organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o903-o904

Crystal structure of (E)-2-[(2S,5R)-2-iso­propyl-5-methyl­cyclo­hexyl­­idene]hydrazine-1-carbo­thio­amide

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil, bInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and cInstituto de Química, Universidade Estadual Paulista, Rua Francisco Degni s/n, 14801-970 Araraquara-SP, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 July 2014; accepted 8 July 2014; online 1 August 2014)

The title compound, C11H21N3S, consists of a menthone moiety attached to an extended thio­semicarbazone group with the N—N—C—N torsion angle being 11.92 (16)°. The cyclo­hexane ring has a chair conformation and the conformation about the C=N bond is E. In the crystal, mol­ecules are linked via pairs of N—H⋯S hydrogen bonds, forming chains along the a axis. The absolute structure could be assigned with reference to the starting material, i.e. enanti­opure (−)-menthone [Flack parameter = 0.05 (5)].

1. Related literature

For one of the first reports of the synthesis of thio­semicarbazone derivatives, see: Freund & Schander (1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]). For a report of the anti-HIV activity of thio­semicarbazone derivatives of menthone, see: Mishra et al. (2012[Mishra, V., Pandeya, S. N., Pannecouque, C., Witvrouw, M. & De Clercq, E. (2012). Arch. Pharm. Pharm. Med. Chem. 5, 183-186.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H21N3S

  • Mr = 227.37

  • Orthorhombic, P 21 21 21

  • a = 8.2139 (1) Å

  • b = 11.6117 (2) Å

  • c = 13.8820 (2) Å

  • V = 1324.03 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 123 K

  • 0.54 × 0.10 × 0.06 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (Alcock, 1970[Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.]) Tmin = 0.890, Tmax = 0.988

  • 22998 measured reflections

  • 3033 independent reflections

  • 2848 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.05

  • 3033 reflections

  • 220 parameters

  • All H-atom parameters refined

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯S1i 0.858 (17) 2.525 (18) 3.3551 (11) 163.1 (15)
N3—HN3A⋯S1ii 0.794 (19) 2.52 (2) 3.3104 (12) 173.0 (17)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press, United States.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press, United States.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Several thio­semicarbazone derivatives have a wide range of pharmacological properties. For example, some thio­semicarbazone derivatives of the peppermint essential oil show anti-HIV activity (Mishra et al., 2012). As part of our studies on synthesis and structural chemistry of thio­semicarbazone derivatives of natural products, we report herein the crystal structure of (-)-3-menthone thio­semicarbazone.

In the molecular structure of the title compound, Fig, 1, the thio­semicarbazone unit is not completely planar, but shows a torsion angle N1–N2–C11–N3 of 11.92 (16)°. The cyclo­hexane ring of the menthone unit is in the chair conformation. The molecule, shows also a trans conformation about the N1—N2 bond.

For the synthesis, enanti­opure (-)-menthone was used. No change in chirality occurred in the course of the reaction with thio­semicarbazide and the obtained product emerged as chiral crystals in the non-centrosymmetric space group P212121.

In the crystal, molecules are connected by a pair of N—H···S hydrogen bonds, with bridging sulfur atoms, into a one-dimensional chain along the a-axis (Fig. 2 and Table 1).

Synthesis and crystallization top

The synthesis of the title compound was adapted from a previously reported procedure (Freund & Schander, 1902). In a hydro­chloric acid catalyzed reaction, a mixture of (-)-menthone (10 mmol) and thio­semicarbazide (10 mmol) in ethanol (80 ml) was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Colourless needles were obtained by slow evaporation of a solution in the solvent DMSO.

Refinement top

All the H atoms were located in a difference Fourier map and freely refined. The assignment of the correct absolute configuration was assured by the Flack parameter of 0.05 (5).

Related literature top

For one of the first reports of the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902). For a report of the anti-HIV activity of thiosemicarbazone derivatives of menthone, see: Mishra et al. (2012).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial view along the c-axis of the crystal structure of the title compound, showing the hydrogen bonded chains (hydrogen bonds are shown as dashed lines; see Table 1 for details).
(E)-2-[(2S,5R)-2-Isopropyl-5-methylcyclohexylidene]hydrazine-1-carbothioamide top
Crystal data top
C11H21N3SF(000) = 496
Mr = 227.37Dx = 1.141 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 37558 reflections
a = 8.2139 (1) Åθ = 2.9–27.5°
b = 11.6117 (2) ŵ = 0.22 mm1
c = 13.8820 (2) ÅT = 123 K
V = 1324.03 (3) Å3Needle, colourless
Z = 40.54 × 0.10 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3033 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD2848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD rotation images, thick slices scansh = 1010
Absorption correction: analytical
(Alcock, 1970)
k = 1515
Tmin = 0.890, Tmax = 0.988l = 1718
22998 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.1951P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3033 reflectionsΔρmax = 0.15 e Å3
220 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (5)
Crystal data top
C11H21N3SV = 1324.03 (3) Å3
Mr = 227.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2139 (1) ŵ = 0.22 mm1
b = 11.6117 (2) ÅT = 123 K
c = 13.8820 (2) Å0.54 × 0.10 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3033 independent reflections
Absorption correction: analytical
(Alcock, 1970)
2848 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.988Rint = 0.046
22998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.060Δρmax = 0.15 e Å3
S = 1.05Δρmin = 0.19 e Å3
3033 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
220 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Special details top

Experimental. Alcock, N. W., 1970

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08952 (3)0.30315 (2)0.48771 (2)0.02034 (8)
N10.04374 (12)0.00856 (9)0.41416 (7)0.0177 (2)
N20.04891 (13)0.11130 (9)0.42555 (8)0.0186 (2)
N30.22424 (13)0.09979 (10)0.45259 (9)0.0231 (2)
C10.16488 (14)0.05821 (10)0.37313 (8)0.0168 (2)
C20.16273 (15)0.18913 (11)0.36955 (8)0.0192 (2)
C30.20800 (17)0.23095 (11)0.26796 (10)0.0238 (3)
C40.36682 (16)0.17718 (11)0.23241 (11)0.0263 (3)
C50.35351 (16)0.04665 (11)0.22932 (9)0.0217 (3)
C60.31196 (15)0.00025 (11)0.32996 (9)0.0193 (2)
C70.00597 (17)0.24498 (11)0.40902 (10)0.0244 (3)
C80.14038 (18)0.23265 (14)0.34230 (13)0.0337 (3)
C90.0343 (3)0.37222 (13)0.43286 (15)0.0406 (4)
C100.50872 (19)0.00988 (14)0.19164 (12)0.0320 (3)
C110.09004 (15)0.16286 (9)0.45455 (8)0.0166 (2)
HN20.139 (2)0.1453 (14)0.4388 (12)0.030 (4)*
HN3A0.308 (2)0.1263 (15)0.4708 (13)0.038 (5)*
HN3B0.214 (2)0.0304 (16)0.4401 (12)0.032 (4)*
H20.2510 (19)0.2111 (14)0.4104 (11)0.025 (4)*
H3A0.1221 (19)0.2081 (13)0.2244 (11)0.026 (4)*
H3B0.2167 (19)0.3172 (14)0.2688 (11)0.026 (4)*
H4A0.395 (2)0.2061 (14)0.1673 (12)0.038 (4)*
H4B0.4556 (19)0.1942 (14)0.2754 (11)0.027 (4)*
H50.2651 (19)0.0275 (13)0.1881 (11)0.022 (4)*
H6A0.2988 (18)0.0818 (14)0.3277 (11)0.024 (4)*
H6B0.4050 (19)0.0163 (12)0.3714 (10)0.021 (3)*
H70.0193 (19)0.2058 (13)0.4704 (11)0.032 (4)*
H8A0.124 (2)0.2778 (16)0.2830 (13)0.046 (5)*
H8B0.237 (2)0.2586 (16)0.3744 (12)0.040 (5)*
H8C0.160 (2)0.1543 (16)0.3249 (12)0.033 (4)*
H9A0.058 (2)0.4100 (15)0.4585 (12)0.037 (5)*
H9B0.123 (3)0.3810 (18)0.4819 (17)0.067 (6)*
H9C0.063 (2)0.4138 (15)0.3757 (14)0.045 (5)*
H10A0.606 (2)0.0073 (14)0.2334 (12)0.039 (4)*
H10B0.494 (2)0.0917 (18)0.1884 (13)0.041 (5)*
H10C0.533 (2)0.0126 (17)0.1271 (15)0.053 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01461 (12)0.01597 (13)0.03044 (16)0.00151 (11)0.00087 (12)0.00710 (12)
N10.0187 (5)0.0138 (5)0.0206 (5)0.0008 (4)0.0011 (4)0.0037 (4)
N20.0155 (5)0.0140 (5)0.0264 (6)0.0001 (4)0.0001 (4)0.0059 (4)
N30.0150 (5)0.0163 (5)0.0380 (7)0.0007 (4)0.0031 (5)0.0053 (5)
C10.0183 (5)0.0171 (6)0.0151 (5)0.0002 (5)0.0028 (5)0.0026 (4)
C20.0201 (5)0.0157 (5)0.0217 (6)0.0026 (5)0.0036 (5)0.0016 (5)
C30.0251 (6)0.0191 (6)0.0272 (6)0.0005 (5)0.0023 (6)0.0079 (5)
C40.0263 (7)0.0213 (7)0.0314 (7)0.0008 (5)0.0073 (6)0.0095 (5)
C50.0219 (6)0.0219 (6)0.0213 (6)0.0003 (5)0.0018 (5)0.0048 (5)
C60.0183 (5)0.0174 (6)0.0223 (6)0.0014 (5)0.0000 (5)0.0053 (5)
C70.0301 (7)0.0171 (6)0.0259 (7)0.0015 (5)0.0053 (6)0.0013 (5)
C80.0249 (7)0.0326 (8)0.0435 (9)0.0071 (6)0.0017 (6)0.0066 (7)
C90.0557 (11)0.0205 (7)0.0455 (10)0.0015 (7)0.0114 (8)0.0055 (7)
C100.0324 (7)0.0295 (8)0.0342 (8)0.0045 (6)0.0108 (7)0.0073 (6)
C110.0159 (5)0.0174 (5)0.0165 (5)0.0012 (5)0.0010 (5)0.0007 (4)
Geometric parameters (Å, º) top
S1—C111.6928 (11)C4—H4B0.963 (16)
N1—C11.2833 (15)C5—C101.5264 (19)
N1—N21.4015 (14)C5—C61.5377 (17)
N2—C111.3502 (15)C5—H50.951 (15)
N2—HN20.858 (17)C6—H6A0.954 (16)
N3—C111.3237 (16)C6—H6B0.976 (15)
N3—HN3A0.794 (19)C7—C81.524 (2)
N3—HN3B0.829 (18)C7—C91.5318 (19)
C1—C61.5098 (17)C7—H70.988 (16)
C1—C21.5211 (16)C8—H8A0.984 (19)
C2—C31.5372 (17)C8—H8B0.961 (19)
C2—C71.5423 (18)C8—H8C0.955 (18)
C2—H20.955 (15)C9—H9A0.947 (18)
C3—C41.5282 (18)C9—H9B1.00 (2)
C3—H3A0.966 (16)C9—H9C0.96 (2)
C3—H3B1.004 (16)C10—H10A1.008 (19)
C4—C51.5202 (17)C10—H10B0.96 (2)
C4—H4A0.991 (16)C10—H10C0.95 (2)
C1—N1—N2118.21 (10)C1—C6—C5112.27 (10)
C11—N2—N1116.64 (10)C1—C6—H6A111.6 (9)
C11—N2—HN2117.4 (11)C5—C6—H6A110.3 (9)
N1—N2—HN2120.5 (11)C1—C6—H6B107.7 (8)
C11—N3—HN3A120.0 (13)C5—C6—H6B107.0 (8)
C11—N3—HN3B117.0 (12)H6A—C6—H6B107.6 (12)
HN3A—N3—HN3B122.3 (17)C8—C7—C9109.98 (13)
N1—C1—C6126.49 (10)C8—C7—C2113.76 (11)
N1—C1—C2117.03 (11)C9—C7—C2110.83 (12)
C6—C1—C2116.47 (10)C8—C7—H7108.4 (9)
C1—C2—C3110.06 (10)C9—C7—H7106.8 (9)
C1—C2—C7114.73 (10)C2—C7—H7106.7 (9)
C3—C2—C7113.27 (10)C7—C8—H8A110.6 (11)
C1—C2—H2103.8 (10)C7—C8—H8B110.0 (10)
C3—C2—H2106.1 (9)H8A—C8—H8B109.4 (16)
C7—C2—H2108.1 (9)C7—C8—H8C112.0 (10)
C4—C3—C2111.94 (11)H8A—C8—H8C108.5 (15)
C4—C3—H3A108.0 (9)H8B—C8—H8C106.2 (15)
C2—C3—H3A108.1 (9)C7—C9—H9A113.9 (10)
C4—C3—H3B110.5 (9)C7—C9—H9B110.8 (12)
C2—C3—H3B108.8 (9)H9A—C9—H9B106.3 (15)
H3A—C3—H3B109.4 (12)C7—C9—H9C110.1 (10)
C5—C4—C3110.80 (10)H9A—C9—H9C106.0 (15)
C5—C4—H4A109.2 (9)H9B—C9—H9C109.5 (16)
C3—C4—H4A110.8 (10)C5—C10—H10A112.4 (10)
C5—C4—H4B106.1 (10)C5—C10—H10B109.9 (11)
C3—C4—H4B111.2 (9)H10A—C10—H10B108.7 (15)
H4A—C4—H4B108.6 (13)C5—C10—H10C112.4 (12)
C4—C5—C10112.23 (11)H10A—C10—H10C108.5 (15)
C4—C5—C6110.09 (10)H10B—C10—H10C104.6 (16)
C10—C5—C6110.15 (11)N3—C11—N2116.90 (10)
C4—C5—H5107.7 (9)N3—C11—S1122.69 (9)
C10—C5—H5109.3 (9)N2—C11—S1120.37 (9)
C6—C5—H5107.2 (9)
C1—N1—N2—C11169.70 (11)C3—C4—C5—C658.39 (15)
N2—N1—C1—C63.59 (18)N1—C1—C6—C5133.17 (12)
N2—N1—C1—C2174.83 (9)C2—C1—C6—C548.41 (14)
N1—C1—C2—C3133.96 (11)C4—C5—C6—C152.25 (14)
C6—C1—C2—C347.46 (14)C10—C5—C6—C1176.53 (11)
N1—C1—C2—C74.82 (15)C1—C2—C7—C873.69 (14)
C6—C1—C2—C7176.60 (11)C3—C2—C7—C853.83 (15)
C1—C2—C3—C452.04 (14)C1—C2—C7—C9161.77 (12)
C7—C2—C3—C4178.03 (11)C3—C2—C7—C970.71 (15)
C2—C3—C4—C559.56 (15)N1—N2—C11—N311.92 (16)
C3—C4—C5—C10178.54 (12)N1—N2—C11—S1170.14 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···S1i0.858 (17)2.525 (18)3.3551 (11)163.1 (15)
N3—HN3A···S1ii0.794 (19)2.52 (2)3.3104 (12)173.0 (17)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···S1i0.858 (17)2.525 (18)3.3551 (11)163.1 (15)
N3—HN3A···S1ii0.794 (19)2.52 (2)3.3104 (12)173.0 (17)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x1/2, y1/2, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by FAPITEC/SE/FUNTEC/CNPq through the PPP Program 04/2011.

References

First citationAlcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationMishra, V., Pandeya, S. N., Pannecouque, C., Witvrouw, M. & De Clercq, E. (2012). Arch. Pharm. Pharm. Med. Chem. 5, 183–186.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press, United States.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o903-o904
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds