = 0.93 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Related literature top

For a related structure, see: Fun et al. (2011). A survey of the Cambridge Structural Database (Version 5.35 of November 2013; Allen, 2002) revealed no fewer than 581 distinct benzohydrazide fragments with different substituents on the aromatic rings and/or other chemical species in the crystal: all bond lengths for the central fragment of the title compound lie close to the mean values for these structures. The only parameter in the metrical survey that shows significant variation is the dihedral angle between the aromatic rings, with the most common value close to zero, and a roughly linear decrease to 90°.

Computing details top

Data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A fragment of a [101] chain in the structure of the title compound, with hydrogen bonds shown as double-dashed lines, showing the R22(16) loops and R22(20) loops between adjacent organic molecules (see Table 2 for details of the hydrogen bonding and the symmetry codes).
[Figure 3] Fig. 3. A histogram of dihedral angles between the aromatic rings of benzohydrazide structures in the Cambridge Structural Database (Version 5.35; Allen, 2002).
(E)-4-Hydroxy-N'-(3-hydroxybenzylidene)benzohydrazide monohydrate top
Crystal data top
C14H12N2O3·H2OZ = 2
Mr = 274.27F(000) = 288
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1826 (5) ÅCell parameters from 6867 reflections
b = 9.2043 (6) Åθ = 3.1–27.5°
c = 10.7568 (7) ŵ = 0.11 mm1
α = 91.847 (7)°T = 100 K
β = 102.433 (7)°Chip, colourless
γ = 110.191 (8)°0.09 × 0.05 × 0.02 mm
V = 647.37 (7) Å3
Data collection top
Rigaku Saturn CCD
diffractometer
2038 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 99
8728 measured reflectionsk = 1111
2962 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.144P]
where P = (Fo2 + 2Fc2)/3
2962 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H12N2O3·H2Oγ = 110.191 (8)°
Mr = 274.27V = 647.37 (7) Å3
Triclinic, P1Z = 2
a = 7.1826 (5) ÅMo Kα radiation
b = 9.2043 (6) ŵ = 0.11 mm1
c = 10.7568 (7) ÅT = 100 K
α = 91.847 (7)°0.09 × 0.05 × 0.02 mm
β = 102.433 (7)°
Data collection top
Rigaku Saturn CCD
diffractometer
2038 reflections with I > 2σ(I)
8728 measured reflectionsRint = 0.049
2962 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
2962 reflectionsΔρmin = 0.28 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2487 (2)0.51249 (18)0.02953 (16)0.0151 (4)
H10.25960.61450.04990.018*
C20.2488 (2)0.46303 (18)0.09366 (16)0.0149 (4)
H20.25600.53060.15640.018*
C30.2379 (2)0.31187 (19)0.12226 (15)0.0140 (4)
C40.2225 (2)0.20863 (19)0.02998 (16)0.0150 (4)
H40.21630.10770.04990.018*
C50.2167 (2)0.25738 (18)0.09144 (16)0.0145 (4)
H50.20220.18790.15270.017*
C60.2325 (2)0.41045 (18)0.12303 (15)0.0133 (4)
C70.2265 (3)0.45636 (18)0.25514 (16)0.0140 (4)
C80.5163 (3)0.77584 (19)0.48276 (16)0.0164 (4)
H80.62430.81090.44320.020*
C90.5316 (3)0.85792 (18)0.60520 (16)0.0145 (4)
C100.3753 (3)0.80721 (18)0.66983 (16)0.0148 (4)
H100.26370.71590.63790.018*
C110.3865 (3)0.89243 (18)0.78093 (16)0.0154 (4)
C120.5575 (3)1.02744 (18)0.83137 (16)0.0158 (4)
H120.56591.08460.90660.019*
C130.7134 (3)1.07503 (18)0.76867 (16)0.0162 (4)
H130.82781.16380.80290.019*
C140.7017 (3)0.99231 (18)0.65541 (16)0.0167 (4)
H140.80661.02620.61320.020*
N10.3623 (2)0.59830 (16)0.30909 (13)0.0156 (3)
H1N0.469 (3)0.647 (2)0.2723 (17)0.019*
N20.3584 (2)0.65697 (15)0.42830 (13)0.0153 (3)
O10.24457 (19)0.25851 (13)0.24143 (11)0.0173 (3)
H1O0.195 (3)0.309 (2)0.3059 (19)0.021*
O20.10482 (18)0.37043 (13)0.31151 (11)0.0177 (3)
O30.23698 (19)0.84893 (14)0.84718 (12)0.0198 (3)
H3O0.125 (3)0.776 (2)0.7930 (18)0.024*
O40.0770 (2)0.61780 (16)0.42664 (13)0.0236 (3)
H1W0.047 (3)0.624 (2)0.4329 (19)0.028*
H2W0.101 (3)0.615 (2)0.505 (2)0.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (8)0.0140 (8)0.0159 (9)0.0042 (7)0.0031 (7)0.0012 (7)
C20.0147 (9)0.0163 (8)0.0138 (9)0.0055 (7)0.0035 (7)0.0049 (7)
C30.0122 (8)0.0206 (8)0.0095 (8)0.0067 (7)0.0024 (6)0.0007 (7)
C40.0157 (9)0.0157 (8)0.0140 (9)0.0073 (7)0.0021 (7)0.0004 (7)
C50.0147 (8)0.0154 (8)0.0127 (9)0.0047 (7)0.0028 (7)0.0046 (7)
C60.0117 (8)0.0173 (8)0.0111 (8)0.0056 (7)0.0021 (6)0.0014 (6)
C70.0149 (8)0.0163 (8)0.0129 (9)0.0081 (7)0.0029 (7)0.0024 (7)
C80.0164 (9)0.0175 (8)0.0164 (9)0.0062 (7)0.0057 (7)0.0025 (7)
C90.0171 (9)0.0139 (8)0.0116 (9)0.0058 (7)0.0017 (7)0.0015 (6)
C100.0164 (9)0.0138 (8)0.0124 (9)0.0040 (7)0.0019 (7)0.0011 (7)
C110.0166 (9)0.0168 (8)0.0150 (9)0.0076 (7)0.0050 (7)0.0048 (7)
C120.0194 (9)0.0151 (8)0.0120 (9)0.0067 (7)0.0014 (7)0.0009 (7)
C130.0159 (9)0.0133 (8)0.0167 (9)0.0042 (7)0.0001 (7)0.0017 (7)
C140.0155 (9)0.0174 (8)0.0176 (9)0.0062 (7)0.0041 (7)0.0055 (7)
N10.0175 (8)0.0176 (7)0.0117 (7)0.0043 (6)0.0071 (6)0.0008 (6)
N20.0207 (8)0.0176 (7)0.0091 (7)0.0081 (6)0.0051 (6)0.0002 (6)
O10.0219 (7)0.0225 (6)0.0098 (6)0.0104 (5)0.0044 (5)0.0018 (5)
O20.0195 (7)0.0190 (6)0.0136 (6)0.0039 (5)0.0068 (5)0.0010 (5)
O30.0181 (7)0.0203 (6)0.0164 (7)0.0001 (5)0.0070 (5)0.0041 (5)
O40.0222 (7)0.0391 (8)0.0145 (7)0.0154 (6)0.0069 (6)0.0081 (6)
Geometric parameters (Å, º) top
C1—C21.387 (2)C9—C141.394 (2)
C1—C61.394 (2)C9—C101.399 (2)
C1—H10.9300C10—C111.380 (2)
C2—C31.387 (2)C10—H100.9300
C2—H20.9300C11—O31.3685 (19)
C3—O11.3743 (19)C11—C121.401 (2)
C3—C41.391 (2)C12—C131.381 (2)
C4—C51.381 (2)C12—H120.9300
C4—H40.9300C13—C141.387 (2)
C5—C61.398 (2)C13—H130.9300
C5—H50.9300C14—H140.9300
C6—C71.483 (2)N1—N21.3847 (18)
C7—O21.2404 (19)N1—H1N0.922 (18)
C7—N11.350 (2)O1—H1O0.92 (2)
C8—N21.281 (2)O3—H3O0.92 (2)
C8—C91.461 (2)O4—H1W0.86 (2)
C8—H80.9300O4—H2W0.89 (2)
C2—C1—C6120.52 (15)C14—C9—C8119.08 (15)
C2—C1—H1119.7C10—C9—C8121.08 (14)
C6—C1—H1119.7C11—C10—C9120.12 (15)
C3—C2—C1119.34 (15)C11—C10—H10119.9
C3—C2—H2120.3C9—C10—H10119.9
C1—C2—H2120.3O3—C11—C10122.49 (15)
O1—C3—C2121.75 (15)O3—C11—C12117.45 (15)
O1—C3—C4117.34 (15)C10—C11—C12120.05 (15)
C2—C3—C4120.90 (15)C13—C12—C11119.56 (15)
C5—C4—C3119.41 (15)C13—C12—H12120.2
C5—C4—H4120.3C11—C12—H12120.2
C3—C4—H4120.3C12—C13—C14120.89 (15)
C4—C5—C6120.53 (15)C12—C13—H13119.6
C4—C5—H5119.7C14—C13—H13119.6
C6—C5—H5119.7C13—C14—C9119.56 (15)
C1—C6—C5119.25 (15)C13—C14—H14120.2
C1—C6—C7122.63 (15)C9—C14—H14120.2
C5—C6—C7118.11 (15)C7—N1—N2119.60 (14)
O2—C7—N1122.60 (15)C7—N1—H1N119.1 (11)
O2—C7—C6122.25 (14)N2—N1—H1N120.5 (11)
N1—C7—C6115.15 (14)C8—N2—N1114.82 (14)
N2—C8—C9121.91 (15)C3—O1—H1O112.8 (11)
N2—C8—H8119.0C11—O3—H3O106.5 (11)
C9—C8—H8119.0H1W—O4—H2W108.6 (18)
C14—C9—C10119.79 (15)
C6—C1—C2—C31.7 (2)N2—C8—C9—C101.6 (3)
C1—C2—C3—O1177.71 (15)C14—C9—C10—C111.9 (3)
C1—C2—C3—C41.4 (2)C8—C9—C10—C11175.61 (16)
O1—C3—C4—C5179.58 (14)C9—C10—C11—O3179.33 (16)
C2—C3—C4—C50.4 (2)C9—C10—C11—C121.9 (3)
C3—C4—C5—C62.0 (2)O3—C11—C12—C13179.29 (16)
C2—C1—C6—C50.2 (2)C10—C11—C12—C130.5 (3)
C2—C1—C6—C7178.43 (15)C11—C12—C13—C141.0 (3)
C4—C5—C6—C11.7 (2)C12—C13—C14—C91.0 (3)
C4—C5—C6—C7179.64 (15)C10—C9—C14—C130.4 (3)
C1—C6—C7—O2136.31 (18)C8—C9—C14—C13177.13 (15)
C5—C6—C7—O242.3 (2)O2—C7—N1—N24.7 (3)
C1—C6—C7—N143.5 (2)C6—C7—N1—N2175.08 (14)
C5—C6—C7—N1137.90 (16)C9—C8—N2—N1176.21 (15)
N2—C8—C9—C14175.95 (16)C7—N1—N2—C8166.42 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.922 (18)2.044 (19)2.9357 (19)162.2 (16)
O1—H1O···O4ii0.92 (2)1.68 (2)2.6025 (18)172.6 (17)
O3—H3O···O2iii0.92 (2)1.83 (2)2.7512 (17)178.1 (17)
O4—H1W···N20.86 (2)2.16 (2)3.018 (2)172.5 (19)
O4—H2W···O2iii0.89 (2)1.98 (2)2.8676 (17)170.5 (18)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.922 (18)2.044 (19)2.9357 (19)162.2 (16)
O1—H1O···O4ii0.92 (2)1.68 (2)2.6025 (18)172.6 (17)
O3—H3O···O2iii0.92 (2)1.83 (2)2.7512 (17)178.1 (17)
O4—H1W···N20.86 (2)2.16 (2)3.018 (2)172.5 (19)
O4—H2W···O2iii0.89 (2)1.98 (2)2.8676 (17)170.5 (18)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the National Crystallography Service (University of Southampton) for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2010). CrystalClear. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o891-o892
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds