organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o901-o902

Crystal structure of 4-(4-meth­­oxy­phen­yl)-7,7-di­methyl-2-methyl­amino-3-nitro-7,8-di­hydro-4H-chromen-5(6H)-one

aSri Ram Engineering College, Chennai 602 024, India, bOrganic Chemistry Division, CSIR–Central Leather Research Institute, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 July 2014; accepted 8 July 2014; online 1 August 2014)

In the title compound, C19H22N2O5, the six-membered carbocyclic ring of the chromene moiety adopts an envelope conformation with the dimethyl-substituted C atom as the flap. The pyran ring has a flat-boat conformation. The meth­oxy­phenyl ring is orthogonal to the mean plane of the chromene moiety, with a dihedral angle of 89.97 (8)°. The amine N atom deviates from the chromene mean plane by 0.1897 (16) Å. The methyl­amine and the nitro group are involved in an intra­molecular N—H⋯O hydrogen bond which generates an S(6) ring motif. They are slightly twisted out of the plane of the chromene moiety with torsion angles of C—N—C—O(pyran) = 2.2 (3)° and O(nitro)—N—C—C = −5.6 (2)°. In the crystal, there are only C—H⋯π inter­actions present, forming inversion-related dimers.

1. Related literature

For the biological and pharmacological properties of chromenes and their derivatives, see: Shah et al. (2013[Shah, N. K., Shah, N. M., Patel, M. P. & Patel, R. G. (2013). J. Chem. Sci. 125, 525-530.]).For related structures, see: Narayanan et al. (2013[Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931-o932.]); Inglebert et al. (2014[Inglebert, S. A., Kamalraja, J., Sethusankar, K. & Vasuki, G. (2014). Acta Cryst. E70, o579-o580.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H22N2O5

  • Mr = 358.39

  • Monoclinic, P 21 /c

  • a = 9.6793 (7) Å

  • b = 16.3059 (12) Å

  • c = 11.9205 (8) Å

  • β = 106.128 (2)°

  • V = 1807.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.981

  • 25137 measured reflections

  • 3429 independent reflections

  • 2369 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.140

  • S = 1.04

  • 3429 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17BCg2i 0.96 2.78 3.652 142
N1—H1⋯O3 0.86 1.98 2.602 (2) 128
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Amino chromenes and their derivatives are an important class of heterocyclic compounds having significant biological activities. During the last decade, such compounds have shown interesting pharmacological properties including antimicrobial, mutagenicity, sex hormone, cancer therapy, and central nervous system activities (Shah et al., 2013).

The title compound, Fig. 1, consists of a chromene unit attached to a methoxyphenyl ring, a nitro group, a dimethyl, a methyl-amine group and an oxygen atom. The mean plane of the chromene unit (O1/C7–C15) makes a dihedral angle of 89.87 (8)° with the phenyl ring (C1–C6), which shows that they are perpendicular to each other. The mean plane of the chromene unit makes dihedral angles of 5.56 (11) and 5.46 (9)° with the nitro and methylamine groups, respectively.

The six membered carbocyclic ring (C10–C15) of the chromene moiety adopts an envelope conformation with puckering parameters of Puckering Amplitude (Q) = 0.458 (2) Å, θ = 58.2 (3)° & ϕ = 120.1 (3)°. Atom C12 deviates by 0.323 (2) Å from the mean plane passing through the rest of the ring atoms. The title compound exhibits structural similarities with the reported related structures (Narayanan et al., 2013; Inglebert et al., 2014).

The amine group nitrogen atoms N1 and N2, deviate by -0.1897 (16) and -0.1081 (17) Å from the mean plane of the chromene moiety. The methyl amine group attached to C9 is coplanar with the chromene moiety as indicated by the torsion angle C17–N1–C9–O1 = 2.2 (3)°. The nitro group is also coplanar to the chromene moiety, as indicated by the torsion angles C9–C8–N2–O3 = -0.2 (3)° and C7–C8–N2–O2 = -5.6 (2)°, respectively.

The molecular structure is characterized by an intramolecular N—H···O hydrogen bond, generates an S(6) ring motif (Table 1).

In the crystal, there are only C—H···π interactions present (Table 1).

Related literature top

For the biological and pharmacological properties of chromenes and their derivatives, see: Shah et al. (2013). For related structures, see: Narayanan et al. (2013); Inglebert et al. (2014).

Experimental top

A solution of 4-methoxylbenzaldehyde (1.0 mmol), 5,5-dimethylcyclohexane-1,3-dione (1.0 mmol), NMSM (1.0 mmol), and piperidine (0.2 eq) in the presence of ethanol (2 ml) was stirred for 5 h. After the reaction was complete, as indicated by TLC, the product was filtered out and washed with 2 ml of ethanol to remove the excess base and other impurities. The resulting products were recrystallized from ethanol yielding crystal of the title compound.

Refinement top

H atoms were placed in idealized positions and allowed to ride on the parent atoms: N-H = 0.86 Å, C—H = 0.93 - 0.97 Å with Uiso(H)= 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
4-(4-Methoxyphenyl)-7,7-dimethyl-2-methylamino-3-nitro-7,8-dihydro-4H-chromen-5(6H)-one top
Crystal data top
C19H22N2O5F(000) = 760
Mr = 358.39Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 3429 reflections
a = 9.6793 (7) Åθ = 2.2–25.7°
b = 16.3059 (12) ŵ = 0.10 mm1
c = 11.9205 (8) ÅT = 293 K
β = 106.128 (2)°Block, colourless
V = 1807.4 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3429 independent reflections
Radiation source: fine-focus sealed tube2369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and ϕ scanθmax = 25.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.972, Tmax = 0.981k = 1919
25137 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0743P)2 + 0.445P]
where P = (Fo2 + 2Fc2)/3
3429 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H22N2O5V = 1807.4 (2) Å3
Mr = 358.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6793 (7) ŵ = 0.10 mm1
b = 16.3059 (12) ÅT = 293 K
c = 11.9205 (8) Å0.30 × 0.25 × 0.20 mm
β = 106.128 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3429 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2369 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.038
25137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3429 reflectionsΔρmin = 0.23 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3188 (2)0.60966 (13)0.57925 (17)0.0418 (5)
C20.3527 (2)0.64520 (13)0.68892 (17)0.0438 (5)
H20.41550.68950.70660.053*
C30.2913 (2)0.61357 (12)0.77209 (16)0.0404 (5)
H30.31370.63760.84570.049*
C40.19830 (18)0.54764 (11)0.74909 (15)0.0338 (4)
C50.1649 (2)0.51385 (12)0.63813 (16)0.0397 (5)
H50.10090.47010.62000.048*
C60.2248 (2)0.54378 (13)0.55413 (17)0.0450 (5)
H60.20200.51980.48050.054*
C70.1347 (2)0.51384 (11)0.84356 (15)0.0364 (4)
H70.07130.46780.81080.044*
C80.24959 (19)0.48391 (11)0.94849 (16)0.0351 (4)
C90.29187 (19)0.52757 (11)1.05297 (16)0.0370 (4)
C100.09369 (19)0.61784 (12)0.98350 (15)0.0369 (4)
C110.0227 (2)0.68872 (12)1.02260 (17)0.0437 (5)
H11A0.09550.72541.06860.052*
H11B0.03480.66921.07210.052*
C120.0740 (2)0.73612 (12)0.91906 (17)0.0420 (5)
C130.1698 (2)0.67469 (13)0.83584 (18)0.0454 (5)
H13A0.24070.65380.87230.054*
H13B0.22120.70350.76540.054*
C140.0921 (2)0.60304 (12)0.80176 (17)0.0408 (5)
C150.04735 (19)0.57886 (11)0.88193 (15)0.0349 (4)
C160.4646 (3)0.7040 (2)0.5103 (3)0.0911 (10)
H16A0.41930.74890.53820.137*
H16B0.48450.71930.43860.137*
H16C0.55290.69030.56750.137*
C170.4303 (3)0.55740 (15)1.25477 (19)0.0601 (6)
H17A0.46080.61161.24100.090*
H17B0.50600.53051.31240.090*
H17C0.34630.56101.28240.090*
C180.1656 (3)0.79636 (15)0.9648 (2)0.0601 (6)
H18A0.22910.82490.90040.090*
H18B0.10430.83521.01580.090*
H18C0.22110.76701.00710.090*
C190.0178 (2)0.78296 (13)0.85468 (19)0.0513 (5)
H19A0.04370.81350.79140.077*
H19B0.07390.74480.82440.077*
H19C0.08070.81990.90780.077*
N10.39661 (17)0.51069 (10)1.14645 (13)0.0440 (4)
H10.44950.46881.14360.053*
N20.32201 (17)0.41331 (10)0.93523 (14)0.0408 (4)
O10.21955 (14)0.59653 (8)1.06663 (11)0.0443 (4)
O20.28171 (16)0.37471 (9)0.84138 (13)0.0546 (4)
O30.42684 (15)0.38750 (9)1.01655 (13)0.0517 (4)
O40.14344 (16)0.56445 (10)0.71241 (13)0.0605 (4)
O50.37227 (17)0.63553 (10)0.49054 (13)0.0606 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0398 (10)0.0504 (12)0.0366 (11)0.0007 (9)0.0128 (8)0.0035 (9)
C20.0412 (11)0.0462 (12)0.0436 (12)0.0084 (9)0.0110 (9)0.0018 (9)
C30.0432 (11)0.0445 (11)0.0322 (10)0.0045 (9)0.0081 (8)0.0080 (8)
C40.0346 (9)0.0337 (10)0.0323 (10)0.0019 (7)0.0078 (7)0.0001 (8)
C50.0441 (11)0.0368 (10)0.0365 (11)0.0061 (8)0.0084 (8)0.0053 (8)
C60.0526 (12)0.0500 (12)0.0319 (11)0.0018 (10)0.0107 (9)0.0061 (9)
C70.0386 (10)0.0352 (10)0.0342 (10)0.0030 (8)0.0082 (8)0.0022 (8)
C80.0391 (10)0.0317 (10)0.0351 (10)0.0025 (8)0.0112 (8)0.0024 (8)
C90.0372 (10)0.0366 (10)0.0375 (11)0.0015 (8)0.0111 (8)0.0043 (8)
C100.0376 (10)0.0406 (11)0.0317 (10)0.0042 (8)0.0085 (8)0.0035 (8)
C110.0490 (11)0.0441 (11)0.0385 (11)0.0079 (9)0.0132 (9)0.0005 (9)
C120.0412 (10)0.0443 (11)0.0417 (11)0.0070 (9)0.0134 (9)0.0036 (9)
C130.0341 (10)0.0528 (12)0.0486 (12)0.0027 (9)0.0103 (9)0.0055 (10)
C140.0364 (10)0.0482 (11)0.0375 (11)0.0051 (9)0.0097 (8)0.0009 (9)
C150.0351 (9)0.0360 (10)0.0336 (10)0.0014 (8)0.0094 (8)0.0016 (8)
C160.091 (2)0.115 (3)0.0780 (19)0.0483 (19)0.0415 (16)0.0042 (18)
C170.0600 (14)0.0704 (16)0.0411 (12)0.0102 (12)0.0009 (10)0.0052 (11)
C180.0615 (14)0.0553 (14)0.0684 (15)0.0178 (11)0.0262 (12)0.0044 (12)
C190.0532 (12)0.0467 (12)0.0553 (13)0.0012 (10)0.0174 (10)0.0075 (10)
N10.0428 (9)0.0486 (10)0.0372 (9)0.0080 (8)0.0055 (7)0.0017 (8)
N20.0439 (9)0.0375 (9)0.0428 (10)0.0028 (7)0.0149 (8)0.0026 (8)
O10.0483 (8)0.0448 (8)0.0339 (7)0.0104 (6)0.0015 (6)0.0029 (6)
O20.0650 (10)0.0459 (8)0.0510 (9)0.0057 (7)0.0132 (7)0.0114 (7)
O30.0494 (8)0.0493 (9)0.0529 (9)0.0145 (7)0.0084 (7)0.0039 (7)
O40.0483 (9)0.0725 (11)0.0514 (9)0.0013 (8)0.0017 (7)0.0156 (8)
O50.0664 (10)0.0765 (11)0.0458 (9)0.0169 (8)0.0269 (8)0.0003 (8)
Geometric parameters (Å, º) top
C1—O51.367 (2)C12—C181.522 (3)
C1—C21.384 (3)C12—C131.529 (3)
C1—C61.386 (3)C12—C191.530 (3)
C2—C31.389 (3)C13—C141.505 (3)
C2—H20.9300C13—H13A0.9700
C3—C41.380 (3)C13—H13B0.9700
C3—H30.9300C14—O41.218 (2)
C4—C51.386 (3)C14—C151.474 (3)
C4—C71.528 (2)C16—O51.408 (3)
C5—C61.378 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—C151.504 (3)C17—N11.456 (3)
C7—C81.505 (3)C17—H17A0.9600
C7—H70.9800C17—H17B0.9600
C8—N21.380 (2)C17—H17C0.9600
C8—C91.394 (3)C18—H18A0.9600
C9—N11.311 (2)C18—H18B0.9600
C9—O11.358 (2)C18—H18C0.9600
C10—C151.330 (3)C19—H19A0.9600
C10—O11.384 (2)C19—H19B0.9600
C10—C111.485 (3)C19—H19C0.9600
C11—C121.534 (3)N1—H10.8600
C11—H11A0.9700N2—O21.248 (2)
C11—H11B0.9700N2—O31.265 (2)
O5—C1—C2124.08 (18)C14—C13—C12115.15 (16)
O5—C1—C6116.05 (17)C14—C13—H13A108.5
C2—C1—C6119.87 (18)C12—C13—H13A108.5
C1—C2—C3118.87 (18)C14—C13—H13B108.5
C1—C2—H2120.6C12—C13—H13B108.5
C3—C2—H2120.6H13A—C13—H13B107.5
C4—C3—C2122.16 (17)O4—C14—C15120.41 (19)
C4—C3—H3118.9O4—C14—C13121.60 (18)
C2—C3—H3118.9C15—C14—C13117.96 (17)
C3—C4—C5117.75 (17)C10—C15—C14118.59 (17)
C3—C4—C7120.57 (16)C10—C15—C7122.52 (16)
C5—C4—C7121.68 (16)C14—C15—C7118.83 (16)
C6—C5—C4121.28 (18)O5—C16—H16A109.5
C6—C5—H5119.4O5—C16—H16B109.5
C4—C5—H5119.4H16A—C16—H16B109.5
C5—C6—C1120.07 (18)O5—C16—H16C109.5
C5—C6—H6120.0H16A—C16—H16C109.5
C1—C6—H6120.0H16B—C16—H16C109.5
C15—C7—C8108.89 (15)N1—C17—H17A109.5
C15—C7—C4110.20 (15)N1—C17—H17B109.5
C8—C7—C4111.93 (15)H17A—C17—H17B109.5
C15—C7—H7108.6N1—C17—H17C109.5
C8—C7—H7108.6H17A—C17—H17C109.5
C4—C7—H7108.6H17B—C17—H17C109.5
N2—C8—C9119.75 (16)C12—C18—H18A109.5
N2—C8—C7117.19 (16)C12—C18—H18B109.5
C9—C8—C7122.87 (16)H18A—C18—H18B109.5
N1—C9—O1112.01 (16)C12—C18—H18C109.5
N1—C9—C8128.20 (17)H18A—C18—H18C109.5
O1—C9—C8119.79 (16)H18B—C18—H18C109.5
C15—C10—O1122.61 (17)C12—C19—H19A109.5
C15—C10—C11126.11 (17)C12—C19—H19B109.5
O1—C10—C11111.28 (15)H19A—C19—H19B109.5
C10—C11—C12111.81 (16)C12—C19—H19C109.5
C10—C11—H11A109.3H19A—C19—H19C109.5
C12—C11—H11A109.3H19B—C19—H19C109.5
C10—C11—H11B109.3C9—N1—C17125.02 (17)
C12—C11—H11B109.3C9—N1—H1117.5
H11A—C11—H11B107.9C17—N1—H1117.5
C18—C12—C13110.27 (17)O2—N2—O3120.24 (16)
C18—C12—C19109.56 (18)O2—N2—C8118.77 (16)
C13—C12—C19109.51 (16)O3—N2—C8120.99 (16)
C18—C12—C11108.80 (17)C9—O1—C10120.16 (14)
C13—C12—C11108.45 (16)C1—O5—C16118.32 (18)
C19—C12—C11110.24 (16)
O5—C1—C2—C3179.89 (18)C19—C12—C13—C1469.9 (2)
C6—C1—C2—C30.1 (3)C11—C12—C13—C1450.4 (2)
C1—C2—C3—C40.3 (3)C12—C13—C14—O4157.06 (19)
C2—C3—C4—C51.1 (3)C12—C13—C14—C1524.8 (3)
C2—C3—C4—C7179.10 (17)O1—C10—C15—C14176.63 (16)
C3—C4—C5—C61.4 (3)C11—C10—C15—C144.4 (3)
C7—C4—C5—C6178.82 (17)O1—C10—C15—C76.2 (3)
C4—C5—C6—C10.9 (3)C11—C10—C15—C7172.76 (18)
O5—C1—C6—C5179.63 (18)O4—C14—C15—C10174.04 (19)
C2—C1—C6—C50.1 (3)C13—C14—C15—C104.1 (3)
C3—C4—C7—C1560.8 (2)O4—C14—C15—C78.7 (3)
C5—C4—C7—C15119.02 (18)C13—C14—C15—C7173.13 (16)
C3—C4—C7—C860.5 (2)C8—C7—C15—C1017.8 (2)
C5—C4—C7—C8119.66 (19)C4—C7—C15—C10105.4 (2)
C15—C7—C8—N2167.42 (15)C8—C7—C15—C14165.09 (16)
C4—C7—C8—N270.5 (2)C4—C7—C15—C1471.8 (2)
C15—C7—C8—C917.7 (2)O1—C9—N1—C172.2 (3)
C4—C7—C8—C9104.4 (2)C8—C9—N1—C17177.0 (2)
N2—C8—C9—N10.0 (3)C9—C8—N2—O2179.39 (17)
C7—C8—C9—N1174.71 (18)C7—C8—N2—O25.6 (2)
N2—C8—C9—O1179.21 (16)C9—C8—N2—O30.2 (3)
C7—C8—C9—O16.1 (3)C7—C8—N2—O3174.84 (16)
C15—C10—C11—C1223.7 (3)N1—C9—O1—C10171.21 (16)
O1—C10—C11—C12155.32 (16)C8—C9—O1—C108.1 (3)
C10—C11—C12—C18168.69 (17)C15—C10—O1—C98.3 (3)
C10—C11—C12—C1348.7 (2)C11—C10—O1—C9172.65 (16)
C10—C11—C12—C1971.2 (2)C2—C1—O5—C161.8 (3)
C18—C12—C13—C14169.46 (17)C6—C1—O5—C16178.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cg2i0.962.783.652142
N1—H1···O30.861.982.602 (2)128
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cg2i0.962.7783.652142
N1—H1···O30.861.982.602 (2)128
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

The authors gratefully acknowledge Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInglebert, S. A., Kamalraja, J., Sethusankar, K. & Vasuki, G. (2014). Acta Cryst. E70, o579–o580.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931–o932.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationShah, N. K., Shah, N. M., Patel, M. P. & Patel, R. G. (2013). J. Chem. Sci. 125, 525–530.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o901-o902
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds