organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(3-hy­dr­oxy­phenyl)succinimide

aDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, bInstitution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore 570023, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India, and dDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 July 2014; accepted 14 July 2014; online 1 August 2014)

In the title compound, C10H9NO3, the dihedral angle between the benzene and pyrrolidine rings is 53.9 (1)°. In the crystal, mol­ecules are linked through strong O—H⋯O hydrogen bonds into zigzag C(8) chains running along [010]. The chains are linked by C—H⋯π inter­actions forming sheets lying parallel to (100).

1. Related literature

For the crystal structures of the 3-methyl and 3-chloro derivatives of N-phenyl­succinimide, see: Saraswathi et al. (2010[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1269.], 2011[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1977.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H9NO3

  • Mr = 191.18

  • Monoclinic, P 21 /c

  • a = 11.432 (2) Å

  • b = 7.6567 (14) Å

  • c = 10.115 (2) Å

  • β = 98.688 (7)°

  • V = 875.2 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 293 K

  • 0.42 × 0.31 × 0.19 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.841

  • 3786 measured reflections

  • 1234 independent reflections

  • 1207 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 60.0°

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.140

  • S = 1.20

  • 1234 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.94 (4) 1.82 (4) 2.758 (2) 175 (4)
C8—H8ACgii 0.97 2.83 3.613 (3) 138
C9—H9ACgii 0.97 2.79 3.579 (3) 139
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Introduction top

As a part of a study on the effect of ring and side-chain substitutions on N-(Aryl)-succinimides (Saraswathi et al., 2010,2011), the title compound has been synthesized and we report herein on its crystal structure.

Experimental top

Synthesis and crystallization top

The title compound was prepared according to the reported procedure (Saraswathi et al., 2010,2011). Colourless prisms of the title compound were obtained by slow evaporation of an aqueous methano­lic solution at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned with idealized geometry and treated as riding atoms: C—H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C).

Results and discussion top

The title molecule, Fig. 1, is non-planar with the benzene and pyrrolidine [r.m.s. deviation = 0.039 Å] rings tilted at 53.9 (1) °. This is close to the values of 52.5 (1) and 59.5 (1) ° observed in N-(3-methyl­phenyl)-succinimide (Saraswathi et al. 2010) and N-(3-chloro­phenyl)-succinimide (Saraswathi et al. 2011).

In the crystal, molecules are linked through strong O—H···O hydrogen bonds into zigzag C(8) chains running along [010] (Table 1 and Fig. 2). The chains are linked by C—H···π inter­actions (Table 1 Fig. 3) forming sheets lying parallel to (100).

Related literature top

For the crystal structures of the 3-methyl and 3-chloro derivatives of N-phenylsuccinimide, see: Saraswathi et al. (2010, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the formation of the zigzag C(8) chains through O—H···O hydrogen bonds (dashed lines; see Table 1 for details).
[Figure 3] Fig. 3. A partial view along the a axis of the crystal packing of the title compound, showing the C—H···π interactions (dashed lines; see Table 1 for details).
1-(3-Hydroxyphenyl)pyrrolidine-2,5-dione top
Crystal data top
C10H9NO3Prism
Mr = 191.18Dx = 1.451 Mg m3
Monoclinic, P21/cMelting point: 393 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 11.432 (2) ÅCell parameters from 25 reflections
b = 7.6567 (14) Åθ = 3.9–60.0°
c = 10.115 (2) ŵ = 0.91 mm1
β = 98.688 (7)°T = 293 K
V = 875.2 (3) Å3Prism, colourless
Z = 40.42 × 0.31 × 0.19 mm
F(000) = 400
Data collection top
Bruker APEXII
diffractometer
1234 independent reflections
Radiation source: fine-focus sealed tube1207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ϕ scansθmax = 60.0°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.749, Tmax = 0.841k = 78
3786 measured reflectionsl = 511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.2946P]
where P = (Fo2 + 2Fc2)/3
1234 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H9NO3V = 875.2 (3) Å3
Mr = 191.18Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.432 (2) ŵ = 0.91 mm1
b = 7.6567 (14) ÅT = 293 K
c = 10.115 (2) Å0.42 × 0.31 × 0.19 mm
β = 98.688 (7)°
Data collection top
Bruker APEXII
diffractometer
1234 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1207 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.841Rint = 0.028
3786 measured reflectionsθmax = 60.0°
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.16 e Å3
1234 reflectionsΔρmin = 0.23 e Å3
131 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.91904 (12)0.1492 (2)0.88087 (15)0.0436 (5)
O20.56202 (12)0.1251 (2)0.82562 (16)0.0482 (5)
O30.92280 (13)0.1661 (2)0.43867 (15)0.0454 (5)
N10.74293 (13)0.0058 (2)0.82293 (16)0.0293 (5)
C10.74308 (15)0.0001 (2)0.68070 (19)0.0281 (6)
C20.83725 (16)0.0782 (2)0.63281 (18)0.0300 (6)
C30.83605 (17)0.0861 (3)0.49542 (19)0.0326 (6)
C40.74209 (18)0.0147 (3)0.4099 (2)0.0391 (7)
C50.64917 (18)0.0627 (3)0.4603 (2)0.0407 (7)
C60.64839 (17)0.0704 (3)0.5970 (2)0.0361 (6)
C70.65000 (16)0.0592 (2)0.8850 (2)0.0327 (6)
C80.68144 (17)0.0292 (3)1.0320 (2)0.0374 (7)
C90.80476 (18)0.0493 (3)1.0518 (2)0.0367 (6)
C100.83298 (16)0.0764 (2)0.91334 (19)0.0313 (6)
H20.900200.124500.691400.0360*
H30.978 (3)0.223 (5)0.502 (4)0.088 (10)*
H40.741700.019000.318000.0470*
H50.586500.110000.402000.0490*
H60.585700.121700.631400.0430*
H8A0.680900.138401.080500.0450*
H8B0.625600.050401.063400.0450*
H9A0.806100.159401.099400.0440*
H9B0.861300.029601.101900.0440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0306 (8)0.0573 (10)0.0443 (9)0.0123 (7)0.0103 (7)0.0083 (7)
O20.0306 (8)0.0641 (10)0.0501 (9)0.0141 (7)0.0066 (7)0.0068 (8)
O30.0417 (9)0.0634 (10)0.0328 (9)0.0051 (7)0.0110 (7)0.0054 (7)
N10.0224 (8)0.0360 (9)0.0305 (9)0.0012 (6)0.0071 (6)0.0000 (6)
C10.0248 (10)0.0305 (10)0.0290 (10)0.0052 (7)0.0045 (8)0.0009 (7)
C20.0248 (10)0.0362 (11)0.0283 (10)0.0014 (8)0.0021 (8)0.0010 (8)
C30.0302 (10)0.0375 (11)0.0304 (10)0.0074 (8)0.0060 (8)0.0009 (8)
C40.0377 (12)0.0478 (13)0.0299 (10)0.0099 (9)0.0010 (9)0.0044 (9)
C50.0308 (11)0.0470 (13)0.0406 (12)0.0039 (9)0.0067 (9)0.0116 (9)
C60.0241 (10)0.0386 (11)0.0452 (12)0.0010 (8)0.0043 (8)0.0051 (9)
C70.0250 (10)0.0340 (10)0.0405 (11)0.0024 (8)0.0100 (9)0.0054 (8)
C80.0349 (11)0.0431 (12)0.0371 (11)0.0054 (8)0.0151 (9)0.0020 (8)
C90.0333 (11)0.0447 (11)0.0333 (11)0.0060 (9)0.0085 (8)0.0043 (9)
C100.0250 (10)0.0345 (11)0.0353 (11)0.0028 (8)0.0072 (8)0.0048 (8)
Geometric parameters (Å, º) top
O1—C101.218 (2)C5—C61.385 (3)
O2—C71.202 (2)C7—C81.494 (3)
O3—C31.364 (3)C8—C91.518 (3)
O3—H30.94 (4)C9—C101.498 (3)
N1—C11.440 (2)C2—H20.9300
N1—C71.404 (2)C4—H40.9300
N1—C101.380 (2)C5—H50.9300
C1—C21.382 (2)C6—H60.9300
C1—C61.380 (3)C8—H8A0.9700
C2—C31.389 (3)C8—H8B0.9700
C3—C41.386 (3)C9—H9A0.9700
C4—C51.380 (3)C9—H9B0.9700
C3—O3—H3112 (2)N1—C10—C9108.71 (16)
C1—N1—C10124.14 (15)O1—C10—N1123.55 (18)
C7—N1—C10112.43 (16)C1—C2—H2121.00
C1—N1—C7123.43 (15)C3—C2—H2121.00
N1—C1—C6118.80 (16)C3—C4—H4120.00
C2—C1—C6122.34 (18)C5—C4—H4120.00
N1—C1—C2118.85 (16)C4—C5—H5120.00
C1—C2—C3118.63 (17)C6—C5—H5120.00
O3—C3—C4117.31 (17)C1—C6—H6121.00
C2—C3—C4119.80 (18)C5—C6—H6121.00
O3—C3—C2122.87 (18)C7—C8—H8A111.00
C3—C4—C5120.42 (19)C7—C8—H8B111.00
C4—C5—C6120.57 (19)C9—C8—H8A111.00
C1—C6—C5118.24 (19)C9—C8—H8B111.00
O2—C7—N1123.91 (18)H8A—C8—H8B109.00
N1—C7—C8107.82 (16)C8—C9—H9A111.00
O2—C7—C8128.27 (18)C8—C9—H9B111.00
C7—C8—C9105.74 (16)C10—C9—H9A111.00
C8—C9—C10104.97 (16)C10—C9—H9B111.00
O1—C10—C9127.74 (18)H9A—C9—H9B109.00
C7—N1—C1—C2125.04 (18)N1—C1—C2—C3178.96 (16)
C10—N1—C1—C255.4 (2)C2—C1—C6—C50.4 (3)
C7—N1—C1—C654.1 (2)C1—C2—C3—C40.7 (3)
C10—N1—C1—C6125.46 (19)C1—C2—C3—O3177.55 (17)
C7—N1—C10—C93.7 (2)C2—C3—C4—C50.6 (3)
C1—N1—C10—O14.0 (3)O3—C3—C4—C5177.7 (2)
C7—N1—C10—O1175.62 (16)C3—C4—C5—C60.1 (3)
C1—N1—C7—O20.3 (3)C4—C5—C6—C10.4 (3)
C10—N1—C7—C80.1 (2)O2—C7—C8—C9177.14 (19)
C10—N1—C7—O2179.37 (17)N1—C7—C8—C93.4 (2)
C1—N1—C10—C9176.69 (16)C7—C8—C9—C105.3 (2)
C1—N1—C7—C8179.75 (16)C8—C9—C10—O1173.70 (18)
C6—C1—C2—C30.2 (3)C8—C9—C10—N15.6 (2)
N1—C1—C6—C5179.51 (18)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.94 (4)1.82 (4)2.758 (2)175 (4)
C8—H8A···Cgii0.972.833.613 (3)138
C9—H9A···Cgii0.972.793.579 (3)139
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.94 (4)1.82 (4)2.758 (2)175 (4)
C8—H8A···Cgii0.972.833.613 (3)138
C9—H9A···Cgii0.972.793.579 (3)139
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the IOE X-ray diffractometer facility, University of Mysore, India, for the data collection.

References

First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds