organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o938-o939

Crystal structure of ethyl 2-({[(4Z)-3,5-dioxo-1-phenyl­pyrazolidin-4-yl­­idene]meth­yl}amino)­acetate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 July 2014; accepted 20 July 2014; online 1 August 2014)

The title compound, C14H15N3O4, is nearly planar, the dihedral angle between the planes of the phenyl and pyrazolidine rings being 1.13 (7) Å, and that between the plane of the pyrazolidine ring and the mean plane of the side chain [C—N—C–C(=O)—O; r.m.s. deviation = 0.024 Å] being 2.52 (7)°. This is due in large part to the presence of the intra­molecular N—H⋯O and C—H⋯O hydrogen bonds. In the crystal, pairwise N—H⋯O hydrogen bonds form inversion dimers, which are further associated into layers, lying very close to plane (-120), via pairwise C—H⋯O hydrogen bonds. The layers are then weakly connected through C—H⋯O hydrogen bonds, forming a three-dimensional structure.

1. Related literature

For the synthesis of compounds containing the pyrazolidinone nucleus and their biological activity, see: Ismail et al. (2012[Ismail, M. A. H., Abou El Ella, D. A., Abouzid, K. A. M. & Jaballah, M. (2012). IJPSR 3, 3746-3757.]); Khodairy (2007[Khodairy, A. (2007). J. Chin. Chem. Soc. 54, 93-102.]); Khloya et al. (2013[Khloya, P., Kumar, P., Mittal, A., Aggarwal, N. K. & Sharma, P. K. (2013). Org. Med. Chem. Lett. 3, 1-7.]). For biologically active synthetic heterocyclic compounds containing the pyrazol-5(4H)-one core scaffold and displaying some inter­esting pharmaceutical properties, see: Uramaru et al. (2010[Uramaru, N., Shigematsu, H., Toda, A., Eyanagi, R., Kitamura, S. & Ohta, S. (2010). J. Med. Chem. 53, 8727-8733.]) for analgesic; Thaker et al. (2011[Thaker, K. M., Ghetiya, R. M., Tala, S. D., Dodiya, B. L., Joshi, K. A., Dubal, K. L. & Joshi, H. S. (2011). Indian J. Chem. Sect. B, 50, 738-744.]) and Chande et al. (2007[Chande, M. S., Barve, P. A. & Suryanarayan, V. (2007). J. Heterocycl. Chem. 44, 49-53.]) for anti­microbial; Mariappan et al. (2010[Mariappan, G., Saha, B. P., Satharson, L. & Haldar, A. (2010). Indian J. Chem. Sect. B, 49, 1671-1674.]) and Nishikimi et al. (2012[Nishikimi, A., Takehito Uruno, T., Duan, X., Cao, Q., Okamura, Y., Saitoh, T., Saito, N., Sakaoka, S., Du, Y., Suenaga, A., Kukimoto-Niino, M., Miyano, K., Gotoh, K., Okabe, T., Sanematsu, F., Tanaka, Y., Sumimoto, H., Honma, T., Yokoyama, S., Nagano, T., Kohda, D., Kanai, M. & Fukui, Y. (2012). Chem. Biol. 19, 488-497.]) for anti-inflammatory; Chen et al. (2012[Chen, T., Benmohamed, R., Kim, J., Smith, K., Amanta, D., Morimoto, R. I., Kirsch, D. R., Ferrante, R. J. & Silverman, R. B. (2012). J. Med. Chem. 55, 515-527.]) for cyto­toxicity.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H15N3O4

  • Mr = 289.29

  • Triclinic, [P \overline 1]

  • a = 5.4984 (1) Å

  • b = 7.3585 (2) Å

  • c = 16.6265 (4) Å

  • α = 91.3290 (9)°

  • β = 97.325 (1)°

  • γ = 99.562 (1)°

  • V = 657.27 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.27 × 0.09 × 0.04 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.91, Tmax = 0.96

  • 5108 measured reflections

  • 2450 independent reflections

  • 2171 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.02

  • 2450 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.914 (18) 2.250 (17) 2.9062 (14) 128.3 (13)
C6—H6⋯O2 0.95 2.23 2.8833 (16) 126
N1—H1⋯O1i 0.88 (2) 1.89 (2) 2.7573 (14) 170.7 (16)
C2—H2⋯O1i 0.95 2.36 3.2777 (15) 162
C10—H10⋯O2ii 0.95 2.28 3.1268 (16) 148
C11—H11A⋯O2ii 0.99 2.58 3.1498 (15) 117
C11—H11B⋯O1iii 0.99 2.51 3.3386 (15) 142
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Related literature top

For the synthesis of compounds containing the pyrazolidinone nucleus and their biological activity, see: Ismail et al. (2012); Khodairy (2007); Khloya et al. (2013). For biologically active synthetic heterocyclic compounds containing the pyrazol-5(4H)-one core scaffold and displaying some interesting pharmaceutical properties, see: Uramaru et al. (2010) for analgesic; Thaker et al. (2011) and Chande et al. (2007) for antimicrobial; Mariappan et al. (2010) and Nishikimi et al. (2012) for anti-inflammatory; Chen et al. (2012) for cytotoxicity.

Experimental top

A mixture of 1 mmol (231 mg) of (4Z)-4-[(dimethylamino)methylene]-1-phenylpyrazolidine-3,5-dione and 1 mmol (140 mg) of ethyl aminoacetate hydrochloride and few drops of triethylamine (TEA) as a catalyst in 30 ml 1,4-dioxane was refluxed for 6 h. On cooling the solid product deposited, was filtered off, washed with cold ethanol and dried under vacuum. Crystals of the title compound were obtained as yellow needles by recrystallization of the crude product from dimethyl sulfoxide; M.p. 489–491 K.

Refinement top

The N-bound H atoms were located in a Fourier difference map and freely refined. The C-bound H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95 - 0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The crystal did not diffract well, hence the lower than desirable value for θfull.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing viewed along the b axis of the title compound. N—H···O and C—H···O hydrogen bonds are shown, respectively, as purple and black dotted lines (see Table 1 for details).
[Figure 3] Fig. 3. The crystal packing of the title compound, showing the layer structure and the weak C—H···O interlayer hydrogen bonds (black dotted lines; see Table 1 for details).
Ethyl 2-({[(4Z)-3,5-dioxo-1-phenylpyrazolidin-4-ylidene]methyl}amino)acetate top
Crystal data top
C14H15N3O4Z = 2
Mr = 289.29F(000) = 304
Triclinic, P1Dx = 1.462 Mg m3
a = 5.4984 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.3585 (2) ÅCell parameters from 3908 reflections
c = 16.6265 (4) Åθ = 2.7–72.2°
α = 91.3290 (9)°µ = 0.91 mm1
β = 97.325 (1)°T = 100 K
γ = 99.562 (1)°Needle, yellow
V = 657.27 (3) Å30.27 × 0.09 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2450 independent reflections
Radiation source: INCOATEC IµS micro-focus source2171 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 5.4°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 98
Tmin = 0.91, Tmax = 0.96l = 2020
5108 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.2143P]
where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H15N3O4γ = 99.562 (1)°
Mr = 289.29V = 657.27 (3) Å3
Triclinic, P1Z = 2
a = 5.4984 (1) ÅCu Kα radiation
b = 7.3585 (2) ŵ = 0.91 mm1
c = 16.6265 (4) ÅT = 100 K
α = 91.3290 (9)°0.27 × 0.09 × 0.04 mm
β = 97.325 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2450 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2171 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.96Rint = 0.019
5108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
2450 reflectionsΔρmin = 0.19 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. H-atoms attached to nitrogen were refined independently.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81993 (17)0.91924 (12)0.58190 (5)0.0208 (2)
O20.18424 (17)0.56447 (13)0.39606 (5)0.0232 (2)
O30.56220 (17)0.89351 (13)0.80229 (5)0.0238 (2)
O40.20347 (17)0.77726 (12)0.84951 (5)0.0214 (2)
N10.7714 (2)0.82957 (15)0.44586 (6)0.0193 (2)
N20.5788 (2)0.73223 (15)0.38878 (6)0.0182 (2)
N30.3705 (2)0.76426 (15)0.64837 (6)0.0185 (2)
C10.6132 (2)0.71090 (16)0.30668 (7)0.0171 (3)
C20.8342 (2)0.79219 (17)0.27959 (7)0.0187 (3)
H20.96400.86170.31670.022*
C30.8642 (3)0.77134 (18)0.19820 (8)0.0221 (3)
H31.01420.82810.17990.026*
C40.6776 (3)0.66856 (18)0.14350 (8)0.0224 (3)
H40.69920.65430.08810.027*
C50.4589 (3)0.58691 (18)0.17083 (8)0.0224 (3)
H50.33080.51600.13360.027*
C60.4240 (2)0.60707 (17)0.25156 (7)0.0203 (3)
H60.27290.55090.26930.024*
C70.3762 (2)0.66257 (17)0.42850 (7)0.0177 (3)
C80.4474 (2)0.72955 (16)0.51201 (7)0.0173 (3)
C90.6925 (2)0.83530 (17)0.51974 (7)0.0175 (3)
C100.3003 (2)0.69795 (17)0.57301 (7)0.0172 (3)
H100.13990.62460.56020.021*
C110.2115 (2)0.73107 (18)0.71157 (7)0.0187 (3)
H11A0.15730.59670.71540.022*
H11B0.06140.78810.69800.022*
C120.3509 (2)0.81183 (17)0.79164 (7)0.0188 (3)
C130.3112 (3)0.84585 (19)0.93050 (7)0.0239 (3)
H13A0.35250.98220.93260.029*
H13B0.46540.79580.94720.029*
C140.1209 (3)0.7838 (2)0.98568 (8)0.0326 (3)
H14A0.03330.82930.96700.049*
H14B0.18410.83271.04110.049*
H14C0.08770.64870.98500.049*
H10.896 (4)0.907 (3)0.4313 (10)0.034 (5)*
H3A0.525 (3)0.834 (2)0.6622 (10)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0191 (5)0.0237 (5)0.0168 (4)0.0039 (4)0.0017 (3)0.0013 (3)
O20.0169 (5)0.0300 (5)0.0190 (4)0.0062 (4)0.0019 (3)0.0010 (4)
O30.0199 (5)0.0270 (5)0.0218 (4)0.0024 (4)0.0014 (4)0.0012 (4)
O40.0214 (5)0.0253 (5)0.0158 (4)0.0016 (4)0.0035 (3)0.0016 (3)
N10.0157 (6)0.0226 (5)0.0166 (5)0.0056 (4)0.0023 (4)0.0017 (4)
N20.0154 (5)0.0210 (5)0.0158 (5)0.0029 (4)0.0012 (4)0.0016 (4)
N30.0160 (6)0.0208 (5)0.0171 (5)0.0018 (4)0.0028 (4)0.0003 (4)
C10.0190 (6)0.0162 (6)0.0163 (6)0.0036 (5)0.0020 (5)0.0012 (5)
C20.0182 (6)0.0179 (6)0.0193 (6)0.0010 (5)0.0023 (5)0.0005 (5)
C30.0220 (7)0.0228 (6)0.0222 (6)0.0034 (5)0.0062 (5)0.0028 (5)
C40.0275 (7)0.0245 (7)0.0161 (6)0.0062 (6)0.0037 (5)0.0009 (5)
C50.0230 (7)0.0236 (7)0.0189 (6)0.0022 (5)0.0005 (5)0.0009 (5)
C60.0181 (7)0.0216 (6)0.0197 (6)0.0002 (5)0.0018 (5)0.0003 (5)
C70.0156 (6)0.0179 (6)0.0188 (6)0.0005 (5)0.0027 (5)0.0017 (5)
C80.0168 (6)0.0166 (6)0.0174 (6)0.0009 (5)0.0011 (5)0.0009 (5)
C90.0182 (6)0.0164 (6)0.0177 (6)0.0016 (5)0.0027 (5)0.0010 (4)
C100.0149 (6)0.0165 (6)0.0189 (6)0.0003 (5)0.0009 (4)0.0017 (4)
C110.0170 (6)0.0212 (6)0.0169 (6)0.0005 (5)0.0036 (5)0.0006 (5)
C120.0193 (7)0.0177 (6)0.0189 (6)0.0022 (5)0.0022 (5)0.0015 (5)
C130.0270 (7)0.0268 (7)0.0157 (6)0.0006 (6)0.0008 (5)0.0021 (5)
C140.0382 (9)0.0375 (8)0.0204 (7)0.0017 (7)0.0077 (6)0.0002 (6)
Geometric parameters (Å, º) top
O1—C91.2580 (15)C4—C51.388 (2)
O2—C71.2288 (16)C4—H40.9500
O3—C121.2052 (17)C5—C61.3879 (18)
O4—C121.3378 (16)C5—H50.9500
O4—C131.4438 (14)C6—H60.9500
N1—C91.3557 (16)C7—C81.4455 (17)
N1—N21.4126 (14)C8—C101.3764 (18)
N1—H10.88 (2)C8—C91.4289 (18)
N2—C71.3975 (17)C10—H100.9500
N2—C11.4105 (16)C11—C121.5049 (16)
N3—C101.3201 (16)C11—H11A0.9900
N3—C111.4503 (16)C11—H11B0.9900
N3—H3A0.914 (18)C13—C141.500 (2)
C1—C21.3958 (19)C13—H13A0.9900
C1—C61.4023 (17)C13—H13B0.9900
C2—C31.3920 (18)C14—H14A0.9800
C2—H20.9500C14—H14B0.9800
C3—C41.3873 (18)C14—H14C0.9800
C3—H30.9500
C12—O4—C13115.89 (10)C10—C8—C9126.25 (11)
C9—N1—N2109.72 (10)C10—C8—C7125.21 (12)
C9—N1—H1124.3 (11)C9—C8—C7108.54 (11)
N2—N1—H1122.3 (11)O1—C9—N1124.26 (12)
C7—N2—C1130.04 (10)O1—C9—C8128.51 (12)
C7—N2—N1109.26 (10)N1—C9—C8107.22 (11)
C1—N2—N1120.63 (10)N3—C10—C8123.39 (12)
C10—N3—C11122.52 (11)N3—C10—H10118.3
C10—N3—H3A119.8 (10)C8—C10—H10118.3
C11—N3—H3A117.7 (10)N3—C11—C12109.81 (10)
C2—C1—C6119.51 (11)N3—C11—H11A109.7
C2—C1—N2120.64 (11)C12—C11—H11A109.7
C6—C1—N2119.86 (11)N3—C11—H11B109.7
C3—C2—C1119.92 (12)C12—C11—H11B109.7
C3—C2—H2120.0H11A—C11—H11B108.2
C1—C2—H2120.0O3—C12—O4125.26 (12)
C4—C3—C2120.74 (12)O3—C12—C11125.64 (12)
C4—C3—H3119.6O4—C12—C11109.10 (10)
C2—C3—H3119.6O4—C13—C14106.97 (11)
C3—C4—C5119.13 (12)O4—C13—H13A110.3
C3—C4—H4120.4C14—C13—H13A110.3
C5—C4—H4120.4O4—C13—H13B110.3
C4—C5—C6121.15 (12)C14—C13—H13B110.3
C4—C5—H5119.4H13A—C13—H13B108.6
C6—C5—H5119.4C13—C14—H14A109.5
C5—C6—C1119.55 (12)C13—C14—H14B109.5
C5—C6—H6120.2H14A—C14—H14B109.5
C1—C6—H6120.2C13—C14—H14C109.5
O2—C7—N2124.92 (11)H14A—C14—H14C109.5
O2—C7—C8129.97 (12)H14B—C14—H14C109.5
N2—C7—C8105.10 (10)
C9—N1—N2—C74.17 (14)N2—C7—C8—C10178.32 (11)
C9—N1—N2—C1178.53 (10)O2—C7—C8—C9178.57 (13)
C7—N2—C1—C2179.41 (12)N2—C7—C8—C90.82 (13)
N1—N2—C1—C22.73 (17)N2—N1—C9—O1176.95 (11)
C7—N2—C1—C60.56 (19)N2—N1—C9—C83.52 (13)
N1—N2—C1—C6177.24 (11)C10—C8—C9—O10.3 (2)
C6—C1—C2—C30.66 (18)C7—C8—C9—O1178.83 (12)
N2—C1—C2—C3179.37 (11)C10—C8—C9—N1179.20 (12)
C1—C2—C3—C40.74 (19)C7—C8—C9—N11.67 (14)
C2—C3—C4—C50.28 (19)C11—N3—C10—C8179.28 (12)
C3—C4—C5—C60.26 (19)C9—C8—C10—N30.2 (2)
C4—C5—C6—C10.33 (19)C7—C8—C10—N3178.81 (11)
C2—C1—C6—C50.13 (19)C10—N3—C11—C12175.64 (11)
N2—C1—C6—C5179.90 (11)C13—O4—C12—O30.30 (18)
C1—N2—C7—O20.5 (2)C13—O4—C12—C11179.81 (10)
N1—N2—C7—O2176.50 (12)N3—C11—C12—O30.61 (18)
C1—N2—C7—C8179.91 (11)N3—C11—C12—O4178.90 (10)
N1—N2—C7—C82.93 (13)C12—O4—C13—C14177.08 (11)
O2—C7—C8—C102.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.914 (18)2.250 (17)2.9062 (14)128.3 (13)
C6—H6···O20.952.232.8833 (16)126
N1—H1···O1i0.88 (2)1.89 (2)2.7573 (14)170.7 (16)
C2—H2···O1i0.952.363.2777 (15)162
C10—H10···O2ii0.952.283.1268 (16)148
C11—H11A···O2ii0.992.583.1498 (15)117
C11—H11B···O1iii0.992.513.3386 (15)142
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z+1; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.914 (18)2.250 (17)2.9062 (14)128.3 (13)
C6—H6···O20.952.232.8833 (16)126
N1—H1···O1i0.88 (2)1.89 (2)2.7573 (14)170.7 (16)
C2—H2···O1i0.952.363.2777 (15)162
C10—H10···O2ii0.952.283.1268 (16)148
C11—H11A···O2ii0.992.583.1498 (15)117
C11—H11B···O1iii0.992.513.3386 (15)142
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Barve, P. A. & Suryanarayan, V. (2007). J. Heterocycl. Chem. 44, 49–53.  CrossRef CAS Google Scholar
First citationChen, T., Benmohamed, R., Kim, J., Smith, K., Amanta, D., Morimoto, R. I., Kirsch, D. R., Ferrante, R. J. & Silverman, R. B. (2012). J. Med. Chem. 55, 515–527.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIsmail, M. A. H., Abou El Ella, D. A., Abouzid, K. A. M. & Jaballah, M. (2012). IJPSR 3, 3746–3757.  Google Scholar
First citationKhloya, P., Kumar, P., Mittal, A., Aggarwal, N. K. & Sharma, P. K. (2013). Org. Med. Chem. Lett. 3, 1–7.  CrossRef PubMed Google Scholar
First citationKhodairy, A. (2007). J. Chin. Chem. Soc. 54, 93–102.  CAS Google Scholar
First citationMariappan, G., Saha, B. P., Satharson, L. & Haldar, A. (2010). Indian J. Chem. Sect. B, 49, 1671–1674.  Google Scholar
First citationNishikimi, A., Takehito Uruno, T., Duan, X., Cao, Q., Okamura, Y., Saitoh, T., Saito, N., Sakaoka, S., Du, Y., Suenaga, A., Kukimoto-Niino, M., Miyano, K., Gotoh, K., Okabe, T., Sanematsu, F., Tanaka, Y., Sumimoto, H., Honma, T., Yokoyama, S., Nagano, T., Kohda, D., Kanai, M. & Fukui, Y. (2012). Chem. Biol. 19, 488–497.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThaker, K. M., Ghetiya, R. M., Tala, S. D., Dodiya, B. L., Joshi, K. A., Dubal, K. L. & Joshi, H. S. (2011). Indian J. Chem. Sect. B, 50, 738–744.  Google Scholar
First citationUramaru, N., Shigematsu, H., Toda, A., Eyanagi, R., Kitamura, S. & Ohta, S. (2010). J. Med. Chem. 53, 8727–8733.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o938-o939
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds