organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o957-o958

Crystal structure of (Z)-3-benz­yl­oxy-6-[(2-hy­dr­oxy-5-methyl­anilino)methyl­­idene]cyclo­hexa-2,4-dien-1-one

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Constantine 1, Algeria
*Correspondence e-mail: king.ali@hotmail.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 July 2014; accepted 22 July 2014; online 1 August 2014)

In the title Schiff base compound, C21H19NO3, the conformation about the C=C bond is Z. The N—H group and carbonyl O atom form an intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif. The benz­yloxy ring and the 2-hy­droxy-5-methyl­phenyl ring are inclined to the central six-membered ring by 13.68 (9) and 9.13 (8)°, respectively, and to one another by 21.95 (9)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming helical chains along [010].

1. Related literature

For some general background on Schiff bases and their various biological activities, see: Arora et al. (2002[Arora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem, 14, 1611-1615.]); El-Masry et al. (2000[El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]); Jarrahpour & Khalili (2006[Jarrahpour, A. A. & Khalili, D. (2006). Molecules, 11, 59-63.]); More et al. (2001[More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.]); Phatak et al. (2000[Phatak, P., Jolly, V. S. & Sharma, K. P. (2000). Orient. J. Chem. 16, 493-494.]). For related structures, see: Akkurt et al. (2005[Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776-o778.], 2008[Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.]). For pharmaceutical and industrial applications of azomethines, see: Prakash & Adhikari (2011[Prakash, A. & Adhikari, D. (2011). Int. J. ChemTech. Res. 3, 1891-1896.]). For the effect of hydro­philicity on drug properties, see: Lin & Lu (1997[Lin, J. H. & Lu, A. Y. H. (1997). Pharmacol. Rev. 49, 403-449.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H19NO3

  • Mr = 333.37

  • Monoclinic, P 21 /c

  • a = 12.594 (5) Å

  • b = 9.303 (5) Å

  • c = 14.997 (5) Å

  • β = 96.402 (5)°

  • V = 1746.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.03 × 0.02 × 0.01 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 19603 measured reflections

  • 5148 independent reflections

  • 2672 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.158

  • S = 1.01

  • 5148 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2 0.94 (2) 1.83 (2) 2.609 (2) 138.7 (16)
O1—H1o⋯O2i 0.96 (2) 1.63 (2) 2.590 (2) 176.1 (17)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

For some general background on Schiff bases and their various biological activities, see: Arora et al. (2002); El-Masry et al. (2000); Jarrahpour & Khalili (2006); More et al. (2001); Phatak et al. (2000). For related structures, see: Akkurt et al. (2005, 2008). For pharmaceutical and industrial applications of azomethines, see: Prakash & Adhikari (2011). For the effect of hydrophilicity on drug properties, see: Lin & Lu (1997).

Experimental top

A mixture of 2-amino-4-methylphenol (1 mmol) and 4-(benzyloxy)-2-hydroxybenzaldehyde (1 mmol) was heated to form a clear solution. To this a few drops of conc. HCL was added as a catalyst and the mixture was refluxed for 12 h. After cooling the solution to 80°C it was stirred for 45 min the a precipitate formed. It was filtered off and washed with ice cold ethyl acetate to give the pure title Schiff base compound as an orange solid (yield 35%). This crude product was dissolved in ethyl acetate and two spoons of activated charcoal were added. The mixture was filtered over celiteµ000174 and the product was crystallized from ethyl acetate. The compound was very difficult to crystalize and only after several attempts over a period of four months were crystals suitable for X-ray diffraction analysis finally obtained.

Refinement top

The OH and NH H atoms, and the methine H atom were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and treated as riding atoms: C—H = 0.93 Å (aromatic) and 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial view along the b axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details).
(Z)-3-Benzyloxy-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dien-1-one top
Crystal data top
C21H19NO3Z = 4
Mr = 333.37F(000) = 704
Monoclinic, P21/cDx = 1.268 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.594 (5) ŵ = 0.09 mm1
b = 9.303 (5) ÅT = 293 K
c = 14.997 (5) ÅBlock, orange
β = 96.402 (5)°0.03 × 0.02 × 0.01 mm
V = 1746.1 (13) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2672 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 30.2°, θmin = 2.6°
phi and ω scansh = 1717
19603 measured reflectionsk = 1313
5148 independent reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.1066P]
where P = (Fo2 + 2Fc2)/3
5148 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H19NO3V = 1746.1 (13) Å3
Mr = 333.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.594 (5) ŵ = 0.09 mm1
b = 9.303 (5) ÅT = 293 K
c = 14.997 (5) Å0.03 × 0.02 × 0.01 mm
β = 96.402 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2672 reflections with I > 2σ(I)
19603 measured reflectionsRint = 0.037
5148 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
5148 reflectionsΔρmin = 0.16 e Å3
238 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00597 (9)0.00730 (11)0.29239 (8)0.0607 (4)
O20.11904 (9)0.35839 (11)0.32139 (8)0.0632 (4)
O30.35952 (9)0.74624 (12)0.39999 (9)0.0686 (4)
N10.14153 (10)0.12579 (13)0.41887 (9)0.0466 (4)
C10.10315 (13)0.23275 (17)0.52145 (11)0.0543 (5)
C20.03317 (14)0.29008 (17)0.45329 (12)0.0599 (6)
C30.00117 (13)0.21414 (16)0.37654 (11)0.0557 (5)
C40.03510 (12)0.07513 (15)0.36568 (10)0.0464 (5)
C50.10653 (11)0.01575 (15)0.43336 (10)0.0435 (4)
C60.13925 (12)0.09409 (16)0.51009 (10)0.0502 (5)
C70.21681 (12)0.19787 (17)0.46691 (11)0.0500 (5)
C80.24727 (11)0.33802 (16)0.44826 (10)0.0488 (5)
C90.19690 (11)0.41507 (16)0.37232 (11)0.0488 (5)
C100.23632 (12)0.55360 (16)0.35497 (11)0.0535 (5)
C110.31795 (12)0.61279 (17)0.41101 (11)0.0549 (6)
C120.36589 (14)0.53810 (18)0.48665 (13)0.0654 (6)
C130.33182 (13)0.40505 (18)0.50384 (12)0.0626 (6)
C140.31877 (13)0.82640 (18)0.32322 (12)0.0600 (6)
C150.37303 (14)0.96959 (18)0.32326 (12)0.0597 (6)
C160.32694 (18)1.0777 (2)0.26853 (13)0.0769 (8)
C170.3757 (2)1.2105 (2)0.26580 (14)0.0893 (9)
C180.4695 (2)1.2378 (2)0.31800 (16)0.0918 (10)
C190.51594 (18)1.1327 (2)0.37257 (18)0.0933 (9)
C200.46785 (16)0.9979 (2)0.37561 (16)0.0781 (8)
C210.13941 (16)0.3163 (2)0.60556 (13)0.0792 (8)
H1o0.0411 (17)0.044 (2)0.2490 (16)0.101 (7)*
H20.008300.383300.459370.0719*
H1n0.1091 (14)0.1794 (19)0.3701 (13)0.075 (6)*
H30.048620.256060.332080.0668*
H60.186470.052660.554910.0603*
H70.2525 (13)0.1493 (17)0.5192 (12)0.065 (5)*
H100.206500.604820.305100.0642*
H120.420680.580430.524420.0785*
H130.364430.355580.553410.0750*
H14A0.242420.840040.323350.0720*
H14B0.330570.773870.269330.0720*
H160.262611.060820.233280.0922*
H170.344371.281830.228150.1070*
H180.501541.327640.316340.1101*
H190.579971.150940.407920.1119*
H200.499870.926860.413090.0937*
H21A0.106960.409800.602020.1186*
H21B0.118620.266010.656740.1186*
H21C0.215740.326280.611430.1186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0764 (8)0.0485 (6)0.0514 (7)0.0042 (5)0.0186 (6)0.0026 (5)
O20.0626 (7)0.0505 (6)0.0687 (8)0.0121 (5)0.0277 (6)0.0067 (5)
O30.0682 (7)0.0572 (7)0.0771 (9)0.0194 (6)0.0061 (6)0.0054 (6)
N10.0481 (7)0.0460 (7)0.0435 (7)0.0016 (5)0.0050 (6)0.0001 (6)
C10.0591 (10)0.0511 (9)0.0523 (9)0.0110 (7)0.0047 (8)0.0065 (7)
C20.0691 (10)0.0415 (8)0.0684 (11)0.0006 (7)0.0041 (9)0.0038 (8)
C30.0612 (10)0.0449 (8)0.0580 (10)0.0016 (7)0.0066 (8)0.0057 (7)
C40.0490 (8)0.0436 (8)0.0448 (8)0.0055 (6)0.0029 (7)0.0017 (6)
C50.0430 (7)0.0412 (7)0.0456 (8)0.0057 (6)0.0019 (6)0.0023 (6)
C60.0502 (9)0.0533 (9)0.0457 (9)0.0052 (7)0.0014 (7)0.0000 (7)
C70.0501 (9)0.0538 (9)0.0436 (9)0.0020 (7)0.0060 (7)0.0022 (7)
C80.0449 (8)0.0508 (8)0.0487 (9)0.0029 (7)0.0041 (7)0.0059 (7)
C90.0426 (8)0.0482 (8)0.0529 (9)0.0017 (6)0.0063 (7)0.0075 (7)
C100.0517 (9)0.0491 (8)0.0569 (10)0.0032 (7)0.0069 (7)0.0011 (7)
C110.0484 (9)0.0501 (9)0.0650 (11)0.0082 (7)0.0013 (8)0.0106 (8)
C120.0581 (10)0.0642 (11)0.0682 (11)0.0130 (8)0.0182 (9)0.0096 (9)
C130.0612 (10)0.0634 (10)0.0576 (10)0.0062 (8)0.0178 (8)0.0039 (8)
C140.0588 (10)0.0554 (9)0.0659 (11)0.0070 (8)0.0075 (9)0.0090 (8)
C150.0650 (11)0.0543 (9)0.0630 (11)0.0093 (8)0.0210 (9)0.0150 (8)
C160.1016 (15)0.0646 (12)0.0650 (12)0.0107 (11)0.0122 (11)0.0092 (10)
C170.140 (2)0.0627 (12)0.0685 (14)0.0114 (13)0.0257 (14)0.0049 (10)
C180.127 (2)0.0675 (13)0.0879 (17)0.0338 (13)0.0433 (15)0.0139 (12)
C190.0841 (15)0.0798 (15)0.1170 (19)0.0316 (12)0.0161 (14)0.0185 (14)
C200.0707 (12)0.0616 (11)0.1026 (16)0.0153 (9)0.0123 (11)0.0092 (10)
C210.0904 (14)0.0737 (12)0.0710 (13)0.0068 (10)0.0014 (11)0.0239 (10)
Geometric parameters (Å, º) top
O1—C41.357 (2)C15—C201.379 (3)
O2—C91.287 (2)C15—C161.384 (3)
O3—C111.365 (2)C16—C171.382 (3)
O3—C141.419 (2)C17—C181.366 (4)
O1—H1o0.96 (2)C18—C191.364 (3)
N1—C51.413 (2)C19—C201.396 (3)
N1—C71.310 (2)C2—H20.9300
N1—H1n0.940 (19)C3—H30.9300
C1—C61.385 (2)C6—H60.9300
C1—C211.508 (3)C7—H70.971 (17)
C1—C21.380 (3)C10—H100.9300
C2—C31.378 (2)C12—H120.9300
C3—C41.387 (2)C13—H130.9300
C4—C51.393 (2)C14—H14A0.9700
C5—C61.385 (2)C14—H14B0.9700
C7—C81.396 (2)C16—H160.9300
C8—C131.421 (2)C17—H170.9300
C8—C91.433 (2)C18—H180.9300
C9—C101.416 (2)C19—H190.9300
C10—C111.369 (2)C20—H200.9300
C11—C121.408 (3)C21—H21A0.9600
C12—C131.344 (2)C21—H21B0.9600
C14—C151.497 (3)C21—H21C0.9600
C11—O3—C14117.87 (13)C18—C19—C20120.3 (2)
C4—O1—H1o111.1 (13)C15—C20—C19120.28 (19)
C5—N1—C7127.71 (13)C1—C2—H2119.00
C5—N1—H1n119.9 (11)C3—C2—H2119.00
C7—N1—H1n112.4 (11)C2—C3—H3120.00
C2—C1—C6117.40 (15)C4—C3—H3120.00
C2—C1—C21121.94 (15)C1—C6—H6119.00
C6—C1—C21120.67 (15)C5—C6—H6119.00
C1—C2—C3122.37 (15)N1—C7—H7116.6 (10)
C2—C3—C4119.94 (15)C8—C7—H7118.9 (10)
C3—C4—C5118.58 (14)C9—C10—H10120.00
O1—C4—C3124.00 (14)C11—C10—H10120.00
O1—C4—C5117.41 (13)C11—C12—H12120.00
N1—C5—C4116.40 (13)C13—C12—H12120.00
N1—C5—C6123.29 (13)C8—C13—H13119.00
C4—C5—C6120.31 (13)C12—C13—H13119.00
C1—C6—C5121.40 (14)O3—C14—H14A110.00
N1—C7—C8124.48 (15)O3—C14—H14B110.00
C9—C8—C13118.89 (14)C15—C14—H14A110.00
C7—C8—C9121.29 (14)C15—C14—H14B110.00
C7—C8—C13119.80 (14)H14A—C14—H14B108.00
O2—C9—C8120.49 (13)C15—C16—H16120.00
O2—C9—C10121.57 (14)C17—C16—H16120.00
C8—C9—C10117.93 (14)C16—C17—H17120.00
C9—C10—C11120.54 (15)C18—C17—H17120.00
C10—C11—C12121.43 (15)C17—C18—H18120.00
O3—C11—C12114.26 (14)C19—C18—H18120.00
O3—C11—C10124.31 (15)C18—C19—H19120.00
C11—C12—C13119.45 (16)C20—C19—H19120.00
C8—C13—C12121.72 (16)C15—C20—H20120.00
O3—C14—C15110.09 (14)C19—C20—H20120.00
C14—C15—C16119.02 (16)C1—C21—H21A109.00
C14—C15—C20122.43 (16)C1—C21—H21B109.00
C16—C15—C20118.55 (17)C1—C21—H21C109.00
C15—C16—C17120.6 (2)H21A—C21—H21B109.00
C16—C17—C18120.52 (19)H21A—C21—H21C109.00
C17—C18—C19119.73 (19)H21B—C21—H21C109.00
C14—O3—C11—C103.0 (2)C7—C8—C9—C10176.46 (14)
C14—O3—C11—C12177.39 (14)C13—C8—C9—O2178.95 (14)
C11—O3—C14—C15179.43 (14)C13—C8—C9—C101.8 (2)
C7—N1—C5—C4171.50 (15)C7—C8—C13—C12177.89 (16)
C7—N1—C5—C68.9 (2)C9—C8—C13—C120.4 (2)
C5—N1—C7—C8179.88 (14)O2—C9—C10—C11178.81 (15)
C6—C1—C2—C30.4 (3)C8—C9—C10—C111.9 (2)
C21—C1—C2—C3179.41 (16)C9—C10—C11—O3178.96 (14)
C2—C1—C6—C50.0 (2)C9—C10—C11—C120.7 (2)
C21—C1—C6—C5179.84 (15)O3—C11—C12—C13179.54 (15)
C1—C2—C3—C40.3 (3)C10—C11—C12—C130.8 (3)
C2—C3—C4—O1179.74 (15)C11—C12—C13—C80.9 (3)
C2—C3—C4—C50.3 (2)O3—C14—C15—C16163.21 (16)
O1—C4—C5—N10.2 (2)O3—C14—C15—C2017.1 (2)
O1—C4—C5—C6179.81 (14)C14—C15—C16—C17178.97 (18)
C3—C4—C5—N1179.66 (14)C20—C15—C16—C170.7 (3)
C3—C4—C5—C60.7 (2)C14—C15—C20—C19179.30 (19)
N1—C5—C6—C1179.83 (14)C16—C15—C20—C190.4 (3)
C4—C5—C6—C10.6 (2)C15—C16—C17—C180.9 (3)
N1—C7—C8—C90.4 (2)C16—C17—C18—C190.7 (4)
N1—C7—C8—C13178.58 (15)C17—C18—C19—C200.3 (4)
C7—C8—C9—O22.8 (2)C18—C19—C20—C150.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.94 (2)1.83 (2)2.609 (2)138.7 (16)
O1—H1o···O2i0.96 (2)1.63 (2)2.590 (2)176.1 (17)
Symmetry code: (i) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.94 (2)1.83 (2)2.609 (2)138.7 (16)
O1—H1o···O2i0.96 (2)1.63 (2)2.590 (2)176.1 (17)
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the MESRS (Algeria) for financial support. We also thank all researchers of the CHEMS Research Unit, University of Constantine 1, Algeria, for their valuable assistance.

References

First citationAkkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem, 14, 1611–1615.  CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A. A. & Khalili, D. (2006). Molecules, 11, 59–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, J. H. & Lu, A. Y. H. (1997). Pharmacol. Rev. 49, 403–449.  Web of Science CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMore, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.  CAS Google Scholar
First citationPhatak, P., Jolly, V. S. & Sharma, K. P. (2000). Orient. J. Chem. 16, 493–494.  CAS Google Scholar
First citationPrakash, A. & Adhikari, D. (2011). Int. J. ChemTech. Res. 3, 1891–1896.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o957-o958
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds