organic compounds
E)-2-[(2S,5R)-2-isopropyl-5-methylcyclohexylidene]hydrazine-1-carbothioamide
of (aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil, bInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and cInstituto de Química, Universidade Estadual Paulista, Rua Francisco Degni s/n, 14801-970 Araraquara-SP, Brazil
*Correspondence e-mail: adriano@daad-alumni.de
The title compound, C11H21N3S, consists of a menthone moiety attached to an extended thiosemicarbazone group with the N—N—C—N torsion angle being 11.92 (16)°. The cyclohexane ring has a chair conformation and the conformation about the C=N bond is E. In the crystal, molecules are linked via pairs of N—H⋯S hydrogen bonds, forming chains along the a axis. The could be assigned with reference to the starting material, i.e. enantiopure (−)-menthone [Flack parameter = 0.05 (5)].
Keywords: thiocarbazone; hydrogen-bonding polymer; crystal structure.
CCDC reference: 1012829
1. Related literature
For one of the first reports of the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902). For a report of the anti-HIV activity of thiosemicarbazone derivatives of menthone, see: Mishra et al. (2012).
2. Experimental
2.1. Crystal data
|
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1012829
10.1107/S1600536814015980/su2751sup1.cif
contains datablocks I, publication_text. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015980/su2751Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814015980/su2751Isup3.cml
Several thiosemicarbazone derivatives have a wide range of pharmacological properties. For example, some thiosemicarbazone derivatives of the peppermint essential oil show anti-HIV activity (Mishra et al., 2012). As part of our studies on synthesis and structural chemistry of thiosemicarbazone derivatives of natural products, we report herein the
of (-)-3-menthone thiosemicarbazone.In the molecular structure of the title compound, Fig, 1, the thiosemicarbazone unit is not completely planar, but shows a torsion angle N1–N2–C11–N3 of 11.92 (16)°. The cyclohexane ring of the menthone unit is in the chair conformation. The molecule, shows also a
conformation about the N1—N2 bond.For the synthesis, enantiopure (-)-menthone was used. No change in
occurred in the course of the reaction with thiosemicarbazide and the obtained product emerged as chiral crystals in the non-centrosymmetric P212121.In the crystal, molecules are connected by a pair of N—H···S hydrogen bonds, with bridging sulfur atoms, into a one-dimensional chain along the a-axis (Fig. 2 and Table 1).
The synthesis of the title compound was adapted from a previously reported procedure (Freund & Schander, 1902). In a hydrochloric acid catalyzed reaction, a mixture of (-)-menthone (10 mmol) and thiosemicarbazide (10 mmol) in ethanol (80 ml) was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Colourless needles were obtained by slow evaporation of a solution in the solvent DMSO.
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C11H21N3S | F(000) = 496 |
Mr = 227.37 | Dx = 1.141 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 37558 reflections |
a = 8.2139 (1) Å | θ = 2.9–27.5° |
b = 11.6117 (2) Å | µ = 0.22 mm−1 |
c = 13.8820 (2) Å | T = 123 K |
V = 1324.03 (3) Å3 | Needle, colourless |
Z = 4 | 0.54 × 0.10 × 0.06 mm |
Nonius KappaCCD diffractometer | 3033 independent reflections |
Radiation source: fine-focus sealed tube, Nonius KappaCCD | 2848 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
CCD rotation images, thick slices scans | h = −10→10 |
Absorption correction: analytical (Alcock, 1970) | k = −15→15 |
Tmin = 0.890, Tmax = 0.988 | l = −17→18 |
22998 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | All H-atom parameters refined |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0305P)2 + 0.1951P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3033 reflections | Δρmax = 0.15 e Å−3 |
220 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Absolute structure: Flack (1983), ???? Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.05 (5) |
C11H21N3S | V = 1324.03 (3) Å3 |
Mr = 227.37 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.2139 (1) Å | µ = 0.22 mm−1 |
b = 11.6117 (2) Å | T = 123 K |
c = 13.8820 (2) Å | 0.54 × 0.10 × 0.06 mm |
Nonius KappaCCD diffractometer | 3033 independent reflections |
Absorption correction: analytical (Alcock, 1970) | 2848 reflections with I > 2σ(I) |
Tmin = 0.890, Tmax = 0.988 | Rint = 0.046 |
22998 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | All H-atom parameters refined |
wR(F2) = 0.060 | Δρmax = 0.15 e Å−3 |
S = 1.05 | Δρmin = −0.19 e Å−3 |
3033 reflections | Absolute structure: Flack (1983), ???? Friedel pairs |
220 parameters | Absolute structure parameter: 0.05 (5) |
0 restraints |
Experimental. Alcock, N. W., 1970 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.08952 (3) | −0.30315 (2) | 0.48771 (2) | 0.02034 (8) | |
N1 | 0.04374 (12) | 0.00856 (9) | 0.41416 (7) | 0.0177 (2) | |
N2 | 0.04891 (13) | −0.11130 (9) | 0.42555 (8) | 0.0186 (2) | |
N3 | −0.22424 (13) | −0.09979 (10) | 0.45259 (9) | 0.0231 (2) | |
C1 | 0.16488 (14) | 0.05821 (10) | 0.37313 (8) | 0.0168 (2) | |
C2 | 0.16273 (15) | 0.18913 (11) | 0.36955 (8) | 0.0192 (2) | |
C3 | 0.20800 (17) | 0.23095 (11) | 0.26796 (10) | 0.0238 (3) | |
C4 | 0.36682 (16) | 0.17718 (11) | 0.23241 (11) | 0.0263 (3) | |
C5 | 0.35351 (16) | 0.04665 (11) | 0.22932 (9) | 0.0217 (3) | |
C6 | 0.31196 (15) | −0.00025 (11) | 0.32996 (9) | 0.0193 (2) | |
C7 | 0.00597 (17) | 0.24498 (11) | 0.40902 (10) | 0.0244 (3) | |
C8 | −0.14038 (18) | 0.23265 (14) | 0.34230 (13) | 0.0337 (3) | |
C9 | 0.0343 (3) | 0.37222 (13) | 0.43286 (15) | 0.0406 (4) | |
C10 | 0.50872 (19) | −0.00988 (14) | 0.19164 (12) | 0.0320 (3) | |
C11 | −0.09004 (15) | −0.16286 (9) | 0.45455 (8) | 0.0166 (2) | |
HN2 | 0.139 (2) | −0.1453 (14) | 0.4388 (12) | 0.030 (4)* | |
HN3A | −0.308 (2) | −0.1263 (15) | 0.4708 (13) | 0.038 (5)* | |
HN3B | −0.214 (2) | −0.0304 (16) | 0.4401 (12) | 0.032 (4)* | |
H2 | 0.2510 (19) | 0.2111 (14) | 0.4104 (11) | 0.025 (4)* | |
H3A | 0.1221 (19) | 0.2081 (13) | 0.2244 (11) | 0.026 (4)* | |
H3B | 0.2167 (19) | 0.3172 (14) | 0.2688 (11) | 0.026 (4)* | |
H4A | 0.395 (2) | 0.2061 (14) | 0.1673 (12) | 0.038 (4)* | |
H4B | 0.4556 (19) | 0.1942 (14) | 0.2754 (11) | 0.027 (4)* | |
H5 | 0.2651 (19) | 0.0275 (13) | 0.1881 (11) | 0.022 (4)* | |
H6A | 0.2988 (18) | −0.0818 (14) | 0.3277 (11) | 0.024 (4)* | |
H6B | 0.4050 (19) | 0.0163 (12) | 0.3714 (10) | 0.021 (3)* | |
H7 | −0.0193 (19) | 0.2058 (13) | 0.4704 (11) | 0.032 (4)* | |
H8A | −0.124 (2) | 0.2778 (16) | 0.2830 (13) | 0.046 (5)* | |
H8B | −0.237 (2) | 0.2586 (16) | 0.3744 (12) | 0.040 (5)* | |
H8C | −0.160 (2) | 0.1543 (16) | 0.3249 (12) | 0.033 (4)* | |
H9A | −0.058 (2) | 0.4100 (15) | 0.4585 (12) | 0.037 (5)* | |
H9B | 0.123 (3) | 0.3810 (18) | 0.4819 (17) | 0.067 (6)* | |
H9C | 0.063 (2) | 0.4138 (15) | 0.3757 (14) | 0.045 (5)* | |
H10A | 0.606 (2) | 0.0073 (14) | 0.2334 (12) | 0.039 (4)* | |
H10B | 0.494 (2) | −0.0917 (18) | 0.1884 (13) | 0.041 (5)* | |
H10C | 0.533 (2) | 0.0126 (17) | 0.1271 (15) | 0.053 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01461 (12) | 0.01597 (13) | 0.03044 (16) | −0.00151 (11) | −0.00087 (12) | 0.00710 (12) |
N1 | 0.0187 (5) | 0.0138 (5) | 0.0206 (5) | −0.0008 (4) | −0.0011 (4) | 0.0037 (4) |
N2 | 0.0155 (5) | 0.0140 (5) | 0.0264 (6) | −0.0001 (4) | 0.0001 (4) | 0.0059 (4) |
N3 | 0.0150 (5) | 0.0163 (5) | 0.0380 (7) | −0.0007 (4) | 0.0031 (5) | 0.0053 (5) |
C1 | 0.0183 (5) | 0.0171 (6) | 0.0151 (5) | −0.0002 (5) | −0.0028 (5) | 0.0026 (4) |
C2 | 0.0201 (5) | 0.0157 (5) | 0.0217 (6) | −0.0026 (5) | −0.0036 (5) | 0.0016 (5) |
C3 | 0.0251 (6) | 0.0191 (6) | 0.0272 (6) | 0.0005 (5) | 0.0023 (6) | 0.0079 (5) |
C4 | 0.0263 (7) | 0.0213 (7) | 0.0314 (7) | −0.0008 (5) | 0.0073 (6) | 0.0095 (5) |
C5 | 0.0219 (6) | 0.0219 (6) | 0.0213 (6) | −0.0003 (5) | 0.0018 (5) | 0.0048 (5) |
C6 | 0.0183 (5) | 0.0174 (6) | 0.0223 (6) | −0.0014 (5) | 0.0000 (5) | 0.0053 (5) |
C7 | 0.0301 (7) | 0.0171 (6) | 0.0259 (7) | 0.0015 (5) | 0.0053 (6) | 0.0013 (5) |
C8 | 0.0249 (7) | 0.0326 (8) | 0.0435 (9) | 0.0071 (6) | 0.0017 (6) | 0.0066 (7) |
C9 | 0.0557 (11) | 0.0205 (7) | 0.0455 (10) | 0.0015 (7) | 0.0114 (8) | −0.0055 (7) |
C10 | 0.0324 (7) | 0.0295 (8) | 0.0342 (8) | 0.0045 (6) | 0.0108 (7) | 0.0073 (6) |
C11 | 0.0159 (5) | 0.0174 (5) | 0.0165 (5) | −0.0012 (5) | −0.0010 (5) | 0.0007 (4) |
S1—C11 | 1.6928 (11) | C4—H4B | 0.963 (16) |
N1—C1 | 1.2833 (15) | C5—C10 | 1.5264 (19) |
N1—N2 | 1.4015 (14) | C5—C6 | 1.5377 (17) |
N2—C11 | 1.3502 (15) | C5—H5 | 0.951 (15) |
N2—HN2 | 0.858 (17) | C6—H6A | 0.954 (16) |
N3—C11 | 1.3237 (16) | C6—H6B | 0.976 (15) |
N3—HN3A | 0.794 (19) | C7—C8 | 1.524 (2) |
N3—HN3B | 0.829 (18) | C7—C9 | 1.5318 (19) |
C1—C6 | 1.5098 (17) | C7—H7 | 0.988 (16) |
C1—C2 | 1.5211 (16) | C8—H8A | 0.984 (19) |
C2—C3 | 1.5372 (17) | C8—H8B | 0.961 (19) |
C2—C7 | 1.5423 (18) | C8—H8C | 0.955 (18) |
C2—H2 | 0.955 (15) | C9—H9A | 0.947 (18) |
C3—C4 | 1.5282 (18) | C9—H9B | 1.00 (2) |
C3—H3A | 0.966 (16) | C9—H9C | 0.96 (2) |
C3—H3B | 1.004 (16) | C10—H10A | 1.008 (19) |
C4—C5 | 1.5202 (17) | C10—H10B | 0.96 (2) |
C4—H4A | 0.991 (16) | C10—H10C | 0.95 (2) |
C1—N1—N2 | 118.21 (10) | C1—C6—C5 | 112.27 (10) |
C11—N2—N1 | 116.64 (10) | C1—C6—H6A | 111.6 (9) |
C11—N2—HN2 | 117.4 (11) | C5—C6—H6A | 110.3 (9) |
N1—N2—HN2 | 120.5 (11) | C1—C6—H6B | 107.7 (8) |
C11—N3—HN3A | 120.0 (13) | C5—C6—H6B | 107.0 (8) |
C11—N3—HN3B | 117.0 (12) | H6A—C6—H6B | 107.6 (12) |
HN3A—N3—HN3B | 122.3 (17) | C8—C7—C9 | 109.98 (13) |
N1—C1—C6 | 126.49 (10) | C8—C7—C2 | 113.76 (11) |
N1—C1—C2 | 117.03 (11) | C9—C7—C2 | 110.83 (12) |
C6—C1—C2 | 116.47 (10) | C8—C7—H7 | 108.4 (9) |
C1—C2—C3 | 110.06 (10) | C9—C7—H7 | 106.8 (9) |
C1—C2—C7 | 114.73 (10) | C2—C7—H7 | 106.7 (9) |
C3—C2—C7 | 113.27 (10) | C7—C8—H8A | 110.6 (11) |
C1—C2—H2 | 103.8 (10) | C7—C8—H8B | 110.0 (10) |
C3—C2—H2 | 106.1 (9) | H8A—C8—H8B | 109.4 (16) |
C7—C2—H2 | 108.1 (9) | C7—C8—H8C | 112.0 (10) |
C4—C3—C2 | 111.94 (11) | H8A—C8—H8C | 108.5 (15) |
C4—C3—H3A | 108.0 (9) | H8B—C8—H8C | 106.2 (15) |
C2—C3—H3A | 108.1 (9) | C7—C9—H9A | 113.9 (10) |
C4—C3—H3B | 110.5 (9) | C7—C9—H9B | 110.8 (12) |
C2—C3—H3B | 108.8 (9) | H9A—C9—H9B | 106.3 (15) |
H3A—C3—H3B | 109.4 (12) | C7—C9—H9C | 110.1 (10) |
C5—C4—C3 | 110.80 (10) | H9A—C9—H9C | 106.0 (15) |
C5—C4—H4A | 109.2 (9) | H9B—C9—H9C | 109.5 (16) |
C3—C4—H4A | 110.8 (10) | C5—C10—H10A | 112.4 (10) |
C5—C4—H4B | 106.1 (10) | C5—C10—H10B | 109.9 (11) |
C3—C4—H4B | 111.2 (9) | H10A—C10—H10B | 108.7 (15) |
H4A—C4—H4B | 108.6 (13) | C5—C10—H10C | 112.4 (12) |
C4—C5—C10 | 112.23 (11) | H10A—C10—H10C | 108.5 (15) |
C4—C5—C6 | 110.09 (10) | H10B—C10—H10C | 104.6 (16) |
C10—C5—C6 | 110.15 (11) | N3—C11—N2 | 116.90 (10) |
C4—C5—H5 | 107.7 (9) | N3—C11—S1 | 122.69 (9) |
C10—C5—H5 | 109.3 (9) | N2—C11—S1 | 120.37 (9) |
C6—C5—H5 | 107.2 (9) | ||
C1—N1—N2—C11 | −169.70 (11) | C3—C4—C5—C6 | −58.39 (15) |
N2—N1—C1—C6 | 3.59 (18) | N1—C1—C6—C5 | 133.17 (12) |
N2—N1—C1—C2 | −174.83 (9) | C2—C1—C6—C5 | −48.41 (14) |
N1—C1—C2—C3 | −133.96 (11) | C4—C5—C6—C1 | 52.25 (14) |
C6—C1—C2—C3 | 47.46 (14) | C10—C5—C6—C1 | 176.53 (11) |
N1—C1—C2—C7 | −4.82 (15) | C1—C2—C7—C8 | −73.69 (14) |
C6—C1—C2—C7 | 176.60 (11) | C3—C2—C7—C8 | 53.83 (15) |
C1—C2—C3—C4 | −52.04 (14) | C1—C2—C7—C9 | 161.77 (12) |
C7—C2—C3—C4 | 178.03 (11) | C3—C2—C7—C9 | −70.71 (15) |
C2—C3—C4—C5 | 59.56 (15) | N1—N2—C11—N3 | 11.92 (16) |
C3—C4—C5—C10 | 178.54 (12) | N1—N2—C11—S1 | −170.14 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—HN2···S1i | 0.858 (17) | 2.525 (18) | 3.3551 (11) | 163.1 (15) |
N3—HN3A···S1ii | 0.794 (19) | 2.52 (2) | 3.3104 (12) | 173.0 (17) |
Symmetry codes: (i) x+1/2, −y−1/2, −z+1; (ii) x−1/2, −y−1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—HN2···S1i | 0.858 (17) | 2.525 (18) | 3.3551 (11) | 163.1 (15) |
N3—HN3A···S1ii | 0.794 (19) | 2.52 (2) | 3.3104 (12) | 173.0 (17) |
Symmetry codes: (i) x+1/2, −y−1/2, −z+1; (ii) x−1/2, −y−1/2, −z+1. |
Acknowledgements
We gratefully acknowledge financial support by FAPITEC/SE/FUNTEC/CNPq through the PPP Program 04/2011.
References
Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606. CrossRef CAS Google Scholar
Mishra, V., Pandeya, S. N., Pannecouque, C., Witvrouw, M. & De Clercq, E. (2012). Arch. Pharm. Pharm. Med. Chem. 5, 183–186. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press, United States. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.