organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o913-o914

Crystal structure of 2-amino-5-methyl­sulfanyl-1,3,4-thia­diazol-3-ium chloride monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia, and bCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS–UHP 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 30 June 2014; accepted 8 July 2014; online 1 August 2014)

The title salt, C3H6N3S2+·Cl·H2O, crystallized with two organic cations, two chloride anions and two water mol­ecules in the asymmetric unit. The methyl C atoms deviate from their respective bound ring planes by 0.081 and 0.002 Å. In the crystal, the components are connected via N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds, forming sheets lying parallel to (100). The sheets are linked into bilayers by O—H⋯Cl hydrogen bonds involving the chloride ions and water mol­ecules. Within the bilayers there are ππ inter­actions [inter-centroid distances = 3.4654 (4) and 3.4789 (4) Å] involving inversion-related cations.

1. Related literature

For the medicinal importance and biological activity of thia­diazol isomers, see: Demirbas et al. (2009[Demirbas, A., Sahin, D., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 2896-2903.]). For applications of 1,3,4 thia­diazo­les in agriculture, see: Wei et al. (2006[Wei, T.-B., Liu, H. & Hu, J.-H. (2006). Indian J. Chem. Sect. B, 45, 2754-2756.]). For C—N bond lengths in the 2-amino-5-methyl­sulfanyl-1,3,4-thia­diazol-3-ium cation, see: Mrad et al. (2012[Mrad, M. L., Chair, K., Ammar, S., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2012). Elixir Appl. Chem. 51, 10850-10854.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C3H6N3S2+·Cl·H2O

  • Mr = 201.69

  • Monoclinic, P 2/n

  • a = 13.3826 (2) Å

  • b = 9.4258 (1) Å

  • c = 13.5762 (2) Å

  • β = 99.453 (1)°

  • V = 1689.27 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 110 K

  • 0.42 × 0.31 × 0.15 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.769, Tmax = 0.894

  • 65950 measured reflections

  • 8394 independent reflections

  • 7745 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.054

  • S = 1.12

  • 8394 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O17 0.861 (13) 1.818 (13) 2.6778 (7) 176.4 (12)
N6—H6A⋯Cl1 0.846 (12) 2.296 (12) 3.1178 (6) 164.2 (11)
N6—H6B⋯Cl2i 0.829 (13) 2.392 (13) 3.2139 (7) 171.4 (13)
N11—H11⋯O18 0.914 (14) 1.751 (14) 2.6632 (7) 176.7 (13)
N14—H14A⋯Cl2 0.877 (12) 2.289 (12) 3.1287 (6) 160.3 (11)
N14—H14B⋯Cl1ii 0.807 (13) 2.461 (13) 3.2648 (6) 173.6 (13)
O17—H17A⋯Cl2i 0.796 (14) 2.373 (14) 3.1593 (5) 169.8 (14)
O17—H17B⋯Cl2iii 0.826 (15) 2.340 (15) 3.1649 (6) 175.5 (14)
O18—H18A⋯Cl1ii 0.780 (13) 2.414 (13) 3.1708 (5) 163.8 (13)
O18—H18B⋯Cl1iv 0.837 (15) 2.318 (15) 3.1517 (6) 174.1 (14)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-1, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

The amine under investigation, 2-amino-5-(methyl­thio)-1,3,4-thia­diazole, belongs to the larger family of heterocyclic compounds with potential medicinal importance and broad spectra of biological activities. Among these types of organic molecules are several isomers of thia­diazole (Demirbas et al., 2009). 1,3,4-thia­diazo­les represent one of the most biologically active classes of compounds with a wide spectrum of activities. A large number of 1,3,4-thia­diazo­les have been patented in the agricultural field as herbicides and bactericides (Wei et al., 2006). In the present investigation, we report the synthesis and crystal structure of a new organic-inorganic hybrid compound prepared from the reaction of the title amine with the hydro­chloric acid in aqueous medium.

Structural commentary top

As shown in Fig. 1, the asymmetric unit of the title compound contains two 2-amino-5-(methyl­thio)-1,3,4-thia­diazol-3-ium cations, two chloride anions and two water molecules. These entities are connected by N—H···Cl, N—H···O and O—H···Cl hydrogen bonds, forming sheets parallel to (100) (Table 1 and Fig. 2). The layers are connect through O—H···Cl contacts, forming bilayers (Figs. 2 and 3).

Examination of the geometrical features of the organic cations shows that the exocyclic C—N bond lengths are similar in length to those of the thia­diazole rings, probably due to delocalization of the ring π density with the p-orbital electrons of the amino group. These C—N distances, ca. 1.33 Å, are compatible to that of [C3H6N3S2]H2PO4 which contains the same organic entity (Mrad et al., 2012).

Supra­molecular features top

The crystal packing is also influenced by inter­molecular ππ stacking inter­actions between inversion-related anti-parallel organic cations within the bilayers (Fig. 3); Cg1···Cg1i = 3.4654 (4) Å [Cg1 is the centroid of the S1/N3/N4/C2/C5 ring; symmetry code: (i) -x, -y+2, -z+1] and Cg2···Cg2ii = 3.4789 (4) Å [Cg2 is the centroid of the S9/N11/N12/C10/C13 ring; symmetry code: -x+1, -y+1, -z+1].

Synthesis and crystallization top

An aqueous 1 M HCl solution and 2-amino-5-(methyl­thio)-1,3,4-thia­diazole in a 1:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystals of the title salt grew as the ethanol evaporated at room temperature over the course of a few days.

Refinement top

The N- and O-bound H atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.98 Å with Uiso(H) = 1.2Ueq(C). Experimental details are given in Table 2.

Related literature top

For the medicinal importance and biological activity of thiadiazol isomers, see: Demirbas et al. (2009). For applications of 1,3,4 thiadiazoles in agriculture, see: Wei et al. (2006). For C—N bond lengths in the 2-amino-5-methylsulfanyl-1,3,4-thiadiazol-3-ium cation, see: Mrad et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. A partial view along the b axis of the crystal packing of the title compound, showing the intermolecular ππ stacking interactions between inversion-related organic cations.
2-Amino-5-methylsulfanyl-1,3,4-thiadiazol-3-ium chloride monohydrate top
Crystal data top
C3H6N3S2+·Cl·H2OF(000) = 832
Mr = 201.69Dx = 1.586 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2yacCell parameters from 30742 reflections
a = 13.3826 (2) Åθ = 2.9–37.8°
b = 9.4258 (1) ŵ = 0.89 mm1
c = 13.5762 (2) ÅT = 110 K
β = 99.453 (1)°Prism, colorless
V = 1689.27 (4) Å30.42 × 0.31 × 0.15 mm
Z = 8
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
8394 independent reflections
Radiation source: SuperNova (Mo) X-ray Source7745 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4508 pixels mm-1θmax = 36.7°, θmin = 2.9°
ω scansh = 2222
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 1515
Tmin = 0.769, Tmax = 0.894l = 2222
65950 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0211P)2 + 0.370P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.003
8394 reflectionsΔρmax = 0.47 e Å3
224 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00111 (13)
Crystal data top
C3H6N3S2+·Cl·H2OV = 1689.27 (4) Å3
Mr = 201.69Z = 8
Monoclinic, P2/nMo Kα radiation
a = 13.3826 (2) ŵ = 0.89 mm1
b = 9.4258 (1) ÅT = 110 K
c = 13.5762 (2) Å0.42 × 0.31 × 0.15 mm
β = 99.453 (1)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
8394 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
7745 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.894Rint = 0.021
65950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.47 e Å3
8394 reflectionsΔρmin = 0.28 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S70.127439 (13)1.268596 (18)0.444671 (12)0.01782 (3)
Cl20.386288 (13)0.472130 (17)0.838806 (12)0.01897 (3)
S10.129775 (12)1.086700 (17)0.628112 (12)0.01498 (3)
S90.353350 (12)0.596116 (17)0.572019 (12)0.01549 (3)
S150.370685 (15)0.777122 (18)0.392656 (13)0.02012 (3)
Cl10.112933 (13)0.978631 (17)0.878768 (12)0.01911 (3)
O180.39361 (4)0.11409 (5)0.40860 (4)0.01921 (9)
O170.10727 (4)0.60603 (5)0.44691 (4)0.01852 (9)
N120.38085 (4)0.49199 (6)0.40204 (4)0.01616 (9)
N30.12906 (4)0.87190 (6)0.51663 (4)0.01608 (9)
N60.13116 (5)0.81093 (7)0.68457 (4)0.01909 (10)
N110.37722 (4)0.38126 (6)0.46775 (4)0.01566 (9)
N140.35554 (5)0.32153 (6)0.63065 (4)0.01771 (9)
N40.12853 (4)0.98357 (6)0.45103 (4)0.01622 (9)
C100.36248 (5)0.41383 (6)0.55932 (5)0.01406 (9)
C50.12929 (5)1.10218 (7)0.49890 (5)0.01482 (9)
C130.36960 (5)0.61102 (7)0.44630 (5)0.01494 (10)
C20.13012 (5)0.90405 (7)0.61203 (5)0.01490 (10)
C160.38878 (6)0.72871 (9)0.26821 (5)0.02396 (13)
H16B0.45280.67710.27150.036*
H16A0.39060.81460.22790.036*
H16C0.33270.66810.23760.036*
C80.13379 (6)1.21799 (9)0.31782 (5)0.02475 (13)
H8B0.19621.16430.31610.037*
H8A0.13351.30330.27650.037*
H8C0.07511.15890.29190.037*
H18B0.4504 (11)0.0902 (15)0.3960 (11)0.045 (4)*
H18A0.3831 (10)0.0703 (14)0.4546 (10)0.033 (3)*
H6A0.1303 (9)0.8410 (13)0.7431 (9)0.028 (3)*
H14B0.3640 (10)0.2376 (14)0.6235 (10)0.033 (3)*
H14A0.3506 (9)0.3519 (14)0.6907 (9)0.031 (3)*
H6B0.1286 (10)0.7247 (14)0.6724 (10)0.036 (3)*
H17B0.0504 (11)0.5876 (15)0.4157 (11)0.045 (4)*
H17A0.1117 (10)0.5630 (15)0.4979 (10)0.037 (3)*
H30.1242 (9)0.7870 (14)0.4929 (9)0.033 (3)*
H110.3851 (10)0.2905 (15)0.4467 (10)0.043 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S70.02231 (7)0.01564 (6)0.01558 (6)0.00113 (5)0.00333 (5)0.00038 (5)
Cl20.02398 (7)0.01862 (7)0.01352 (6)0.00121 (5)0.00077 (5)0.00314 (5)
S10.01744 (6)0.01459 (6)0.01294 (6)0.00041 (5)0.00259 (5)0.00314 (5)
S90.01931 (7)0.01389 (6)0.01357 (6)0.00047 (5)0.00357 (5)0.00272 (5)
S150.02861 (8)0.01529 (7)0.01681 (7)0.00147 (6)0.00476 (6)0.00022 (5)
Cl10.02353 (7)0.01790 (6)0.01740 (6)0.00308 (5)0.00778 (5)0.00374 (5)
O180.0268 (2)0.01509 (19)0.0167 (2)0.00361 (17)0.00633 (18)0.00171 (16)
O170.0251 (2)0.0155 (2)0.01450 (19)0.00279 (17)0.00197 (17)0.00079 (15)
N120.0187 (2)0.0157 (2)0.0147 (2)0.00090 (17)0.00432 (17)0.00181 (17)
N30.0205 (2)0.0144 (2)0.0132 (2)0.00115 (17)0.00220 (17)0.00289 (16)
N60.0265 (3)0.0163 (2)0.0143 (2)0.0013 (2)0.00311 (19)0.00122 (18)
N110.0194 (2)0.0141 (2)0.0139 (2)0.00025 (17)0.00404 (17)0.00234 (16)
N140.0241 (2)0.0152 (2)0.0137 (2)0.00121 (19)0.00275 (18)0.00082 (17)
N40.0190 (2)0.0158 (2)0.0137 (2)0.00094 (17)0.00235 (17)0.00223 (17)
C100.0144 (2)0.0141 (2)0.0135 (2)0.00004 (17)0.00170 (18)0.00237 (17)
C50.0149 (2)0.0160 (2)0.0135 (2)0.00038 (18)0.00204 (18)0.00209 (18)
C130.0159 (2)0.0150 (2)0.0140 (2)0.00095 (18)0.00286 (18)0.00155 (18)
C20.0153 (2)0.0154 (2)0.0139 (2)0.00111 (18)0.00202 (18)0.00291 (18)
C160.0260 (3)0.0305 (4)0.0159 (3)0.0014 (3)0.0047 (2)0.0019 (2)
C80.0297 (3)0.0296 (4)0.0161 (3)0.0003 (3)0.0069 (2)0.0003 (2)
Geometric parameters (Å, º) top
S7—C51.7312 (7)N3—H30.861 (13)
S7—C81.8024 (7)N6—C21.3176 (9)
S1—C21.7355 (6)N6—H6A0.846 (12)
S1—C51.7593 (6)N6—H6B0.829 (13)
S9—C101.7331 (6)N11—C101.3264 (8)
S9—C131.7613 (6)N11—H110.913 (14)
S15—C131.7278 (7)N14—C101.3164 (9)
S15—C161.8043 (8)N14—H14B0.808 (13)
O18—H18B0.836 (15)N14—H14A0.876 (13)
O18—H18A0.780 (14)N4—C51.2923 (8)
O17—H17B0.827 (15)C16—H16B0.9800
O17—H17A0.796 (14)C16—H16A0.9800
N12—C131.2932 (8)C16—H16C0.9800
N12—N111.3791 (8)C8—H8B0.9800
N3—C21.3280 (8)C8—H8A0.9800
N3—N41.3781 (8)C8—H8C0.9800
C5—S7—C899.61 (3)N11—C10—S9110.27 (5)
C2—S1—C587.51 (3)N4—C5—S7124.86 (5)
C10—S9—C1387.75 (3)N4—C5—S1115.35 (5)
C13—S15—C16100.21 (3)S7—C5—S1119.78 (4)
H18B—O18—H18A108.1 (13)N12—C13—S15125.50 (5)
H17B—O17—H17A105.6 (13)N12—C13—S9115.05 (5)
C13—N12—N11109.69 (5)S15—C13—S9119.45 (4)
C2—N3—N4117.01 (5)N6—C2—N3125.04 (6)
C2—N3—H3124.4 (8)N6—C2—S1124.52 (5)
N4—N3—H3118.4 (8)N3—C2—S1110.44 (5)
C2—N6—H6A118.6 (8)S15—C16—H16B109.5
C2—N6—H6B120.6 (9)S15—C16—H16A109.5
H6A—N6—H6B120.6 (12)H16B—C16—H16A109.5
C10—N11—N12117.23 (5)S15—C16—H16C109.5
C10—N11—H11123.5 (9)H16B—C16—H16C109.5
N12—N11—H11119.3 (9)H16A—C16—H16C109.5
C10—N14—H14B122.1 (9)S7—C8—H8B109.5
C10—N14—H14A119.6 (8)S7—C8—H8A109.5
H14B—N14—H14A117.7 (12)H8B—C8—H8A109.5
C5—N4—N3109.70 (5)S7—C8—H8C109.5
N14—C10—N11125.16 (6)H8B—C8—H8C109.5
N14—C10—S9124.57 (5)H8A—C8—H8C109.5
C13—N12—N11—C100.74 (8)C2—S1—C5—S7179.35 (4)
C2—N3—N4—C50.04 (8)N11—N12—C13—S15179.19 (5)
N12—N11—C10—N14178.94 (6)N11—N12—C13—S90.16 (7)
N12—N11—C10—S90.95 (7)C16—S15—C13—N120.81 (7)
C13—S9—C10—N14179.23 (6)C16—S15—C13—S9179.87 (4)
C13—S9—C10—N110.67 (5)C10—S9—C13—N120.29 (5)
N3—N4—C5—S7179.17 (5)C10—S9—C13—S15179.68 (4)
N3—N4—C5—S10.44 (7)N4—N3—C2—N6179.72 (6)
C8—S7—C5—N43.94 (7)N4—N3—C2—S10.37 (7)
C8—S7—C5—S1177.38 (4)C5—S1—C2—N6179.60 (6)
C2—S1—C5—N40.55 (5)C5—S1—C2—N30.49 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O170.861 (13)1.818 (13)2.6778 (7)176.4 (12)
N6—H6A···Cl10.846 (12)2.296 (12)3.1178 (6)164.2 (11)
N6—H6B···Cl2i0.829 (13)2.392 (13)3.2139 (7)171.4 (13)
N11—H11···O180.914 (14)1.751 (14)2.6632 (7)176.7 (13)
N14—H14A···Cl20.877 (12)2.289 (12)3.1287 (6)160.3 (11)
N14—H14B···Cl1ii0.807 (13)2.461 (13)3.2648 (6)173.6 (13)
O17—H17A···Cl2i0.796 (14)2.373 (14)3.1593 (5)169.8 (14)
O17—H17B···Cl2iii0.826 (15)2.340 (15)3.1649 (6)175.5 (14)
O18—H18A···Cl1ii0.780 (13)2.414 (13)3.1708 (5)163.8 (13)
O18—H18B···Cl1iv0.837 (15)2.318 (15)3.1517 (6)174.1 (14)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y1, z+3/2; (iii) x1/2, y+1, z1/2; (iv) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O170.861 (13)1.818 (13)2.6778 (7)176.4 (12)
N6—H6A···Cl10.846 (12)2.296 (12)3.1178 (6)164.2 (11)
N6—H6B···Cl2i0.829 (13)2.392 (13)3.2139 (7)171.4 (13)
N11—H11···O180.914 (14)1.751 (14)2.6632 (7)176.7 (13)
N14—H14A···Cl20.877 (12)2.289 (12)3.1287 (6)160.3 (11)
N14—H14B···Cl1ii0.807 (13)2.461 (13)3.2648 (6)173.6 (13)
O17—H17A···Cl2i0.796 (14)2.373 (14)3.1593 (5)169.8 (14)
O17—H17B···Cl2iii0.826 (15)2.340 (15)3.1649 (6)175.5 (14)
O18—H18A···Cl1ii0.780 (13)2.414 (13)3.1708 (5)163.8 (13)
O18—H18B···Cl1iv0.837 (15)2.318 (15)3.1517 (6)174.1 (14)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y1, z+3/2; (iii) x1/2, y+1, z1/2; (iv) x+1/2, y+1, z1/2.
 

Acknowledgements

We are most grateful for the support provided by the Secretary of State for Scientific Research and Technology of Tunisia, and the DRX service of the University of Lorraine, France.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemirbas, A., Sahin, D., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 2896–2903.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMrad, M. L., Chair, K., Ammar, S., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2012). Elixir Appl. Chem. 51, 10850–10854.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, T.-B., Liu, H. & Hu, J.-H. (2006). Indian J. Chem. Sect. B, 45, 2754–2756.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o913-o914
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds