organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1013-o1014

Crystal structure of 2,9-di­phenyl-17λ6-thia­tetra­cyclo­[8.7.0.03,8.011,16]hepta­deca-1(10),2,4,6,8,11(16),12,14-octa­ene-17,17-dione

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 July 2014; accepted 2 August 2014; online 16 August 2014)

The title compound, C28H18O2S, is composed of a naphthalene ring system fused with a benzo­thio­phene ring and attached to two phenyl rings. The phenyl rings make dihedral angles of 70.92 (8) and 79.23 (8)° with the essentially planar naphthalene ring system (r.m.s. deviation = 0.031 Å). There is an intra­molecular C—H⋯π inter­action present. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds which generate C(7) zigzag chains running parallel to [10-1]. The chains are linked via further C—H⋯π inter­actions, forming a three-dimensional structure.

1. Related literature

Naphthalene derivatives have been extensively employed in many fields and some posses important biological and commercial applications, such as disinfectants, insecticides, plant hormones and rooting agents, see: Morikawa & Takahashi (2004[Morikawa, H. & Takahashi, M. (2004). US Patent 6800482.]). They have also been identified as a new range of potent anti­microbials effective against a wide range of human pathogens, see: Rokade & Sayyed (2009[Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980.]). For a related structure, see: Narayanan et al. (2011[Narayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o931.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C28H18O2S

  • Mr = 418.48

  • Monoclinic, P 21 /n

  • a = 9.9374 (2) Å

  • b = 16.1534 (4) Å

  • c = 13.0530 (3) Å

  • β = 100.308 (1)°

  • V = 2061.49 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.956

  • 20049 measured reflections

  • 3633 independent reflections

  • 3065 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.104

  • S = 1.03

  • 3633 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of rings C23–C28, C1/C6–C10 and C17–C22, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O2i 0.93 2.52 3.281 (2) 139
C14—H14⋯Cg1ii 0.93 2.71 3.537 (2) 149
C16—H16⋯Cg1iii 0.93 2.63 3.481 (2) 151
C20—H20⋯Cg2iv 0.93 2.89 3.736 (2) 152
C24—H24⋯Cg3 0.93 2.60 3.426 (2) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y, -z+1; (iv) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

Naphthalene derivatives have been extensively employed in many fields and some posses important biological and commercial applications, such as disinfectants, insecticides, plant hormones and rooting agents, see: Morikawa & Takahashi (2004). They have also been identified as a new range of potent antimicrobials effective against a wide range of human pathogens, see: Rokade & Sayyed (2009). For a related structure, see: Narayanan et al. (2011).

Experimental top

To a solution of benzo[c]furan1a (0.4 g, 1.48 mmol) in dry toluene (15 ml), benzo[b]thiophene S, S-dioxide 2 (0.25 g, 1.48 mmol) was added and refluxed until the disappearence of the fluroscent colour of the benzo[c]furan (12 h). To this, PTSA (1.13 g, 6.79 mmol) was added and the mixture refluxed for (10 h). The reaction mixture was then poured into a saturated solution of NaHCO3 (50 ml), extracted with ethyl acetate (3X20ml) and dried (Na2SO4). Removal of the solvent followed by column chromatographic purification (silica gel; 10% ethyl acetate in hexane) afforded dibenzothiophene S,S-dioxide4a as a colourless solid. Single crystals suitable for X-ray diffraction were prepared by slow evapouration of a solution in ethyl acetate at room temperature.

Refinement top

The H atoms were located from a difference electron density map. For refinement they were included in calculated positions and treated as riding atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the C—H···O hydrogen bonds (dashed lines; see Table 1 for details) H atoms not involved in the hydrogen bonding have been omitted for clarity.
2,9-Diphenyl-17λ6-thiatetracyclo[8.7.0.03,8.011,16]heptadeca-1(10),2,4,6,8,11 (16),12,14-octaene-17,17-dione top
Crystal data top
C28H18O2SF(000) = 872
Mr = 418.48Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3633 reflections
a = 9.9374 (2) Åθ = 2.0–25.0°
b = 16.1534 (4) ŵ = 0.18 mm1
c = 13.0530 (3) ÅT = 296 K
β = 100.308 (1)°Block, colourless
V = 2061.49 (8) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3633 independent reflections
Radiation source: fine-focus sealed tube3065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω &ϕ scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.939, Tmax = 0.956k = 1918
20049 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.7982P]
where P = (Fo2 + 2Fc2)/3
3633 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C28H18O2SV = 2061.49 (8) Å3
Mr = 418.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9374 (2) ŵ = 0.18 mm1
b = 16.1534 (4) ÅT = 296 K
c = 13.0530 (3) Å0.35 × 0.30 × 0.25 mm
β = 100.308 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3633 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3065 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.956Rint = 0.025
20049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3633 reflectionsΔρmin = 0.37 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.26997 (16)0.07715 (10)0.66155 (13)0.0354 (4)
C50.40842 (18)0.06567 (11)0.67099 (15)0.0431 (4)
H50.47590.09660.62930.052*
C40.44474 (19)0.01051 (12)0.73960 (16)0.0503 (5)
H40.53650.00350.74380.060*
C30.3452 (2)0.03577 (13)0.80382 (16)0.0531 (5)
H30.37070.07260.85160.064*
C20.21072 (19)0.02726 (12)0.79697 (15)0.0469 (5)
H20.14530.05830.84050.056*
C10.16908 (17)0.02787 (10)0.72497 (13)0.0360 (4)
C100.02927 (16)0.03449 (10)0.71348 (13)0.0343 (4)
C90.00034 (16)0.09000 (10)0.64220 (13)0.0330 (4)
C80.09702 (16)0.14233 (10)0.58096 (13)0.0336 (4)
C70.23185 (16)0.13559 (10)0.59007 (13)0.0346 (4)
C230.03343 (16)0.19479 (10)0.50926 (13)0.0355 (4)
C240.08844 (18)0.25867 (11)0.44312 (15)0.0426 (4)
H240.17820.27570.44130.051*
C250.00898 (19)0.29658 (12)0.38026 (15)0.0496 (5)
H250.04640.33920.33630.059*
C260.1245 (2)0.27299 (13)0.38098 (16)0.0523 (5)
H260.17520.29860.33660.063*
C270.18264 (19)0.21142 (12)0.44754 (15)0.0475 (5)
H270.27300.19540.44990.057*
C280.10299 (17)0.17445 (10)0.51034 (13)0.0375 (4)
C170.33828 (16)0.18539 (10)0.52159 (14)0.0364 (4)
C180.37945 (19)0.16206 (12)0.41930 (15)0.0483 (5)
H180.34810.11260.39560.058*
C190.4673 (2)0.21199 (14)0.35178 (17)0.0564 (5)
H190.49440.19640.28260.068*
C200.51450 (19)0.28448 (13)0.38694 (18)0.0554 (6)
H200.57130.31880.34100.066*
C210.4783 (2)0.30639 (12)0.48907 (19)0.0554 (5)
H210.51310.35470.51300.067*
C220.39036 (19)0.25723 (11)0.55713 (16)0.0476 (5)
H220.36610.27240.62670.057*
C110.08060 (17)0.01687 (10)0.77541 (13)0.0366 (4)
C120.1770 (2)0.01822 (13)0.85221 (16)0.0524 (5)
H120.17130.07410.86800.063*
C130.2822 (2)0.02950 (15)0.90583 (17)0.0627 (6)
H130.34650.00570.95810.075*
C140.2921 (2)0.11145 (14)0.88242 (17)0.0571 (6)
H140.36410.14300.91760.069*
C150.1967 (2)0.14668 (13)0.80765 (17)0.0576 (5)
H150.20290.20260.79240.069*
C160.0908 (2)0.10002 (11)0.75434 (15)0.0486 (5)
H160.02560.12490.70360.058*
O10.20172 (14)0.02549 (8)0.56085 (12)0.0578 (4)
O20.26058 (13)0.13802 (9)0.68509 (11)0.0551 (4)
S10.16252 (4)0.10036 (3)0.60531 (3)0.03783 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0343 (9)0.0325 (9)0.0384 (9)0.0002 (7)0.0037 (7)0.0059 (7)
C50.0354 (9)0.0425 (10)0.0507 (11)0.0013 (7)0.0057 (8)0.0015 (8)
C40.0395 (10)0.0527 (12)0.0608 (13)0.0059 (9)0.0150 (9)0.0015 (10)
C30.0544 (12)0.0528 (12)0.0547 (12)0.0086 (9)0.0166 (9)0.0076 (10)
C20.0477 (11)0.0457 (11)0.0463 (11)0.0000 (8)0.0058 (8)0.0080 (8)
C10.0375 (9)0.0323 (9)0.0371 (9)0.0013 (7)0.0037 (7)0.0033 (7)
C100.0363 (9)0.0291 (8)0.0351 (9)0.0013 (7)0.0004 (7)0.0037 (7)
C90.0288 (8)0.0296 (8)0.0381 (9)0.0009 (6)0.0007 (7)0.0039 (7)
C80.0324 (8)0.0290 (8)0.0369 (9)0.0001 (6)0.0007 (7)0.0019 (7)
C70.0324 (8)0.0301 (8)0.0396 (9)0.0019 (6)0.0015 (7)0.0032 (7)
C230.0332 (8)0.0330 (9)0.0373 (9)0.0043 (7)0.0017 (7)0.0012 (7)
C240.0350 (9)0.0410 (10)0.0476 (11)0.0008 (7)0.0040 (8)0.0070 (8)
C250.0470 (11)0.0491 (11)0.0470 (11)0.0090 (9)0.0068 (8)0.0141 (9)
C260.0467 (11)0.0619 (13)0.0470 (11)0.0135 (9)0.0050 (9)0.0118 (10)
C270.0347 (9)0.0567 (12)0.0500 (11)0.0051 (8)0.0045 (8)0.0036 (9)
C280.0321 (8)0.0369 (9)0.0408 (9)0.0017 (7)0.0006 (7)0.0002 (7)
C170.0273 (8)0.0353 (9)0.0455 (10)0.0001 (7)0.0038 (7)0.0028 (7)
C180.0424 (10)0.0459 (11)0.0522 (11)0.0025 (8)0.0033 (8)0.0029 (9)
C190.0469 (11)0.0651 (14)0.0508 (12)0.0025 (10)0.0084 (9)0.0072 (10)
C200.0326 (9)0.0564 (13)0.0741 (15)0.0018 (9)0.0014 (9)0.0286 (11)
C210.0468 (11)0.0418 (11)0.0793 (16)0.0133 (9)0.0156 (11)0.0111 (10)
C220.0469 (10)0.0428 (10)0.0529 (11)0.0088 (8)0.0089 (9)0.0015 (9)
C110.0364 (9)0.0376 (9)0.0347 (9)0.0028 (7)0.0033 (7)0.0029 (7)
C120.0519 (11)0.0480 (11)0.0516 (12)0.0074 (9)0.0059 (9)0.0071 (9)
C130.0525 (12)0.0790 (16)0.0482 (12)0.0062 (11)0.0135 (9)0.0003 (11)
C140.0526 (12)0.0646 (14)0.0529 (12)0.0204 (10)0.0063 (10)0.0227 (10)
C150.0672 (13)0.0408 (11)0.0621 (13)0.0151 (10)0.0041 (11)0.0079 (10)
C160.0552 (11)0.0370 (10)0.0494 (11)0.0054 (8)0.0021 (9)0.0003 (8)
O10.0578 (8)0.0451 (8)0.0747 (10)0.0154 (6)0.0230 (7)0.0007 (7)
O20.0373 (7)0.0612 (9)0.0589 (9)0.0107 (6)0.0131 (6)0.0106 (7)
S10.0283 (2)0.0368 (3)0.0463 (3)0.00192 (16)0.00104 (18)0.00276 (18)
Geometric parameters (Å, º) top
C6—C51.415 (2)C27—C281.374 (3)
C6—C11.424 (2)C27—H270.9300
C6—C71.425 (2)C28—S11.7483 (17)
C5—C41.357 (3)C17—C181.377 (3)
C5—H50.9300C17—C221.384 (2)
C4—C31.394 (3)C18—C191.384 (3)
C4—H40.9300C18—H180.9300
C3—C21.362 (3)C19—C201.371 (3)
C3—H30.9300C19—H190.9300
C2—C11.410 (3)C20—C211.364 (3)
C2—H20.9300C20—H200.9300
C1—C101.428 (2)C21—C221.381 (3)
C10—C91.362 (2)C21—H210.9300
C10—C111.489 (2)C22—H220.9300
C9—C81.419 (2)C11—C121.379 (2)
C9—S11.7707 (17)C11—C161.379 (2)
C8—C71.370 (2)C12—C131.384 (3)
C8—C231.485 (2)C12—H120.9300
C7—C171.492 (2)C13—C141.366 (3)
C23—C281.393 (2)C13—H130.9300
C23—C241.393 (2)C14—C151.358 (3)
C24—C251.380 (3)C14—H140.9300
C24—H240.9300C15—C161.377 (3)
C25—C261.379 (3)C15—H150.9300
C25—H250.9300C16—H160.9300
C26—C271.378 (3)O1—S11.4255 (14)
C26—H260.9300O2—S11.4286 (13)
C5—C6—C1118.07 (16)C27—C28—C23123.72 (17)
C5—C6—C7121.34 (15)C27—C28—S1124.24 (14)
C1—C6—C7120.59 (15)C23—C28—S1111.96 (13)
C4—C5—C6121.39 (17)C18—C17—C22119.37 (16)
C4—C5—H5119.3C18—C17—C7119.27 (16)
C6—C5—H5119.3C22—C17—C7121.25 (16)
C5—C4—C3120.33 (17)C17—C18—C19120.14 (19)
C5—C4—H4119.8C17—C18—H18119.9
C3—C4—H4119.8C19—C18—H18119.9
C2—C3—C4120.35 (18)C20—C19—C18120.0 (2)
C2—C3—H3119.8C20—C19—H19120.0
C4—C3—H3119.8C18—C19—H19120.0
C3—C2—C1121.07 (17)C21—C20—C19120.19 (18)
C3—C2—H2119.5C21—C20—H20119.9
C1—C2—H2119.5C19—C20—H20119.9
C2—C1—C6118.73 (16)C20—C21—C22120.37 (19)
C2—C1—C10121.64 (15)C20—C21—H21119.8
C6—C1—C10119.62 (15)C22—C21—H21119.8
C9—C10—C1117.02 (15)C17—C22—C21119.88 (19)
C9—C10—C11120.71 (15)C17—C22—H22120.1
C1—C10—C11122.27 (15)C21—C22—H22120.1
C10—C9—C8124.64 (15)C12—C11—C16118.64 (16)
C10—C9—S1124.51 (12)C12—C11—C10120.81 (16)
C8—C9—S1110.65 (12)C16—C11—C10120.51 (15)
C7—C8—C9118.85 (15)C11—C12—C13120.17 (19)
C7—C8—C23129.27 (14)C11—C12—H12119.9
C9—C8—C23111.77 (14)C13—C12—H12119.9
C8—C7—C6119.20 (14)C14—C13—C12120.31 (19)
C8—C7—C17120.29 (15)C14—C13—H13119.8
C6—C7—C17120.42 (14)C12—C13—H13119.8
C28—C23—C24117.03 (16)C15—C14—C13119.86 (18)
C28—C23—C8112.47 (14)C15—C14—H14120.1
C24—C23—C8130.50 (15)C13—C14—H14120.1
C25—C24—C23119.64 (17)C14—C15—C16120.38 (19)
C25—C24—H24120.2C14—C15—H15119.8
C23—C24—H24120.2C16—C15—H15119.8
C26—C25—C24121.72 (18)C15—C16—C11120.61 (18)
C26—C25—H25119.1C15—C16—H16119.7
C24—C25—H25119.1C11—C16—H16119.7
C27—C26—C25119.87 (18)O1—S1—O2117.23 (9)
C27—C26—H26120.1O1—S1—C28112.00 (9)
C25—C26—H26120.1O2—S1—C28108.99 (8)
C28—C27—C26117.96 (17)O1—S1—C9111.03 (8)
C28—C27—H27121.0O2—S1—C9112.16 (8)
C26—C27—H27121.0C28—S1—C992.78 (8)
C1—C6—C5—C41.2 (3)C26—C27—C28—S1175.58 (15)
C7—C6—C5—C4179.48 (17)C24—C23—C28—C272.6 (3)
C6—C5—C4—C30.8 (3)C8—C23—C28—C27177.03 (16)
C5—C4—C3—C21.3 (3)C24—C23—C28—S1174.37 (13)
C4—C3—C2—C10.3 (3)C8—C23—C28—S15.97 (18)
C3—C2—C1—C62.2 (3)C8—C7—C17—C1875.9 (2)
C3—C2—C1—C10176.95 (17)C6—C7—C17—C18100.6 (2)
C5—C6—C1—C22.6 (2)C8—C7—C17—C22100.2 (2)
C7—C6—C1—C2178.01 (16)C6—C7—C17—C2283.3 (2)
C5—C6—C1—C10176.58 (15)C22—C17—C18—C192.9 (3)
C7—C6—C1—C102.8 (2)C7—C17—C18—C19173.33 (17)
C2—C1—C10—C9179.60 (16)C17—C18—C19—C200.6 (3)
C6—C1—C10—C91.2 (2)C18—C19—C20—C211.9 (3)
C2—C1—C10—C110.8 (3)C19—C20—C21—C222.1 (3)
C6—C1—C10—C11178.36 (15)C18—C17—C22—C212.6 (3)
C1—C10—C9—C81.4 (2)C7—C17—C22—C21173.46 (17)
C11—C10—C9—C8178.99 (15)C20—C21—C22—C170.2 (3)
C1—C10—C9—S1172.85 (12)C9—C10—C11—C1270.8 (2)
C11—C10—C9—S16.7 (2)C1—C10—C11—C12109.6 (2)
C10—C9—C8—C72.5 (2)C9—C10—C11—C16106.7 (2)
S1—C9—C8—C7172.46 (12)C1—C10—C11—C1672.8 (2)
C10—C9—C8—C23179.01 (15)C16—C11—C12—C130.6 (3)
S1—C9—C8—C234.05 (17)C10—C11—C12—C13176.99 (19)
C9—C8—C7—C60.8 (2)C11—C12—C13—C140.6 (3)
C23—C8—C7—C6176.63 (15)C12—C13—C14—C151.4 (4)
C9—C8—C7—C17175.72 (14)C13—C14—C15—C160.8 (3)
C23—C8—C7—C170.1 (3)C14—C15—C16—C110.5 (3)
C5—C6—C7—C8177.61 (16)C12—C11—C16—C151.2 (3)
C1—C6—C7—C81.7 (2)C10—C11—C16—C15176.44 (18)
C5—C6—C7—C171.1 (2)C27—C28—S1—O165.86 (18)
C1—C6—C7—C17178.25 (15)C23—C28—S1—O1117.15 (13)
C7—C8—C23—C28169.54 (16)C27—C28—S1—O265.52 (18)
C9—C8—C23—C286.5 (2)C23—C28—S1—O2111.46 (13)
C7—C8—C23—C2410.1 (3)C27—C28—S1—C9179.89 (17)
C9—C8—C23—C24173.88 (17)C23—C28—S1—C93.13 (13)
C28—C23—C24—C252.1 (3)C10—C9—S1—O160.76 (16)
C8—C23—C24—C25177.52 (17)C8—C9—S1—O1114.20 (12)
C23—C24—C25—C260.1 (3)C10—C9—S1—O272.55 (16)
C24—C25—C26—C271.6 (3)C8—C9—S1—O2112.48 (12)
C25—C26—C27—C281.1 (3)C10—C9—S1—C28175.63 (15)
C26—C27—C28—C231.1 (3)C8—C9—S1—C280.66 (12)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of rings C23–C28, C1/C6–C10 and C17–C22, respectively.
D—H···AD—HH···AD···AD—H···A
C25—H25···O2i0.932.523.281 (2)139
C14—H14···Cg1ii0.932.713.537 (2)149
C16—H16···Cg1iii0.932.633.481 (2)151
C20—H20···Cg2iv0.932.893.736 (2)152
C24—H24···Cg30.932.603.426 (2)148
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x, y, z+1; (iv) x3/2, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of rings C23–C28, C1/C6–C10 and C17–C22, respectively.
D—H···AD—HH···AD···AD—H···A
C25—H25···O2i0.932.523.281 (2)139
C14—H14···Cg1ii0.932.713.537 (2)149
C16—H16···Cg1iii0.932.633.481 (2)151
C20—H20···Cg2iv0.932.893.736 (2)152
C24—H24···Cg30.932.603.426 (2)148
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x, y, z+1; (iv) x3/2, y1/2, z3/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, for the data collection at SAIF, IIT, Madras, India.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorikawa, H. & Takahashi, M. (2004). US Patent 6800482.  Google Scholar
First citationNarayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o931.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1013-o1014
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds