organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-(4-meth­­oxy­styr­yl)-2,3-di­hydro-1H-perimidine aceto­nitrile monosolvate

aDepartment of Chemistry, Faculty of Science, Annamalai University, Annamalainagar 608 002, India, and bDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India
*Correspondence e-mail: profmeka1@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 July 2014; accepted 23 July 2014; online 1 August 2014)

The title compound, C20H18N2O·CH3CN, a perimidine deriv­ative, crystallized as an aceto­nitrile monosolvate. The planes of the naphthalene ring system and the meth­oxy­phenyl ring are oriented almost perpendicular to one another, with a dihedral angle of 87.61 (6)°. The conformation about the C=C bond is E. The hexa­hydro­pyrimidine ring has an envelope conformation, with the methine C atom as the flap. In the crystal, the mol­ecules are linked by N—H⋯N hydrogen bonds involving the aceto­nitrile solvent mol­ecule as acceptor, forming zigzag chains propagating along [100].

1. Related literature

For the diverse range of biological activities of perimidines, see: Bu et al. (2001[Bu, X., Deady, W. L., Finlay, J. G., Bagwey, C. B. & Denny, A. W. (2001). J. Med. Chem. 44, 2004-2014.]); Ivica et al. (2008[Ivica, D., Mirta, R., Visnja, V., Sandra, P. K., Marijeta, K., Ivvo, D. & Marina, C. (2008). Bioorg. Med. Chem. 16, 5189-5198.]); Azeez & Salih (2014[Azeez, H. J. & Salih, K. M. (2014). Res. Pharm. Biotechnol. 3, 1-6.]). For a related structure, see: Maloney et al. (2013[Maloney, S., Slawin, A. M. Z. & Woollins, J. D. (2013). Acta Cryst. E69, o246.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H18N2O·C2H3N

  • Mr = 343.42

  • Triclinic, [P \overline 1]

  • a = 7.8128 (7) Å

  • b = 8.4641 (7) Å

  • c = 14.7427 (14) Å

  • α = 79.513 (7)°

  • β = 83.861 (7)°

  • γ = 77.076 (7)°

  • V = 932.11 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 292 K

  • 0.30 × 0.30 × 0.19 mm

2.2. Data collection

  • Oxford Diffraction Gemini/EOS CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.840, Tmax = 0.890

  • 5843 measured reflections

  • 3569 independent reflections

  • 2940 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.03

  • 3569 reflections

  • 246 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.88 (2) 2.49 (2) 3.305 (3) 154.1 (15)
N2—H2⋯N3ii 0.84 (2) 2.44 (2) 3.234 (2) 156.8 (16)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Synthesis and crystallization top

A mixture of 4-meth­oxy-trans-cinnamaldehyde (0.01 mol), 1,8-di­amino­naphthalene (0.01 mol) and a pinch of MgSO4.7H2O was finely grinded in a mortor. The mixture was then kept under microwave irradiation (LG Grill, Intellowave 160-800 W, consumption 800 W, output power 320 W and frequency 2450 MHz) operating in a cyclic mode to prevent intense boiling of the sample as well as aggregation of 320 W at 12 min. A brown colour solid separated out which was repeatedly recrystallized using CH2Cl2:CH3CN (1:5) to obtain brown crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms H1 and H2 were located from a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93-0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and Uiso(H) = 1.2Ueq for other C atoms.

Related literature top

For the diverse range of biological activities of perimidines, see: Bu et al. (2001); Ivica et al. (2008); Azeez & Salih (2014). For a related structure, see: Maloney et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis, showing the hydrogen bonds as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
(E)-2-(4-Methoxystyryl)-2,3-dihydro-1H-perimidine acetonitrile monosolvate top
Crystal data top
C20H18N2O·C2H3NZ = 2
Mr = 343.42F(000) = 364
Triclinic, P1Dx = 1.224 Mg m3
a = 7.8128 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.4641 (7) ÅCell parameters from 2420 reflections
c = 14.7427 (14) Åθ = 3.8–26.7°
α = 79.513 (7)°µ = 0.60 mm1
β = 83.861 (7)°T = 292 K
γ = 77.076 (7)°Block, colourless
V = 932.11 (15) Å30.30 × 0.30 × 0.19 mm
Data collection top
Oxford Diffraction Gemini/EOS CCD
diffractometer
2940 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
ϕ and ω scansθmax = 72.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
h = 89
Tmin = 0.840, Tmax = 0.890k = 910
5843 measured reflectionsl = 1818
3569 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0768P)2 + 0.0999P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3569 reflectionsΔρmax = 0.19 e Å3
246 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (2)
Crystal data top
C20H18N2O·C2H3Nγ = 77.076 (7)°
Mr = 343.42V = 932.11 (15) Å3
Triclinic, P1Z = 2
a = 7.8128 (7) ÅCu Kα radiation
b = 8.4641 (7) ŵ = 0.60 mm1
c = 14.7427 (14) ÅT = 292 K
α = 79.513 (7)°0.30 × 0.30 × 0.19 mm
β = 83.861 (7)°
Data collection top
Oxford Diffraction Gemini/EOS CCD
diffractometer
3569 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
2940 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.890Rint = 0.023
5843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
3569 reflectionsΔρmin = 0.20 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19042 (19)0.58843 (14)0.01925 (7)0.0797 (4)
N10.36331 (18)0.27710 (16)0.60754 (8)0.0591 (3)
H10.465 (2)0.295 (2)0.5801 (12)0.070 (5)*
N20.10070 (17)0.19149 (16)0.60104 (8)0.0565 (3)
H20.027 (2)0.170 (2)0.5698 (12)0.066 (5)*
N30.2463 (3)0.7821 (3)0.50695 (14)0.1157 (7)
C10.2221 (2)0.49942 (17)0.10443 (9)0.0541 (3)
C20.1430 (2)0.57618 (17)0.17864 (10)0.0579 (4)
H2A0.07390.68160.16770.069*
C30.16593 (19)0.49800 (17)0.26764 (9)0.0534 (3)
H30.11210.55120.31640.064*
C40.26887 (17)0.33940 (16)0.28649 (9)0.0469 (3)
C50.34737 (19)0.26561 (17)0.21182 (9)0.0550 (4)
H50.41680.16030.22270.066*
C60.3260 (2)0.34347 (18)0.12137 (10)0.0577 (4)
H60.38110.29120.07250.069*
C70.2448 (3)0.5081 (3)0.05893 (11)0.0848 (6)
H7A0.37100.47730.06450.127*
H7B0.20410.58130.11370.127*
H7C0.19610.41160.05140.127*
C80.29403 (18)0.25000 (17)0.38074 (9)0.0518 (3)
H80.35310.14080.38580.062*
C90.2431 (2)0.30587 (18)0.45874 (10)0.0599 (4)
H90.18760.41580.45600.072*
C100.26927 (19)0.20271 (18)0.55165 (9)0.0550 (4)
H100.33620.09250.54460.066*
C110.37511 (18)0.20595 (16)0.70001 (9)0.0495 (3)
C120.5038 (2)0.22395 (19)0.75213 (11)0.0616 (4)
H120.59030.28040.72470.074*
C130.5045 (2)0.1575 (2)0.84619 (11)0.0668 (4)
H130.59190.17100.88050.080*
C140.3811 (2)0.0739 (2)0.88851 (10)0.0625 (4)
H140.38480.03070.95110.075*
C150.24639 (18)0.05219 (16)0.83788 (9)0.0526 (3)
C160.1127 (2)0.03118 (19)0.87873 (11)0.0644 (4)
H160.11440.07950.94070.077*
C170.0188 (2)0.0412 (2)0.82776 (12)0.0684 (4)
H170.10620.09640.85550.082*
C180.02515 (19)0.03028 (19)0.73418 (11)0.0608 (4)
H180.11720.02350.70090.073*
C190.10345 (17)0.10989 (16)0.69160 (9)0.0489 (3)
C200.24349 (16)0.12050 (15)0.74293 (9)0.0460 (3)
C210.2512 (3)0.6594 (2)0.67886 (14)0.0835 (5)
H21A0.34800.56680.68770.125*
H21B0.14300.62460.70000.125*
H21C0.26550.74100.71340.125*
C220.2473 (2)0.7278 (2)0.58287 (14)0.0749 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1225 (10)0.0607 (7)0.0433 (6)0.0013 (6)0.0027 (6)0.0027 (5)
N10.0629 (8)0.0651 (8)0.0494 (7)0.0174 (6)0.0017 (6)0.0063 (6)
N20.0556 (7)0.0655 (8)0.0475 (7)0.0064 (5)0.0112 (5)0.0100 (5)
N30.1015 (14)0.168 (2)0.0829 (13)0.0474 (14)0.0207 (10)0.0021 (13)
C10.0677 (8)0.0491 (7)0.0437 (7)0.0121 (6)0.0009 (6)0.0056 (6)
C20.0710 (9)0.0436 (7)0.0528 (8)0.0004 (6)0.0005 (7)0.0093 (6)
C30.0616 (8)0.0503 (7)0.0460 (7)0.0042 (6)0.0024 (6)0.0147 (6)
C40.0472 (7)0.0477 (7)0.0460 (7)0.0083 (5)0.0015 (5)0.0112 (5)
C50.0619 (8)0.0473 (7)0.0508 (8)0.0012 (6)0.0017 (6)0.0116 (6)
C60.0690 (9)0.0543 (8)0.0473 (7)0.0054 (6)0.0059 (6)0.0168 (6)
C70.1177 (16)0.0847 (12)0.0441 (9)0.0088 (11)0.0010 (9)0.0093 (8)
C80.0534 (7)0.0503 (7)0.0492 (7)0.0039 (6)0.0049 (6)0.0095 (6)
C90.0728 (9)0.0531 (8)0.0477 (8)0.0005 (7)0.0048 (7)0.0079 (6)
C100.0624 (8)0.0534 (8)0.0449 (7)0.0015 (6)0.0043 (6)0.0096 (6)
C110.0507 (7)0.0481 (7)0.0464 (7)0.0012 (5)0.0034 (5)0.0108 (5)
C120.0558 (8)0.0629 (9)0.0677 (9)0.0096 (7)0.0083 (7)0.0157 (7)
C130.0647 (9)0.0715 (10)0.0651 (9)0.0021 (8)0.0226 (7)0.0230 (8)
C140.0692 (9)0.0649 (9)0.0459 (7)0.0092 (7)0.0135 (7)0.0127 (6)
C150.0569 (8)0.0471 (7)0.0455 (7)0.0080 (6)0.0027 (6)0.0097 (5)
C160.0738 (10)0.0573 (8)0.0506 (8)0.0005 (7)0.0061 (7)0.0015 (6)
C170.0660 (9)0.0624 (9)0.0722 (10)0.0144 (7)0.0123 (8)0.0081 (8)
C180.0531 (8)0.0610 (9)0.0688 (9)0.0100 (6)0.0021 (7)0.0154 (7)
C190.0499 (7)0.0450 (7)0.0481 (7)0.0011 (5)0.0038 (5)0.0119 (5)
C200.0474 (7)0.0419 (6)0.0443 (7)0.0033 (5)0.0029 (5)0.0111 (5)
C210.0940 (13)0.0738 (11)0.0794 (12)0.0137 (10)0.0011 (10)0.0126 (9)
C220.0647 (10)0.0877 (12)0.0764 (12)0.0204 (9)0.0083 (8)0.0161 (10)
Geometric parameters (Å, º) top
O1—C11.3581 (16)C9—C101.4917 (19)
O1—C71.422 (2)C9—H90.9300
N1—C111.3902 (17)C10—H100.9800
N1—C101.4630 (19)C11—C121.379 (2)
N1—H10.882 (18)C11—C201.4170 (19)
N2—C191.3869 (17)C12—C131.398 (2)
N2—C101.4489 (19)C12—H120.9300
N2—H20.842 (18)C13—C141.355 (2)
N3—C221.130 (2)C13—H130.9300
C1—C61.381 (2)C14—C151.415 (2)
C1—C21.3913 (19)C14—H140.9300
C2—C31.3685 (19)C15—C161.412 (2)
C2—H2A0.9300C15—C201.4144 (18)
C3—C41.3983 (19)C16—C171.362 (2)
C3—H30.9300C16—H160.9300
C4—C51.3830 (18)C17—C181.403 (2)
C4—C81.4666 (18)C17—H170.9300
C5—C61.3852 (19)C18—C191.368 (2)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—C201.4226 (19)
C7—H7A0.9600C21—C221.429 (3)
C7—H7B0.9600C21—H21A0.9600
C7—H7C0.9600C21—H21B0.9600
C8—C91.312 (2)C21—H21C0.9600
C8—H80.9300
C1—O1—C7118.12 (13)N2—C10—H10109.7
C11—N1—C10116.49 (12)N1—C10—H10109.7
C11—N1—H1113.1 (11)C9—C10—H10109.7
C10—N1—H1112.6 (11)C12—C11—N1122.29 (14)
C19—N2—C10116.97 (11)C12—C11—C20119.28 (13)
C19—N2—H2114.5 (12)N1—C11—C20118.32 (12)
C10—N2—H2114.7 (12)C11—C12—C13120.18 (15)
O1—C1—C6125.11 (13)C11—C12—H12119.9
O1—C1—C2115.59 (13)C13—C12—H12119.9
C6—C1—C2119.30 (13)C14—C13—C12121.58 (14)
C3—C2—C1120.63 (13)C14—C13—H13119.2
C3—C2—H2A119.7C12—C13—H13119.2
C1—C2—H2A119.7C13—C14—C15120.31 (14)
C2—C3—C4121.10 (12)C13—C14—H14119.8
C2—C3—H3119.5C15—C14—H14119.8
C4—C3—H3119.5C16—C15—C20118.76 (13)
C5—C4—C3117.41 (12)C16—C15—C14122.73 (14)
C5—C4—C8119.73 (12)C20—C15—C14118.49 (14)
C3—C4—C8122.85 (12)C17—C16—C15120.21 (14)
C4—C5—C6122.15 (12)C17—C16—H16119.9
C4—C5—H5118.9C15—C16—H16119.9
C6—C5—H5118.9C16—C17—C18121.29 (15)
C1—C6—C5119.41 (13)C16—C17—H17119.4
C1—C6—H6120.3C18—C17—H17119.4
C5—C6—H6120.3C19—C18—C17120.33 (14)
O1—C7—H7A109.5C19—C18—H18119.8
O1—C7—H7B109.5C17—C18—H18119.8
H7A—C7—H7B109.5C18—C19—N2123.57 (13)
O1—C7—H7C109.5C18—C19—C20119.56 (13)
H7A—C7—H7C109.5N2—C19—C20116.74 (12)
H7B—C7—H7C109.5C15—C20—C11120.15 (12)
C9—C8—C4127.69 (13)C15—C20—C19119.81 (13)
C9—C8—H8116.2C11—C20—C19119.98 (12)
C4—C8—H8116.2C22—C21—H21A109.5
C8—C9—C10123.58 (14)C22—C21—H21B109.5
C8—C9—H9118.2H21A—C21—H21B109.5
C10—C9—H9118.2C22—C21—H21C109.5
N2—C10—N1106.95 (11)H21A—C21—H21C109.5
N2—C10—C9110.23 (12)H21B—C21—H21C109.5
N1—C10—C9110.56 (12)N3—C22—C21179.1 (2)
C7—O1—C1—C610.1 (3)C11—C12—C13—C140.2 (2)
C7—O1—C1—C2170.59 (16)C12—C13—C14—C150.2 (2)
O1—C1—C2—C3179.98 (14)C13—C14—C15—C16178.84 (14)
C6—C1—C2—C30.7 (2)C13—C14—C15—C200.5 (2)
C1—C2—C3—C40.1 (2)C20—C15—C16—C171.8 (2)
C2—C3—C4—C50.5 (2)C14—C15—C16—C17176.61 (14)
C2—C3—C4—C8178.77 (13)C15—C16—C17—C180.0 (2)
C3—C4—C5—C60.2 (2)C16—C17—C18—C191.0 (2)
C8—C4—C5—C6179.08 (13)C17—C18—C19—N2176.13 (13)
O1—C1—C6—C5179.82 (14)C17—C18—C19—C200.3 (2)
C2—C1—C6—C50.9 (2)C10—N2—C19—C18152.05 (14)
C4—C5—C6—C10.5 (2)C10—N2—C19—C2031.99 (17)
C5—C4—C8—C9173.37 (16)C16—C15—C20—C11179.55 (12)
C3—C4—C8—C97.4 (2)C14—C15—C20—C111.10 (19)
C4—C8—C9—C10177.61 (13)C16—C15—C20—C192.48 (18)
C19—N2—C10—N154.88 (16)C14—C15—C20—C19175.97 (12)
C19—N2—C10—C9175.12 (11)C12—C11—C20—C151.08 (19)
C11—N1—C10—N251.33 (16)N1—C11—C20—C15177.36 (11)
C11—N1—C10—C9171.35 (12)C12—C11—C20—C19175.98 (12)
C8—C9—C10—N2116.90 (17)N1—C11—C20—C190.30 (19)
C8—C9—C10—N1125.05 (16)C18—C19—C20—C151.48 (19)
C10—N1—C11—C12157.87 (14)N2—C19—C20—C15174.65 (11)
C10—N1—C11—C2025.97 (18)C18—C19—C20—C11178.55 (12)
N1—C11—C12—C13176.53 (13)N2—C19—C20—C112.42 (18)
C20—C11—C12—C130.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.88 (2)2.49 (2)3.305 (3)154.1 (15)
N2—H2···N3ii0.84 (2)2.44 (2)3.234 (2)156.8 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.88 (2)2.49 (2)3.305 (3)154.1 (15)
N2—H2···N3ii0.84 (2)2.44 (2)3.234 (2)156.8 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

We are grateful to IICT, Hyderabad, for support of the instrumentation facility.

References

First citationAzeez, H. J. & Salih, K. M. (2014). Res. Pharm. Biotechnol. 3, 1–6.  Google Scholar
First citationBu, X., Deady, W. L., Finlay, J. G., Bagwey, C. B. & Denny, A. W. (2001). J. Med. Chem. 44, 2004–2014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIvica, D., Mirta, R., Visnja, V., Sandra, P. K., Marijeta, K., Ivvo, D. & Marina, C. (2008). Bioorg. Med. Chem. 16, 5189–5198.  Web of Science PubMed Google Scholar
First citationMaloney, S., Slawin, A. M. Z. & Woollins, J. D. (2013). Acta Cryst. E69, o246.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds