organic compounds
of 4,4′-bipyridine-1,1'-diium naphthalene-2,6-disulfonate dihydrate
aDepartment of Chemistry, Faculty of Sciences, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey, bGazi University, Department of Physics Education, Beşevler 06500 Ankara, Turkey, and cAksaray University, Faculty of Education, 68100 Aksaray, Turkey
*Correspondence e-mail: msari@gazi.edu.tr
The title hydrated molecular organic salt, C10H10N22+·C10H6O6S22−·2H2O, crystallized with half a bipyridinium cation, half a naphthalene-2,6-disulfonate anion and a water molecule in the The whole cation and anion are generated by inversion symmetry, the inversion centers being at the center of the bridging C—C bond of the cation, and at the center of the fused C—C bond of the naphthalene group of the anion. In the crystal, the anions and cations stack alternately along the a axis with π–π interactions [inter-centroid distance = 3.491 (1) Å]. The anions are linked via O—H⋯O(sulfonate) hydrogen bonds involving two inversion-related water molecules, forming chains along [10-1]. These chains are bridged by bifurcated N—H⋯(O,O) hydrogen bonds, forming a three-dimensional framework structure. There are also C—H⋯O hydrogen bonds present, reinforcing the framework structure.
Keywords: crystal structure; molecular salt; bipyridine; nathphalenedisulfonate; dihydrate.
CCDC reference: 1006095
1. Related literature
For the use of 4,4′-bipyridine in the construction of metal-organic frameworks, see: Batten et al. (2012); Burd et al. (2012); Jeazet & Janiak (2012). For the use of naphthalene-2,6-disulfonate in the preparation of metal-organic frameworks, exploiting its different coordination modes, see: Zhao et al. (2013); Borodkin et al. (2013); Chen et al. (2001); Song et al. (2010); Pereira Silva et al. (2006).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2012); cell APEX2 and SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1006095
10.1107/S160053681401784X/su2764sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681401784X/su2764Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681401784X/su2764Isup3.cml
The title compound was prepared by a hydrothermal reaction using a 23 ml Parr Teflon-lined acid digestion bomb, heated in a Nuve brand FN300 model programmable electric oven. A mixture of VOSO4·xH2O, naphthalene-2,6-dicarboxylic acid, 4,4'-bipyridine and water (in molar ratio 1:1:1:55.6 mmol) was placed in a 23 ml Parr Teflon-lined autoclave which was subsequently heated for 90 h inside the oven at 473 K. After, the acid digestion bomb was cooled to room temperature over a period of 4 h. Very-light-yellow–green prismatic single crystals of the title compound and a dark-green unidentified vanadium oxide powder were filtered from the light-blue–green mother liquor. The crystals were separated from the powder under an optical microscope. Analysis calculated for C20H20N2O8V2: C 49.991, H 4.195, N 5.831, S 13.346%; found: C 48.670, H 3.929, N 5.857, S 13.670%. Selected FT–IR peaks between 1650 and 400 cm-1: 1635 (m), 1624 (m), 1591 (m), 1591 (w), 1502 (w), 1487 (m), 1372 (m), 1333 (w), 1314 (w), 1276 (w), 1244 (m), 1210 (s, sh), 1200 (s), 1194 (s, sh), 1183 (m, sh), 1144 (m), 1092 (s), 1029 (s), 1005 (m), 979 (m), 914 (m), 832 (m), 791 (m), 706 (w), 665 (s), 656 (s), 618 (s), 554 (m), 546 (m), 507 (w), 440 (m), 411 (m) cm-1. Thermogravimetric analysis results supported the X-ray single-crystal structure analysis by giving a 7.5% weight loss in the range 393–413 K, corresponding to two water molecules per molecular formula.
Data collection: APEX2 (Bruker, 2012); cell
APEX2 and SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. A view of the molecular structure of the title hydrated molecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+1.] The inversion related water molecule is not shown. | |
Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonds have been omitted for clarity). |
C10H10N22+·C10H6O6S22−·2H2O | F(000) = 500 |
Mr = 480.50 | Dx = 1.581 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4022 (2) Å | Cell parameters from 39513 reflections |
b = 10.9390 (3) Å | θ = 2.5–28.5° |
c = 12.6500 (4) Å | µ = 0.32 mm−1 |
β = 99.908 (1)° | T = 296 K |
V = 1009.03 (5) Å3 | Plate, colourless |
Z = 2 | 0.35 × 0.24 × 0.15 mm |
Bruker SMART BREEZE CCD diffractometer | 2551 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 2340 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.033 |
ω–scans | θmax = 28.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −9→9 |
Tmin = 0.912, Tmax = 0.953 | k = −14→14 |
39553 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: mixed |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.3867P] where P = (Fo2 + 2Fc2)/3 |
2551 reflections | (Δ/σ)max < 0.001 |
153 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C10H10N22+·C10H6O6S22−·2H2O | V = 1009.03 (5) Å3 |
Mr = 480.50 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.4022 (2) Å | µ = 0.32 mm−1 |
b = 10.9390 (3) Å | T = 296 K |
c = 12.6500 (4) Å | 0.35 × 0.24 × 0.15 mm |
β = 99.908 (1)° |
Bruker SMART BREEZE CCD diffractometer | 2551 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | 2340 reflections with I > 2σ(I) |
Tmin = 0.912, Tmax = 0.953 | Rint = 0.033 |
39553 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.41 e Å−3 |
2551 reflections | Δρmin = −0.23 e Å−3 |
153 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.21510 (4) | −0.06706 (3) | 0.18311 (2) | 0.02743 (12) | |
O1 | 0.14850 (17) | 0.05494 (9) | 0.15242 (9) | 0.0398 (3) | |
O2 | 0.06807 (15) | −0.14963 (10) | 0.19836 (9) | 0.0421 (3) | |
O3 | 0.33036 (17) | −0.11776 (14) | 0.11235 (9) | 0.0513 (3) | |
C1 | 0.55029 (19) | 0.16047 (12) | 0.64530 (11) | 0.0305 (3) | |
H1 | 0.5516 | 0.2306 | 0.6870 | 0.037* | |
C2 | 0.45657 (18) | 0.15973 (11) | 0.54200 (10) | 0.0291 (3) | |
H2 | 0.3943 | 0.2295 | 0.5138 | 0.035* | |
C3 | 0.45389 (16) | 0.05348 (10) | 0.47790 (10) | 0.0230 (2) | |
C4 | 0.35783 (17) | 0.05061 (11) | 0.37022 (10) | 0.0254 (2) | |
H4 | 0.2972 | 0.1200 | 0.3400 | 0.030* | |
C5 | 0.35503 (17) | −0.05470 (11) | 0.31137 (10) | 0.0254 (3) | |
N1 | 0.30960 (19) | 0.21624 (13) | 0.91922 (12) | 0.0454 (3) | |
H3 | 0.2627 | 0.1463 | 0.8994 | 0.054* | |
C6 | 0.46027 (17) | 0.43924 (12) | 0.98236 (11) | 0.0282 (3) | |
C7 | 0.3717 (2) | 0.41942 (15) | 0.87696 (13) | 0.0412 (3) | |
H7 | 0.3633 | 0.4821 | 0.8267 | 0.049* | |
C8 | 0.2972 (2) | 0.30668 (18) | 0.84798 (14) | 0.0493 (4) | |
H8 | 0.2375 | 0.2935 | 0.7780 | 0.059* | |
C10 | 0.3922 (3) | 0.23110 (15) | 1.01926 (15) | 0.0479 (4) | |
H10 | 0.3989 | 0.1662 | 1.0673 | 0.057* | |
C11 | 0.4686 (2) | 0.34212 (14) | 1.05306 (12) | 0.0398 (3) | |
H11 | 0.5261 | 0.3519 | 1.1239 | 0.048* | |
O1W | 0.23786 (19) | 0.96590 (12) | 0.89658 (11) | 0.0447 (3) | |
H1A | 0.126 (4) | 0.958 (2) | 0.8846 (19) | 0.058 (7)* | |
H1B | 0.275 (3) | 0.940 (2) | 0.957 (2) | 0.061 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.03049 (19) | 0.02730 (19) | 0.02227 (18) | −0.00197 (11) | −0.00176 (12) | −0.00094 (10) |
O1 | 0.0471 (6) | 0.0292 (5) | 0.0372 (6) | −0.0022 (4) | −0.0096 (5) | 0.0062 (4) |
O2 | 0.0435 (6) | 0.0385 (6) | 0.0391 (6) | −0.0158 (4) | −0.0076 (4) | 0.0034 (4) |
O3 | 0.0470 (7) | 0.0765 (9) | 0.0290 (5) | 0.0134 (6) | 0.0025 (5) | −0.0100 (5) |
C1 | 0.0381 (7) | 0.0221 (6) | 0.0293 (6) | 0.0007 (5) | 0.0005 (5) | −0.0037 (5) |
C2 | 0.0352 (6) | 0.0200 (5) | 0.0301 (6) | 0.0036 (5) | −0.0003 (5) | 0.0002 (5) |
C3 | 0.0241 (5) | 0.0198 (5) | 0.0246 (6) | −0.0009 (4) | 0.0024 (4) | 0.0014 (4) |
C4 | 0.0269 (6) | 0.0217 (5) | 0.0259 (6) | −0.0003 (4) | 0.0002 (4) | 0.0024 (4) |
C5 | 0.0270 (6) | 0.0258 (6) | 0.0219 (6) | −0.0028 (4) | 0.0001 (4) | 0.0006 (4) |
N1 | 0.0439 (7) | 0.0390 (7) | 0.0573 (8) | −0.0149 (6) | 0.0200 (6) | −0.0172 (6) |
C6 | 0.0250 (6) | 0.0320 (7) | 0.0291 (6) | −0.0030 (5) | 0.0085 (5) | −0.0050 (5) |
C7 | 0.0474 (9) | 0.0421 (8) | 0.0324 (7) | −0.0079 (6) | 0.0019 (6) | −0.0050 (6) |
C8 | 0.0510 (9) | 0.0537 (10) | 0.0417 (8) | −0.0144 (8) | 0.0037 (7) | −0.0167 (7) |
C10 | 0.0582 (10) | 0.0366 (8) | 0.0531 (10) | −0.0097 (7) | 0.0217 (8) | 0.0011 (7) |
C11 | 0.0468 (8) | 0.0393 (8) | 0.0336 (7) | −0.0079 (6) | 0.0081 (6) | 0.0003 (6) |
O1W | 0.0425 (7) | 0.0486 (7) | 0.0417 (7) | −0.0014 (5) | 0.0037 (5) | 0.0042 (5) |
S1—O3 | 1.4489 (12) | N1—C10 | 1.317 (2) |
S1—O1 | 1.4523 (11) | N1—C8 | 1.331 (3) |
S1—O2 | 1.4525 (11) | N1—H3 | 0.8595 |
S1—C5 | 1.7735 (12) | C6—C11 | 1.383 (2) |
C1—C2 | 1.3700 (18) | C6—C7 | 1.398 (2) |
C1—C5i | 1.4136 (17) | C6—C6ii | 1.491 (2) |
C1—H1 | 0.9300 | C7—C8 | 1.375 (2) |
C2—C3 | 1.4154 (17) | C7—H7 | 0.9300 |
C2—H2 | 0.9300 | C8—H8 | 0.9300 |
C3—C3i | 1.420 (2) | C10—C11 | 1.376 (2) |
C3—C4 | 1.4244 (17) | C10—H10 | 0.9300 |
C4—C5 | 1.3698 (17) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | O1W—H1A | 0.82 (3) |
C5—C1i | 1.4135 (17) | O1W—H1B | 0.82 (3) |
O3—S1—O1 | 113.29 (8) | C1i—C5—S1 | 117.70 (9) |
O3—S1—O2 | 112.23 (8) | C10—N1—C8 | 121.70 (14) |
O1—S1—O2 | 112.29 (7) | C10—N1—H3 | 119.2 |
O3—S1—C5 | 106.32 (7) | C8—N1—H3 | 119.1 |
O1—S1—C5 | 107.01 (6) | C11—C6—C7 | 117.33 (13) |
O2—S1—C5 | 105.01 (6) | C11—C6—C6ii | 121.33 (16) |
C2—C1—C5i | 120.06 (11) | C7—C6—C6ii | 121.33 (16) |
C2—C1—H1 | 120.0 | C8—C7—C6 | 119.63 (15) |
C5i—C1—H1 | 120.0 | C8—C7—H7 | 120.2 |
C1—C2—C3 | 120.41 (11) | C6—C7—H7 | 120.2 |
C1—C2—H2 | 119.8 | N1—C8—C7 | 120.56 (15) |
C3—C2—H2 | 119.8 | N1—C8—H8 | 119.7 |
C2—C3—C3i | 119.52 (14) | C7—C8—H8 | 119.7 |
C2—C3—C4 | 121.43 (11) | N1—C10—C11 | 120.35 (16) |
C3i—C3—C4 | 119.05 (13) | N1—C10—H10 | 119.8 |
C5—C4—C3 | 119.78 (11) | C11—C10—H10 | 119.8 |
C5—C4—H4 | 120.1 | C10—C11—C6 | 120.44 (15) |
C3—C4—H4 | 120.1 | C10—C11—H11 | 119.8 |
C4—C5—C1i | 121.17 (11) | C6—C11—H11 | 119.8 |
C4—C5—S1 | 120.87 (9) | H1A—O1W—H1B | 107 (2) |
C5i—C1—C2—C3 | −0.1 (2) | O1—S1—C5—C1i | −174.50 (11) |
C1—C2—C3—C3i | 1.3 (2) | O2—S1—C5—C1i | 65.99 (12) |
C1—C2—C3—C4 | −179.84 (12) | C11—C6—C7—C8 | 0.2 (2) |
C2—C3—C4—C5 | −178.61 (12) | C6ii—C6—C7—C8 | −178.78 (17) |
C3i—C3—C4—C5 | 0.3 (2) | C10—N1—C8—C7 | 0.3 (3) |
C3—C4—C5—C1i | −1.51 (19) | C6—C7—C8—N1 | −0.4 (3) |
C3—C4—C5—S1 | 172.51 (9) | C8—N1—C10—C11 | 0.1 (3) |
O3—S1—C5—C4 | 132.64 (12) | N1—C10—C11—C6 | −0.3 (3) |
O1—S1—C5—C4 | 11.27 (13) | C7—C6—C11—C10 | 0.1 (2) |
O2—S1—C5—C4 | −108.24 (12) | C6ii—C6—C11—C10 | 179.13 (16) |
O3—S1—C5—C1i | −53.13 (13) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O1iii | 0.82 (3) | 2.01 (3) | 2.8293 (18) | 176 (2) |
O1W—H1B···O3iv | 0.82 (3) | 2.04 (3) | 2.8484 (18) | 172 (2) |
N1—H3···O2v | 0.86 | 2.55 | 3.0212 (18) | 116 |
N1—H3···O1Wvi | 0.86 | 1.98 | 2.7948 (19) | 157 |
C1—H1···O1vii | 0.93 | 2.51 | 3.1946 (17) | 130 |
C10—H10···O1viii | 0.93 | 2.60 | 3.294 (2) | 132 |
C11—H11···O2ix | 0.93 | 2.47 | 3.2036 (19) | 136 |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) x, y+1, z+1; (v) −x, −y, −z+1; (vi) x, y−1, z; (vii) x+1/2, −y+1/2, z+1/2; (viii) x, y, z+1; (ix) −x+1/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O1i | 0.82 (3) | 2.01 (3) | 2.8293 (18) | 176 (2) |
O1W—H1B···O3ii | 0.82 (3) | 2.04 (3) | 2.8484 (18) | 172 (2) |
N1—H3···O2iii | 0.86 | 2.55 | 3.0212 (18) | 116 |
N1—H3···O1Wiv | 0.86 | 1.98 | 2.7948 (19) | 157 |
C1—H1···O1v | 0.93 | 2.51 | 3.1946 (17) | 130 |
C10—H10···O1vi | 0.93 | 2.60 | 3.294 (2) | 132 |
C11—H11···O2vii | 0.93 | 2.47 | 3.2036 (19) | 136 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z+1; (iii) −x, −y, −z+1; (iv) x, y−1, z; (v) x+1/2, −y+1/2, z+1/2; (vi) x, y, z+1; (vii) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
The authors acknowledge Afyon Kocatepe University (grant BAPK 09.FENED.03 of the University Research Fund) and Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010 K120480 of the State of Planning Organization).
References
Batten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagava, S., Öhrström, L., O'Keffe, M., Suh, M. P. & Reedijk, J. (2012). CrystEngComm, 14, 3001–3004. Web of Science CrossRef CAS Google Scholar
Borodkin, G. I., Vorob'ev, A. Y., Supranovich, V. I., Gatilov, Y. V. & Shubin, V. C. (2013). J. Mol. Struct. 1035, 441–447. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663–3666. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, C.-H., Cai, J., Feng, X.-L. & Chen, X.-M. (2001). J. Chem. Crystallogr. 31, 271–280. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jeazet, T. & Janiak, S. C. (2012). Dalton Trans. 9, 14003–140027. Google Scholar
Pereira Silva, P. S., Ramos Silva, M., Matos Beja, A. & Paixão, J. A. (2006). Acta Cryst. E62, o5913–o5915. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, J.-H., Li, X. & Zou, Y. (2010). J. Coord. Chem. 63, 223–233. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, W. H., Chen, Y. T. & Tai, X. S. (2013). Adv. Mater. Res. 830, 197–201. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.