organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o989-o990

Crystal structure of 4,4′-bi­pyridine-1,1'-diium naphthalene-2,6-di­sulfonate dihydrate

aDepartment of Chemistry, Faculty of Sciences, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey, bGazi University, Department of Physics Education, Beşevler 06500 Ankara, Turkey, and cAksaray University, Faculty of Education, 68100 Aksaray, Turkey
*Correspondence e-mail: msari@gazi.edu.tr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 July 2014; accepted 2 August 2014; online 9 August 2014)

The title hydrated mol­ecular organic salt, C10H10N22+·C10H6O6S22−·2H2O, crystallized with half a bipyridinium cation, half a naphthalene-2,6-di­sulfonate anion and a water mol­ecule in the asymmetric unit. The whole cation and anion are generated by inversion symmetry, the inversion centers being at the center of the bridging C—C bond of the cation, and at the center of the fused C—C bond of the naphthalene group of the anion. In the crystal, the anions and cations stack alternately along the a axis with ππ inter­actions [inter-centroid distance = 3.491 (1) Å]. The anions are linked via O—H⋯O(sulfonate) hydrogen bonds involving two inversion-related water mol­ecules, forming chains along [10-1]. These chains are bridged by bifurcated N—H⋯(O,O) hydrogen bonds, forming a three-dimensional framework structure. There are also C—H⋯O hydrogen bonds present, reinforcing the framework structure.

1. Related literature

For the use of 4,4′-bi­pyridine in the construction of metal-organic frameworks, see: Batten et al. (2012[Batten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagava, S., Öhrström, L., O'Keffe, M., Suh, M. P. & Reedijk, J. (2012). CrystEngComm, 14, 3001-3004.]); Burd et al. (2012[Burd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663-3666.]); Jeazet & Janiak (2012[Jeazet, T. & Janiak, S. C. (2012). Dalton Trans. 9, 14003-140027.]). For the use of naphthalene-2,6-di­sulfonate in the preparation of metal-organic frameworks, exploiting its different coordination modes, see: Zhao et al. (2013[Zhao, W. H., Chen, Y. T. & Tai, X. S. (2013). Adv. Mater. Res. 830, 197-201.]); Borodkin et al. (2013[Borodkin, G. I., Vorob'ev, A. Y., Supranovich, V. I., Gatilov, Y. V. & Shubin, V. C. (2013). J. Mol. Struct. 1035, 441-447.]); Chen et al. (2001[Chen, C.-H., Cai, J., Feng, X.-L. & Chen, X.-M. (2001). J. Chem. Crystallogr. 31, 271-280.]); Song et al. (2010[Song, J.-H., Li, X. & Zou, Y. (2010). J. Coord. Chem. 63, 223-233.]); Pereira Silva et al. (2006[Pereira Silva, P. S., Ramos Silva, M., Matos Beja, A. & Paixão, J. A. (2006). Acta Cryst. E62, o5913-o5915.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H10N22+·C10H6O6S22−·2H2O

  • Mr = 480.50

  • Monoclinic, P 21 /n

  • a = 7.4022 (2) Å

  • b = 10.9390 (3) Å

  • c = 12.6500 (4) Å

  • β = 99.908 (1)°

  • V = 1009.03 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.35 × 0.24 × 0.15 mm

2.2. Data collection

  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.953

  • 39553 measured reflections

  • 2551 independent reflections

  • 2340 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.04

  • 2551 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O1i 0.82 (3) 2.01 (3) 2.8293 (18) 176 (2)
O1W—H1B⋯O3ii 0.82 (3) 2.04 (3) 2.8484 (18) 172 (2)
N1—H3⋯O2iii 0.86 2.55 3.0212 (18) 116
N1—H3⋯O1Wiv 0.86 1.98 2.7948 (19) 157
C1—H1⋯O1v 0.93 2.51 3.1946 (17) 130
C10—H10⋯O1vi 0.93 2.60 3.294 (2) 132
C11—H11⋯O2vii 0.93 2.47 3.2036 (19) 136
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z+1; (iii) -x, -y, -z+1; (iv) x, y-1, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x, y, z+1; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Synthesis and crystallization top

The title compound was prepared by a hydro­thermal reaction using a 23 ml Parr Teflon-lined acid digestion bomb, heated in a Nuve brand FN300 model programmable electric oven. A mixture of VOSO4·xH2O, naphthalene-2,6-di­carb­oxy­lic acid, 4,4'-bi­pyridine and water (in molar ratio 1:1:1:55.6 mmol) was placed in a 23 ml Parr Teflon-lined autoclave which was subsequently heated for 90 h inside the oven at 473 K. After, the acid digestion bomb was cooled to room temperature over a period of 4 h. Very-light-yellow–green prismatic single crystals of the title compound and a dark-green unidentified vanadium oxide powder were filtered from the light-blue–green mother liquor. The crystals were separated from the powder under an optical microscope. Analysis calculated for C20H20N2O8V2: C 49.991, H 4.195, N 5.831, S 13.346%; found: C 48.670, H 3.929, N 5.857, S 13.670%. Selected FT–IR peaks between 1650 and 400 cm-1: 1635 (m), 1624 (m), 1591 (m), 1591 (w), 1502 (w), 1487 (m), 1372 (m), 1333 (w), 1314 (w), 1276 (w), 1244 (m), 1210 (s, sh), 1200 (s), 1194 (s, sh), 1183 (m, sh), 1144 (m), 1092 (s), 1029 (s), 1005 (m), 979 (m), 914 (m), 832 (m), 791 (m), 706 (w), 665 (s), 656 (s), 618 (s), 554 (m), 546 (m), 507 (w), 440 (m), 411 (m) cm-1. Thermogravimetric analysis results supported the X-ray single-crystal structure analysis by giving a 7.5% weight loss in the range 393–413 K, corresponding to two water molecules per molecular formula.

Refinement top

The water molecule H atoms were located in a difference Fourier map and freely refined. The N- and C-bound H atoms were placed geometrically and refined using a riding model, with N—H = 0.86 and C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(N,C).

Related literature top

For the use of 4,4'-bipyridine in the construction of metal-organic frameworks, see: Batten et al. (2012); Burd et al. (2012); Jeazet & Janiak (2012). For the use of naphthalene-2,6-disulfonate in the preparation of metal-organic frameworks, exploiting its different coordination modes, see: Zhao et al. (2013); Borodkin et al. (2013); Chen et al. (2001); Song et al. (2010); Pereira Silva et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 and SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title hydrated molecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+1.] The inversion related water molecule is not shown.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonds have been omitted for clarity).
4,4'-Bipyridine-1,1'-diium naphthalene-2,6-disulfonate dihydrate top
Crystal data top
C10H10N22+·C10H6O6S22·2H2OF(000) = 500
Mr = 480.50Dx = 1.581 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4022 (2) ÅCell parameters from 39513 reflections
b = 10.9390 (3) Åθ = 2.5–28.5°
c = 12.6500 (4) ŵ = 0.32 mm1
β = 99.908 (1)°T = 296 K
V = 1009.03 (5) Å3Plate, colourless
Z = 20.35 × 0.24 × 0.15 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed X-ray tube2340 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
ω–scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 99
Tmin = 0.912, Tmax = 0.953k = 1414
39553 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.3867P]
where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H10N22+·C10H6O6S22·2H2OV = 1009.03 (5) Å3
Mr = 480.50Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.4022 (2) ŵ = 0.32 mm1
b = 10.9390 (3) ÅT = 296 K
c = 12.6500 (4) Å0.35 × 0.24 × 0.15 mm
β = 99.908 (1)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2340 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.953Rint = 0.033
39553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
2551 reflectionsΔρmin = 0.23 e Å3
153 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21510 (4)0.06706 (3)0.18311 (2)0.02743 (12)
O10.14850 (17)0.05494 (9)0.15242 (9)0.0398 (3)
O20.06807 (15)0.14963 (10)0.19836 (9)0.0421 (3)
O30.33036 (17)0.11776 (14)0.11235 (9)0.0513 (3)
C10.55029 (19)0.16047 (12)0.64530 (11)0.0305 (3)
H10.55160.23060.68700.037*
C20.45657 (18)0.15973 (11)0.54200 (10)0.0291 (3)
H20.39430.22950.51380.035*
C30.45389 (16)0.05348 (10)0.47790 (10)0.0230 (2)
C40.35783 (17)0.05061 (11)0.37022 (10)0.0254 (2)
H40.29720.12000.34000.030*
C50.35503 (17)0.05470 (11)0.31137 (10)0.0254 (3)
N10.30960 (19)0.21624 (13)0.91922 (12)0.0454 (3)
H30.26270.14630.89940.054*
C60.46027 (17)0.43924 (12)0.98236 (11)0.0282 (3)
C70.3717 (2)0.41942 (15)0.87696 (13)0.0412 (3)
H70.36330.48210.82670.049*
C80.2972 (2)0.30668 (18)0.84798 (14)0.0493 (4)
H80.23750.29350.77800.059*
C100.3922 (3)0.23110 (15)1.01926 (15)0.0479 (4)
H100.39890.16621.06730.057*
C110.4686 (2)0.34212 (14)1.05306 (12)0.0398 (3)
H110.52610.35191.12390.048*
O1W0.23786 (19)0.96590 (12)0.89658 (11)0.0447 (3)
H1A0.126 (4)0.958 (2)0.8846 (19)0.058 (7)*
H1B0.275 (3)0.940 (2)0.957 (2)0.061 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03049 (19)0.02730 (19)0.02227 (18)0.00197 (11)0.00176 (12)0.00094 (10)
O10.0471 (6)0.0292 (5)0.0372 (6)0.0022 (4)0.0096 (5)0.0062 (4)
O20.0435 (6)0.0385 (6)0.0391 (6)0.0158 (4)0.0076 (4)0.0034 (4)
O30.0470 (7)0.0765 (9)0.0290 (5)0.0134 (6)0.0025 (5)0.0100 (5)
C10.0381 (7)0.0221 (6)0.0293 (6)0.0007 (5)0.0005 (5)0.0037 (5)
C20.0352 (6)0.0200 (5)0.0301 (6)0.0036 (5)0.0003 (5)0.0002 (5)
C30.0241 (5)0.0198 (5)0.0246 (6)0.0009 (4)0.0024 (4)0.0014 (4)
C40.0269 (6)0.0217 (5)0.0259 (6)0.0003 (4)0.0002 (4)0.0024 (4)
C50.0270 (6)0.0258 (6)0.0219 (6)0.0028 (4)0.0001 (4)0.0006 (4)
N10.0439 (7)0.0390 (7)0.0573 (8)0.0149 (6)0.0200 (6)0.0172 (6)
C60.0250 (6)0.0320 (7)0.0291 (6)0.0030 (5)0.0085 (5)0.0050 (5)
C70.0474 (9)0.0421 (8)0.0324 (7)0.0079 (6)0.0019 (6)0.0050 (6)
C80.0510 (9)0.0537 (10)0.0417 (8)0.0144 (8)0.0037 (7)0.0167 (7)
C100.0582 (10)0.0366 (8)0.0531 (10)0.0097 (7)0.0217 (8)0.0011 (7)
C110.0468 (8)0.0393 (8)0.0336 (7)0.0079 (6)0.0081 (6)0.0003 (6)
O1W0.0425 (7)0.0486 (7)0.0417 (7)0.0014 (5)0.0037 (5)0.0042 (5)
Geometric parameters (Å, º) top
S1—O31.4489 (12)N1—C101.317 (2)
S1—O11.4523 (11)N1—C81.331 (3)
S1—O21.4525 (11)N1—H30.8595
S1—C51.7735 (12)C6—C111.383 (2)
C1—C21.3700 (18)C6—C71.398 (2)
C1—C5i1.4136 (17)C6—C6ii1.491 (2)
C1—H10.9300C7—C81.375 (2)
C2—C31.4154 (17)C7—H70.9300
C2—H20.9300C8—H80.9300
C3—C3i1.420 (2)C10—C111.376 (2)
C3—C41.4244 (17)C10—H100.9300
C4—C51.3698 (17)C11—H110.9300
C4—H40.9300O1W—H1A0.82 (3)
C5—C1i1.4135 (17)O1W—H1B0.82 (3)
O3—S1—O1113.29 (8)C1i—C5—S1117.70 (9)
O3—S1—O2112.23 (8)C10—N1—C8121.70 (14)
O1—S1—O2112.29 (7)C10—N1—H3119.2
O3—S1—C5106.32 (7)C8—N1—H3119.1
O1—S1—C5107.01 (6)C11—C6—C7117.33 (13)
O2—S1—C5105.01 (6)C11—C6—C6ii121.33 (16)
C2—C1—C5i120.06 (11)C7—C6—C6ii121.33 (16)
C2—C1—H1120.0C8—C7—C6119.63 (15)
C5i—C1—H1120.0C8—C7—H7120.2
C1—C2—C3120.41 (11)C6—C7—H7120.2
C1—C2—H2119.8N1—C8—C7120.56 (15)
C3—C2—H2119.8N1—C8—H8119.7
C2—C3—C3i119.52 (14)C7—C8—H8119.7
C2—C3—C4121.43 (11)N1—C10—C11120.35 (16)
C3i—C3—C4119.05 (13)N1—C10—H10119.8
C5—C4—C3119.78 (11)C11—C10—H10119.8
C5—C4—H4120.1C10—C11—C6120.44 (15)
C3—C4—H4120.1C10—C11—H11119.8
C4—C5—C1i121.17 (11)C6—C11—H11119.8
C4—C5—S1120.87 (9)H1A—O1W—H1B107 (2)
C5i—C1—C2—C30.1 (2)O1—S1—C5—C1i174.50 (11)
C1—C2—C3—C3i1.3 (2)O2—S1—C5—C1i65.99 (12)
C1—C2—C3—C4179.84 (12)C11—C6—C7—C80.2 (2)
C2—C3—C4—C5178.61 (12)C6ii—C6—C7—C8178.78 (17)
C3i—C3—C4—C50.3 (2)C10—N1—C8—C70.3 (3)
C3—C4—C5—C1i1.51 (19)C6—C7—C8—N10.4 (3)
C3—C4—C5—S1172.51 (9)C8—N1—C10—C110.1 (3)
O3—S1—C5—C4132.64 (12)N1—C10—C11—C60.3 (3)
O1—S1—C5—C411.27 (13)C7—C6—C11—C100.1 (2)
O2—S1—C5—C4108.24 (12)C6ii—C6—C11—C10179.13 (16)
O3—S1—C5—C1i53.13 (13)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1iii0.82 (3)2.01 (3)2.8293 (18)176 (2)
O1W—H1B···O3iv0.82 (3)2.04 (3)2.8484 (18)172 (2)
N1—H3···O2v0.862.553.0212 (18)116
N1—H3···O1Wvi0.861.982.7948 (19)157
C1—H1···O1vii0.932.513.1946 (17)130
C10—H10···O1viii0.932.603.294 (2)132
C11—H11···O2ix0.932.473.2036 (19)136
Symmetry codes: (iii) x, y+1, z+1; (iv) x, y+1, z+1; (v) x, y, z+1; (vi) x, y1, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y, z+1; (ix) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1i0.82 (3)2.01 (3)2.8293 (18)176 (2)
O1W—H1B···O3ii0.82 (3)2.04 (3)2.8484 (18)172 (2)
N1—H3···O2iii0.862.553.0212 (18)116
N1—H3···O1Wiv0.861.982.7948 (19)157
C1—H1···O1v0.932.513.1946 (17)130
C10—H10···O1vi0.932.603.294 (2)132
C11—H11···O2vii0.932.473.2036 (19)136
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y1, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z+1; (vii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge Afyon Kocatepe University (grant BAPK 09.FENED.03 of the University Research Fund) and Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010 K120480 of the State of Planning Organization).

References

First citationBatten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagava, S., Öhrström, L., O'Keffe, M., Suh, M. P. & Reedijk, J. (2012). CrystEngComm, 14, 3001–3004.  Web of Science CrossRef CAS Google Scholar
First citationBorodkin, G. I., Vorob'ev, A. Y., Supranovich, V. I., Gatilov, Y. V. & Shubin, V. C. (2013). J. Mol. Struct. 1035, 441–447.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663–3666.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, C.-H., Cai, J., Feng, X.-L. & Chen, X.-M. (2001). J. Chem. Crystallogr. 31, 271–280.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJeazet, T. & Janiak, S. C. (2012). Dalton Trans. 9, 14003–140027.  Google Scholar
First citationPereira Silva, P. S., Ramos Silva, M., Matos Beja, A. & Paixão, J. A. (2006). Acta Cryst. E62, o5913–o5915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J.-H., Li, X. & Zou, Y. (2010). J. Coord. Chem. 63, 223–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, W. H., Chen, Y. T. & Tai, X. S. (2013). Adv. Mater. Res. 830, 197–201.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o989-o990
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds