organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-methyl-2,6-bis­­(4-methyl-1,3-thia­zol-5-yl)piperidin-4-one

aOrchid Chemicals & Pharmaceuticals Linmited, Research & Developement Centre, Sozhanganallur, Chennai 600 119, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Chemistry, Presidency College (Autonomous), Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 August 2014; accepted 20 August 2014; online 30 August 2014)

In the title compound, C14H17N3OS2, the central piperidinone ring adopts a chair conformation and the thia­zole rings are inclined to its mean plane by 80.16 (12) and 67.15 (12)°. The O atom and methyl group C atom deviate significantly from the mean plane of the central piperidinone ring, by 0.8138 (2) and 0.3175 (2) Å, respectively. The dihedral angle between the thia­zole rings is 51.88 (13)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming zigzag C(10) chains running parallel to [001].

1. Related literature

For biological and pharmaceutical applications of piperidino­nes and thia­zoles, see: Ganellin & Spickett (1965[Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.]). For the synthesis of substituted piperidin-4-ones and their derivatives, see: Noller & Baliah (1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]). For related structures, see: Gayathri et al. (2008[Gayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008). Acta Cryst. E64, o429.]); Nithya et al. (2009[Nithya, P., Khan, F. N., Novanna, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2984.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H17N3OS2

  • Mr = 307.43

  • Orthorhombic, P b c a

  • a = 11.389 (5) Å

  • b = 12.660 (5) Å

  • c = 21.667 (5) Å

  • V = 3124 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madision, Wisconsin, US.]) Tmin = 0.903, Tmax = 0.934

  • 19116 measured reflections

  • 3762 independent reflections

  • 2539 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.150

  • S = 1.00

  • 3762 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N2i 0.93 2.49 3.365 (4) 157
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madision, Wisconsin, US.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madision, Wisconsin, US.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For biological and pharmaceutical applications of piperidinones and thiazoles, see: Ganellin & Spickett (1965). For the synthesis of substituted piperidin-4-ones and their derivatives, see: Noller & Baliah (1948). For related structures, see: Gayathri et al. (2008); Nithya et al. (2009).

Experimental top

4-methyl-5-formyl thiazole (0.20 mol), 2-butanone (0.10 mol) and ammonium acetate (0.10 mol) were dissolved in 80 ml of distilled ethanol and heated over a boiling water bath with stirring for 8–10 h. Hydrochloric acid in isopropyl alcohol was added and the compound was filtered off as the hydrochloride salt under a nitrogen atmosphere. The compound was neutralized and extracted with dichloromethane. The dichloromethane layer was concentrated and crystals of the title compound were obtained by slow evaporation of a solution in ethanol.

Refinement top

The H atoms were localized from difference electron density maps. During refinement they were treated as riding atoms: N-H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecular, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines; see Table 1 for details.
3-Methyl-2,6-bis(4-methyl-1,3-thiazol-5-yl)piperidin-4-one top
Crystal data top
C14H17N3OS2F(000) = 1296
Mr = 307.43Dx = 1.307 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2539 reflections
a = 11.389 (5) Åθ = 2.6–28.4°
b = 12.660 (5) ŵ = 0.34 mm1
c = 21.667 (5) ÅT = 296 K
V = 3124 (2) Å3Block, colourless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3762 independent reflections
Radiation source: fine-focus sealed tube2539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.903, Tmax = 0.934k = 1614
19116 measured reflectionsl = 2721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.073P)2 + 1.5978P]
where P = (Fo2 + 2Fc2)/3
3762 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C14H17N3OS2V = 3124 (2) Å3
Mr = 307.43Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.389 (5) ŵ = 0.34 mm1
b = 12.660 (5) ÅT = 296 K
c = 21.667 (5) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3762 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2539 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.934Rint = 0.034
19116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.00Δρmax = 0.52 e Å3
3762 reflectionsΔρmin = 0.47 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2579 (2)0.01628 (17)0.49282 (10)0.0398 (5)
H10.32990.04820.47650.048*
C20.1630 (2)0.10230 (18)0.49779 (11)0.0494 (6)
H2A0.19140.15950.52350.059*
H2B0.09330.07300.51700.059*
C30.1325 (2)0.14405 (17)0.43518 (11)0.0447 (5)
C40.1030 (2)0.06171 (17)0.38720 (11)0.0423 (5)
H40.03000.02750.40030.051*
C50.19957 (19)0.02385 (17)0.38724 (10)0.0393 (5)
H50.27300.00790.37270.047*
C60.1691 (2)0.11454 (18)0.34598 (11)0.0435 (5)
C70.2132 (2)0.1418 (2)0.29028 (11)0.0514 (6)
C80.0832 (3)0.2696 (2)0.29990 (14)0.0647 (8)
H80.04030.32950.28950.078*
C90.2859 (3)0.1374 (3)0.64598 (14)0.0684 (8)
H90.27250.18490.67800.082*
C100.3678 (2)0.0071 (2)0.59575 (11)0.0492 (6)
C110.2849 (2)0.03318 (17)0.55366 (10)0.0404 (5)
C120.4537 (3)0.0816 (3)0.59110 (16)0.0757 (9)
H12A0.43170.13680.61920.114*
H12B0.53070.05640.60140.114*
H12C0.45380.10870.54970.114*
C130.3096 (3)0.0875 (3)0.25606 (15)0.0752 (9)
H13A0.37970.12940.25830.113*
H13B0.28710.07870.21370.113*
H13C0.32390.01960.27420.113*
C140.0807 (3)0.1090 (2)0.32444 (12)0.0630 (7)
H14A0.15130.14200.30960.095*
H14B0.05730.05440.29630.095*
H14C0.01950.16090.32740.095*
N10.21742 (16)0.06327 (14)0.44979 (8)0.0402 (4)
H1A0.20500.12790.46020.048*
N20.1627 (2)0.2306 (2)0.26420 (11)0.0649 (6)
N30.3680 (2)0.0677 (2)0.64846 (10)0.0656 (6)
O10.13353 (18)0.23686 (14)0.42350 (9)0.0653 (5)
S10.20268 (6)0.13746 (6)0.58011 (3)0.0607 (2)
S20.06218 (6)0.20349 (6)0.36761 (3)0.0582 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0485 (12)0.0321 (11)0.0387 (12)0.0025 (9)0.0018 (9)0.0007 (9)
C20.0679 (15)0.0339 (11)0.0464 (14)0.0065 (11)0.0023 (11)0.0072 (10)
C30.0467 (12)0.0337 (12)0.0537 (14)0.0044 (9)0.0014 (10)0.0022 (10)
C40.0451 (11)0.0376 (11)0.0443 (13)0.0024 (9)0.0015 (10)0.0042 (9)
C50.0441 (11)0.0364 (11)0.0375 (12)0.0004 (9)0.0007 (9)0.0003 (9)
C60.0492 (12)0.0417 (12)0.0397 (12)0.0049 (10)0.0033 (10)0.0007 (9)
C70.0618 (15)0.0530 (14)0.0393 (14)0.0086 (12)0.0001 (11)0.0052 (11)
C80.0773 (18)0.0585 (17)0.0583 (18)0.0041 (14)0.0084 (15)0.0211 (13)
C90.088 (2)0.0675 (19)0.0494 (17)0.0164 (17)0.0147 (14)0.0199 (14)
C100.0536 (13)0.0494 (14)0.0446 (14)0.0061 (11)0.0038 (11)0.0004 (10)
C110.0491 (12)0.0345 (11)0.0377 (12)0.0008 (9)0.0028 (9)0.0007 (9)
C120.0685 (18)0.074 (2)0.085 (2)0.0149 (16)0.0254 (16)0.0040 (17)
C130.085 (2)0.084 (2)0.0569 (18)0.0011 (17)0.0187 (15)0.0051 (16)
C140.0793 (18)0.0601 (17)0.0496 (16)0.0130 (14)0.0044 (13)0.0115 (13)
N10.0541 (11)0.0291 (9)0.0376 (10)0.0013 (8)0.0033 (8)0.0005 (7)
N20.0783 (15)0.0663 (15)0.0502 (14)0.0056 (13)0.0050 (12)0.0214 (11)
N30.0822 (17)0.0697 (16)0.0449 (13)0.0143 (14)0.0069 (12)0.0080 (11)
O10.0847 (14)0.0328 (9)0.0784 (14)0.0010 (9)0.0094 (11)0.0062 (8)
S10.0656 (4)0.0514 (4)0.0651 (5)0.0086 (3)0.0065 (3)0.0160 (3)
S20.0670 (4)0.0539 (4)0.0538 (4)0.0132 (3)0.0032 (3)0.0126 (3)
Geometric parameters (Å, º) top
C1—N11.448 (3)C8—S21.706 (3)
C1—C111.491 (3)C8—H80.9300
C1—C21.538 (3)C9—N31.287 (4)
C1—H10.9800C9—S11.713 (3)
C2—C31.497 (3)C9—H90.9300
C2—H2A0.9700C10—C111.354 (3)
C2—H2B0.9700C10—N31.376 (3)
C3—O11.202 (3)C10—C121.493 (4)
C3—C41.510 (3)C11—S11.717 (2)
C4—C141.507 (3)C12—H12A0.9600
C4—C51.543 (3)C12—H12B0.9600
C4—H40.9800C12—H12C0.9600
C5—N11.458 (3)C13—H13A0.9600
C5—C61.496 (3)C13—H13B0.9600
C5—H50.9800C13—H13C0.9600
C6—C71.352 (3)C14—H14A0.9600
C6—S21.723 (3)C14—H14B0.9600
C7—N21.384 (3)C14—H14C0.9600
C7—C131.492 (4)N1—H1A0.8600
C8—N21.289 (4)
N1—C1—C11110.04 (18)S2—C8—H8122.4
N1—C1—C2108.27 (18)N3—C9—S1115.9 (2)
C11—C1—C2112.34 (19)N3—C9—H9122.0
N1—C1—H1108.7S1—C9—H9122.0
C11—C1—H1108.7C11—C10—N3115.1 (2)
C2—C1—H1108.7C11—C10—C12126.5 (2)
C3—C2—C1110.46 (19)N3—C10—C12118.3 (2)
C3—C2—H2A109.6C10—C11—C1129.5 (2)
C1—C2—H2A109.6C10—C11—S1110.05 (18)
C3—C2—H2B109.6C1—C11—S1120.38 (17)
C1—C2—H2B109.6C10—C12—H12A109.5
H2A—C2—H2B108.1C10—C12—H12B109.5
O1—C3—C2122.3 (2)H12A—C12—H12B109.5
O1—C3—C4122.1 (2)C10—C12—H12C109.5
C2—C3—C4115.58 (19)H12A—C12—H12C109.5
C14—C4—C3112.6 (2)H12B—C12—H12C109.5
C14—C4—C5113.6 (2)C7—C13—H13A109.5
C3—C4—C5109.01 (18)C7—C13—H13B109.5
C14—C4—H4107.1H13A—C13—H13B109.5
C3—C4—H4107.1C7—C13—H13C109.5
C5—C4—H4107.1H13A—C13—H13C109.5
N1—C5—C6108.96 (18)H13B—C13—H13C109.5
N1—C5—C4109.88 (18)C4—C14—H14A109.5
C6—C5—C4111.90 (18)C4—C14—H14B109.5
N1—C5—H5108.7H14A—C14—H14B109.5
C6—C5—H5108.7C4—C14—H14C109.5
C4—C5—H5108.7H14A—C14—H14C109.5
C7—C6—C5130.0 (2)H14B—C14—H14C109.5
C7—C6—S2109.81 (19)C1—N1—C5113.88 (17)
C5—C6—S2120.19 (17)C1—N1—H1A123.1
C6—C7—N2114.6 (2)C5—N1—H1A123.1
C6—C7—C13126.8 (3)C8—N2—C7111.0 (2)
N2—C7—C13118.5 (2)C9—N3—C10110.3 (2)
N2—C8—S2115.3 (2)C9—S1—C1188.64 (14)
N2—C8—H8122.4C8—S2—C689.28 (14)
N1—C1—C2—C354.1 (2)N3—C10—C11—S10.1 (3)
C11—C1—C2—C3175.84 (19)C12—C10—C11—S1177.6 (2)
C1—C2—C3—O1127.6 (3)N1—C1—C11—C10147.0 (2)
C1—C2—C3—C451.0 (3)C2—C1—C11—C1092.3 (3)
O1—C3—C4—C142.3 (3)N1—C1—C11—S134.6 (3)
C2—C3—C4—C14176.4 (2)C2—C1—C11—S186.1 (2)
O1—C3—C4—C5129.2 (2)C11—C1—N1—C5174.46 (18)
C2—C3—C4—C549.5 (3)C2—C1—N1—C562.4 (2)
C14—C4—C5—N1178.6 (2)C6—C5—N1—C1174.67 (18)
C3—C4—C5—N152.2 (2)C4—C5—N1—C162.4 (2)
C14—C4—C5—C660.2 (3)S2—C8—N2—C70.0 (3)
C3—C4—C5—C6173.35 (19)C6—C7—N2—C80.6 (3)
N1—C5—C6—C7131.6 (3)C13—C7—N2—C8178.5 (3)
C4—C5—C6—C7106.6 (3)S1—C9—N3—C100.7 (3)
N1—C5—C6—S248.5 (2)C11—C10—N3—C90.5 (3)
C4—C5—C6—S273.2 (2)C12—C10—N3—C9177.4 (3)
C5—C6—C7—N2178.9 (2)N3—C9—S1—C110.6 (2)
S2—C6—C7—N20.9 (3)C10—C11—S1—C90.28 (19)
C5—C6—C7—C132.1 (4)C1—C11—S1—C9178.4 (2)
S2—C6—C7—C13178.0 (2)N2—C8—S2—C60.5 (3)
N3—C10—C11—C1178.6 (2)C7—C6—S2—C80.8 (2)
C12—C10—C11—C10.9 (4)C5—C6—S2—C8179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N2i0.932.493.365 (4)157
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N2i0.932.493.365 (4)156.8
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Chennai, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madision, Wisconsin, US.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGanellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619–625.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008). Acta Cryst. E64, o429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNithya, P., Khan, F. N., Novanna, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2984.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds