organic compounds
of 2-amino-5-methylsulfanyl-1,3,4-thiadiazol-3-ium chloride monohydrate
aLaboratoire de Chimie des Matériaux, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia, and bCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS–UHP 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr
The title salt, C3H6N3S2+·Cl−·H2O, crystallized with two organic cations, two chloride anions and two water molecules in the The methyl C atoms deviate from their respective bound ring planes by 0.081 and 0.002 Å. In the crystal, the components are connected via N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds, forming sheets lying parallel to (100). The sheets are linked into bilayers by O—H⋯Cl hydrogen bonds involving the chloride ions and water molecules. Within the bilayers there are π–π interactions [inter-centroid distances = 3.4654 (4) and 3.4789 (4) Å] involving inversion-related cations.
CCDC reference: 1012703
1. Related literature
For the medicinal importance and biological activity of thiadiazol isomers, see: Demirbas et al. (2009). For applications of 1,3,4 thiadiazoles in agriculture, see: Wei et al. (2006). For C—N bond lengths in the 2-amino-5-methylsulfanyl-1,3,4-thiadiazol-3-ium cation, see: Mrad et al. (2012).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1012703
10.1107/S1600536814015864/su2749sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015864/su2749Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814015864/su2749Isup3.tif
Supporting information file. DOI: 10.1107/S1600536814015864/su2749Isup4.cml
The amine under investigation, 2-amino-5-(methylthio)-1,3,4-thiadiazole, belongs to the larger family of
with potential medicinal importance and broad spectra of biological activities. Among these types of organic molecules are several isomers of thiadiazole (Demirbas et al., 2009). 1,3,4-thiadiazoles represent one of the most biologically active classes of compounds with a wide spectrum of activities. A large number of 1,3,4-thiadiazoles have been patented in the agricultural field as herbicides and bactericides (Wei et al., 2006). In the present investigation, we report the synthesis and of a new organic-inorganic hybrid compound prepared from the reaction of the title amine with the hydrochloric acid in aqueous medium.As shown in Fig. 1, the
of the title compound contains two 2-amino-5-(methylthio)-1,3,4-thiadiazol-3-ium cations, two chloride anions and two water molecules. These entities are connected by N—H···Cl, N—H···O and O—H···Cl hydrogen bonds, forming sheets parallel to (100) (Table 1 and Fig. 2). The layers are connect through O—H···Cl contacts, forming bilayers (Figs. 2 and 3).Examination of the geometrical features of the organic cations shows that the exocyclic C—N bond lengths are similar in length to those of the thiadiazole rings, probably due to delocalization of the ring π density with the p-orbital electrons of the amino group. These C—N distances, ca. 1.33 Å, are compatible to that of [C3H6N3S2]H2PO4 which contains the same organic entity (Mrad et al., 2012).
The crystal packing is also influenced by intermolecular π–π stacking interactions between inversion-related anti-parallel organic cations within the bilayers (Fig. 3); Cg1···Cg1i = 3.4654 (4) Å [Cg1 is the centroid of the S1/N3/N4/C2/C5 ring; symmetry code: (i) -x, -y+2, -z+1] and Cg2···Cg2ii = 3.4789 (4) Å [Cg2 is the centroid of the S9/N11/N12/C10/C13 ring; symmetry code: -x+1, -y+1, -z+1].
An aqueous 1 M HCl solution and 2-amino-5-(methylthio)-1,3,4-thiadiazole in a 1:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystals of the title salt grew as the ethanol evaporated at room temperature over the course of a few days.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. A view of molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details). | |
Fig. 3. A partial view along the b axis of the crystal packing of the title compound, showing the intermolecular π–π stacking interactions between inversion-related organic cations. |
C3H6N3S2+·Cl−·H2O | F(000) = 832 |
Mr = 201.69 | Dx = 1.586 Mg m−3 |
Monoclinic, P2/n | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2yac | Cell parameters from 30742 reflections |
a = 13.3826 (2) Å | θ = 2.9–37.8° |
b = 9.4258 (1) Å | µ = 0.89 mm−1 |
c = 13.5762 (2) Å | T = 110 K |
β = 99.453 (1)° | Prism, colorless |
V = 1689.27 (4) Å3 | 0.42 × 0.31 × 0.15 mm |
Z = 8 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 8394 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 7745 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 10.4508 pixels mm-1 | θmax = 36.7°, θmin = 2.9° |
ω scans | h = −22→22 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] | k = −15→15 |
Tmin = 0.769, Tmax = 0.894 | l = −22→22 |
65950 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0211P)2 + 0.370P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.003 |
8394 reflections | Δρmax = 0.47 e Å−3 |
224 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00111 (13) |
C3H6N3S2+·Cl−·H2O | V = 1689.27 (4) Å3 |
Mr = 201.69 | Z = 8 |
Monoclinic, P2/n | Mo Kα radiation |
a = 13.3826 (2) Å | µ = 0.89 mm−1 |
b = 9.4258 (1) Å | T = 110 K |
c = 13.5762 (2) Å | 0.42 × 0.31 × 0.15 mm |
β = 99.453 (1)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 8394 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] | 7745 reflections with I > 2σ(I) |
Tmin = 0.769, Tmax = 0.894 | Rint = 0.021 |
65950 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.47 e Å−3 |
8394 reflections | Δρmin = −0.28 e Å−3 |
224 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S7 | 0.127439 (13) | 1.268596 (18) | 0.444671 (12) | 0.01782 (3) | |
Cl2 | 0.386288 (13) | 0.472130 (17) | 0.838806 (12) | 0.01897 (3) | |
S1 | 0.129775 (12) | 1.086700 (17) | 0.628112 (12) | 0.01498 (3) | |
S9 | 0.353350 (12) | 0.596116 (17) | 0.572019 (12) | 0.01549 (3) | |
S15 | 0.370685 (15) | 0.777122 (18) | 0.392656 (13) | 0.02012 (3) | |
Cl1 | 0.112933 (13) | 0.978631 (17) | 0.878768 (12) | 0.01911 (3) | |
O18 | 0.39361 (4) | 0.11409 (5) | 0.40860 (4) | 0.01921 (9) | |
O17 | 0.10727 (4) | 0.60603 (5) | 0.44691 (4) | 0.01852 (9) | |
N12 | 0.38085 (4) | 0.49199 (6) | 0.40204 (4) | 0.01616 (9) | |
N3 | 0.12906 (4) | 0.87190 (6) | 0.51663 (4) | 0.01608 (9) | |
N6 | 0.13116 (5) | 0.81093 (7) | 0.68457 (4) | 0.01909 (10) | |
N11 | 0.37722 (4) | 0.38126 (6) | 0.46775 (4) | 0.01566 (9) | |
N14 | 0.35554 (5) | 0.32153 (6) | 0.63065 (4) | 0.01771 (9) | |
N4 | 0.12853 (4) | 0.98357 (6) | 0.45103 (4) | 0.01622 (9) | |
C10 | 0.36248 (5) | 0.41383 (6) | 0.55932 (5) | 0.01406 (9) | |
C5 | 0.12929 (5) | 1.10218 (7) | 0.49890 (5) | 0.01482 (9) | |
C13 | 0.36960 (5) | 0.61102 (7) | 0.44630 (5) | 0.01494 (10) | |
C2 | 0.13012 (5) | 0.90405 (7) | 0.61203 (5) | 0.01490 (10) | |
C16 | 0.38878 (6) | 0.72871 (9) | 0.26821 (5) | 0.02396 (13) | |
H16B | 0.4528 | 0.6771 | 0.2715 | 0.036* | |
H16A | 0.3906 | 0.8146 | 0.2279 | 0.036* | |
H16C | 0.3327 | 0.6681 | 0.2376 | 0.036* | |
C8 | 0.13379 (6) | 1.21799 (9) | 0.31782 (5) | 0.02475 (13) | |
H8B | 0.1962 | 1.1643 | 0.3161 | 0.037* | |
H8A | 0.1335 | 1.3033 | 0.2765 | 0.037* | |
H8C | 0.0751 | 1.1589 | 0.2919 | 0.037* | |
H18B | 0.4504 (11) | 0.0902 (15) | 0.3960 (11) | 0.045 (4)* | |
H18A | 0.3831 (10) | 0.0703 (14) | 0.4546 (10) | 0.033 (3)* | |
H6A | 0.1303 (9) | 0.8410 (13) | 0.7431 (9) | 0.028 (3)* | |
H14B | 0.3640 (10) | 0.2376 (14) | 0.6235 (10) | 0.033 (3)* | |
H14A | 0.3506 (9) | 0.3519 (14) | 0.6907 (9) | 0.031 (3)* | |
H6B | 0.1286 (10) | 0.7247 (14) | 0.6724 (10) | 0.036 (3)* | |
H17B | 0.0504 (11) | 0.5876 (15) | 0.4157 (11) | 0.045 (4)* | |
H17A | 0.1117 (10) | 0.5630 (15) | 0.4979 (10) | 0.037 (3)* | |
H3 | 0.1242 (9) | 0.7870 (14) | 0.4929 (9) | 0.033 (3)* | |
H11 | 0.3851 (10) | 0.2905 (15) | 0.4467 (10) | 0.043 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S7 | 0.02231 (7) | 0.01564 (6) | 0.01558 (6) | −0.00113 (5) | 0.00333 (5) | −0.00038 (5) |
Cl2 | 0.02398 (7) | 0.01862 (7) | 0.01352 (6) | 0.00121 (5) | 0.00077 (5) | −0.00314 (5) |
S1 | 0.01744 (6) | 0.01459 (6) | 0.01294 (6) | −0.00041 (5) | 0.00259 (5) | −0.00314 (5) |
S9 | 0.01931 (7) | 0.01389 (6) | 0.01357 (6) | 0.00047 (5) | 0.00357 (5) | −0.00272 (5) |
S15 | 0.02861 (8) | 0.01529 (7) | 0.01681 (7) | −0.00147 (6) | 0.00476 (6) | 0.00022 (5) |
Cl1 | 0.02353 (7) | 0.01790 (6) | 0.01740 (6) | −0.00308 (5) | 0.00778 (5) | −0.00374 (5) |
O18 | 0.0268 (2) | 0.01509 (19) | 0.0167 (2) | 0.00361 (17) | 0.00633 (18) | 0.00171 (16) |
O17 | 0.0251 (2) | 0.0155 (2) | 0.01450 (19) | −0.00279 (17) | 0.00197 (17) | 0.00079 (15) |
N12 | 0.0187 (2) | 0.0157 (2) | 0.0147 (2) | −0.00090 (17) | 0.00432 (17) | −0.00181 (17) |
N3 | 0.0205 (2) | 0.0144 (2) | 0.0132 (2) | −0.00115 (17) | 0.00220 (17) | −0.00289 (16) |
N6 | 0.0265 (3) | 0.0163 (2) | 0.0143 (2) | −0.0013 (2) | 0.00311 (19) | −0.00122 (18) |
N11 | 0.0194 (2) | 0.0141 (2) | 0.0139 (2) | −0.00025 (17) | 0.00404 (17) | −0.00234 (16) |
N14 | 0.0241 (2) | 0.0152 (2) | 0.0137 (2) | 0.00121 (19) | 0.00275 (18) | −0.00082 (17) |
N4 | 0.0190 (2) | 0.0158 (2) | 0.0137 (2) | −0.00094 (17) | 0.00235 (17) | −0.00223 (17) |
C10 | 0.0144 (2) | 0.0141 (2) | 0.0135 (2) | 0.00004 (17) | 0.00170 (18) | −0.00237 (17) |
C5 | 0.0149 (2) | 0.0160 (2) | 0.0135 (2) | −0.00038 (18) | 0.00204 (18) | −0.00209 (18) |
C13 | 0.0159 (2) | 0.0150 (2) | 0.0140 (2) | −0.00095 (18) | 0.00286 (18) | −0.00155 (18) |
C2 | 0.0153 (2) | 0.0154 (2) | 0.0139 (2) | −0.00111 (18) | 0.00202 (18) | −0.00291 (18) |
C16 | 0.0260 (3) | 0.0305 (4) | 0.0159 (3) | 0.0014 (3) | 0.0047 (2) | 0.0019 (2) |
C8 | 0.0297 (3) | 0.0296 (4) | 0.0161 (3) | −0.0003 (3) | 0.0069 (2) | 0.0003 (2) |
S7—C5 | 1.7312 (7) | N3—H3 | 0.861 (13) |
S7—C8 | 1.8024 (7) | N6—C2 | 1.3176 (9) |
S1—C2 | 1.7355 (6) | N6—H6A | 0.846 (12) |
S1—C5 | 1.7593 (6) | N6—H6B | 0.829 (13) |
S9—C10 | 1.7331 (6) | N11—C10 | 1.3264 (8) |
S9—C13 | 1.7613 (6) | N11—H11 | 0.913 (14) |
S15—C13 | 1.7278 (7) | N14—C10 | 1.3164 (9) |
S15—C16 | 1.8043 (8) | N14—H14B | 0.808 (13) |
O18—H18B | 0.836 (15) | N14—H14A | 0.876 (13) |
O18—H18A | 0.780 (14) | N4—C5 | 1.2923 (8) |
O17—H17B | 0.827 (15) | C16—H16B | 0.9800 |
O17—H17A | 0.796 (14) | C16—H16A | 0.9800 |
N12—C13 | 1.2932 (8) | C16—H16C | 0.9800 |
N12—N11 | 1.3791 (8) | C8—H8B | 0.9800 |
N3—C2 | 1.3280 (8) | C8—H8A | 0.9800 |
N3—N4 | 1.3781 (8) | C8—H8C | 0.9800 |
C5—S7—C8 | 99.61 (3) | N11—C10—S9 | 110.27 (5) |
C2—S1—C5 | 87.51 (3) | N4—C5—S7 | 124.86 (5) |
C10—S9—C13 | 87.75 (3) | N4—C5—S1 | 115.35 (5) |
C13—S15—C16 | 100.21 (3) | S7—C5—S1 | 119.78 (4) |
H18B—O18—H18A | 108.1 (13) | N12—C13—S15 | 125.50 (5) |
H17B—O17—H17A | 105.6 (13) | N12—C13—S9 | 115.05 (5) |
C13—N12—N11 | 109.69 (5) | S15—C13—S9 | 119.45 (4) |
C2—N3—N4 | 117.01 (5) | N6—C2—N3 | 125.04 (6) |
C2—N3—H3 | 124.4 (8) | N6—C2—S1 | 124.52 (5) |
N4—N3—H3 | 118.4 (8) | N3—C2—S1 | 110.44 (5) |
C2—N6—H6A | 118.6 (8) | S15—C16—H16B | 109.5 |
C2—N6—H6B | 120.6 (9) | S15—C16—H16A | 109.5 |
H6A—N6—H6B | 120.6 (12) | H16B—C16—H16A | 109.5 |
C10—N11—N12 | 117.23 (5) | S15—C16—H16C | 109.5 |
C10—N11—H11 | 123.5 (9) | H16B—C16—H16C | 109.5 |
N12—N11—H11 | 119.3 (9) | H16A—C16—H16C | 109.5 |
C10—N14—H14B | 122.1 (9) | S7—C8—H8B | 109.5 |
C10—N14—H14A | 119.6 (8) | S7—C8—H8A | 109.5 |
H14B—N14—H14A | 117.7 (12) | H8B—C8—H8A | 109.5 |
C5—N4—N3 | 109.70 (5) | S7—C8—H8C | 109.5 |
N14—C10—N11 | 125.16 (6) | H8B—C8—H8C | 109.5 |
N14—C10—S9 | 124.57 (5) | H8A—C8—H8C | 109.5 |
C13—N12—N11—C10 | 0.74 (8) | C2—S1—C5—S7 | 179.35 (4) |
C2—N3—N4—C5 | 0.04 (8) | N11—N12—C13—S15 | 179.19 (5) |
N12—N11—C10—N14 | 178.94 (6) | N11—N12—C13—S9 | −0.16 (7) |
N12—N11—C10—S9 | −0.95 (7) | C16—S15—C13—N12 | 0.81 (7) |
C13—S9—C10—N14 | −179.23 (6) | C16—S15—C13—S9 | −179.87 (4) |
C13—S9—C10—N11 | 0.67 (5) | C10—S9—C13—N12 | −0.29 (5) |
N3—N4—C5—S7 | −179.17 (5) | C10—S9—C13—S15 | −179.68 (4) |
N3—N4—C5—S1 | −0.44 (7) | N4—N3—C2—N6 | −179.72 (6) |
C8—S7—C5—N4 | −3.94 (7) | N4—N3—C2—S1 | 0.37 (7) |
C8—S7—C5—S1 | 177.38 (4) | C5—S1—C2—N6 | 179.60 (6) |
C2—S1—C5—N4 | 0.55 (5) | C5—S1—C2—N3 | −0.49 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O17 | 0.861 (13) | 1.818 (13) | 2.6778 (7) | 176.4 (12) |
N6—H6A···Cl1 | 0.846 (12) | 2.296 (12) | 3.1178 (6) | 164.2 (11) |
N6—H6B···Cl2i | 0.829 (13) | 2.392 (13) | 3.2139 (7) | 171.4 (13) |
N11—H11···O18 | 0.914 (14) | 1.751 (14) | 2.6632 (7) | 176.7 (13) |
N14—H14A···Cl2 | 0.877 (12) | 2.289 (12) | 3.1287 (6) | 160.3 (11) |
N14—H14B···Cl1ii | 0.807 (13) | 2.461 (13) | 3.2648 (6) | 173.6 (13) |
O17—H17A···Cl2i | 0.796 (14) | 2.373 (14) | 3.1593 (5) | 169.8 (14) |
O17—H17B···Cl2iii | 0.826 (15) | 2.340 (15) | 3.1649 (6) | 175.5 (14) |
O18—H18A···Cl1ii | 0.780 (13) | 2.414 (13) | 3.1708 (5) | 163.8 (13) |
O18—H18B···Cl1iv | 0.837 (15) | 2.318 (15) | 3.1517 (6) | 174.1 (14) |
Symmetry codes: (i) −x+1/2, y, −z+3/2; (ii) −x+1/2, y−1, −z+3/2; (iii) x−1/2, −y+1, z−1/2; (iv) x+1/2, −y+1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O17 | 0.861 (13) | 1.818 (13) | 2.6778 (7) | 176.4 (12) |
N6—H6A···Cl1 | 0.846 (12) | 2.296 (12) | 3.1178 (6) | 164.2 (11) |
N6—H6B···Cl2i | 0.829 (13) | 2.392 (13) | 3.2139 (7) | 171.4 (13) |
N11—H11···O18 | 0.914 (14) | 1.751 (14) | 2.6632 (7) | 176.7 (13) |
N14—H14A···Cl2 | 0.877 (12) | 2.289 (12) | 3.1287 (6) | 160.3 (11) |
N14—H14B···Cl1ii | 0.807 (13) | 2.461 (13) | 3.2648 (6) | 173.6 (13) |
O17—H17A···Cl2i | 0.796 (14) | 2.373 (14) | 3.1593 (5) | 169.8 (14) |
O17—H17B···Cl2iii | 0.826 (15) | 2.340 (15) | 3.1649 (6) | 175.5 (14) |
O18—H18A···Cl1ii | 0.780 (13) | 2.414 (13) | 3.1708 (5) | 163.8 (13) |
O18—H18B···Cl1iv | 0.837 (15) | 2.318 (15) | 3.1517 (6) | 174.1 (14) |
Symmetry codes: (i) −x+1/2, y, −z+3/2; (ii) −x+1/2, y−1, −z+3/2; (iii) x−1/2, −y+1, z−1/2; (iv) x+1/2, −y+1, z−1/2. |
Acknowledgements
We are most grateful for the support provided by the Secretary of State for Scientific Research and Technology of Tunisia, and the DRX service of the University of Lorraine, France.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Demirbas, A., Sahin, D., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 2896–2903. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mrad, M. L., Chair, K., Ammar, S., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2012). Elixir Appl. Chem. 51, 10850–10854. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wei, T.-B., Liu, H. & Hu, J.-H. (2006). Indian J. Chem. Sect. B, 45, 2754–2756. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.