organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1034-o1035

Crystal structure of (E)-3-(2,4-di­meth­­oxy­phen­yl)-1-(1-hy­dr­oxy­naphthalen-2-yl)prop-2-en-1-one

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 August 2014; accepted 18 August 2014; online 23 August 2014)

In the title compound, C21H18O4, the C=C bond of the central enone group adopts an E conformation. The dihedral angle formed by the benzene ring and the naphthalene ring system is 6.60 (2)°. The meth­oxy groups on the benzene ring are essentially coplanar with the ring; the C—C—O—C torsion angles being 1.6 (2) and −177.1 (1)°. The hy­droxy group attached to the naphthalene ring is involved in an intra­molecular O—H⋯O hydrogen bond. The relative conformation of the two double bonds in the enone group is s-cisoid. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into chains propagating along [010].

1. Related literature

For the synthesis and biological properties of chalcone derivatives, see: Fuchigami et al. (2014[Fuchigami, T., Yamashita, Y., Haratake, M., Ono, M. & Yoshida, S. (2014). Bioorg. Med. Chem. 22, 2622-2628.]); Kim et al. (2014[Kim, S.-J., Kim, C. G., Yun, S.-R., Kim, J.-K. & Jun, J.-G. (2014). Bioorg. Med. Chem. Lett. 24, 181-185.]); Mai et al. (2014[Mai, C. W., Yaebhoobi, M., Abd-Rhaman, N., Kang, Y. B. & Pichchika, M. R. (2014). Eur. J. Med. Chem. 77, 378-387.]); Smit & D′Na (2014[Smit, F. J. & D'Na, D. D. (2014). Bioorg. Med. Chem. 22, 1128-1138.]). For details concerning benzochalcone derivatives, see: Juvale et al. (2013[Juvale, K., Stefan, K. & Wiese, M. (2013). Eur. J. Med. Chem. 67, 115-126.]); Shin et al. (2013[Shin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018-7024.]). For related structures, see: Ahn et al. (2013[Ahn, S., Lee, H.-J., Lim, Y. & Koh, D. (2013). Acta Cryst. E69, o666.]); Lim & Koh (2013[Lim, Y. & Koh, D. (2013). Acta Cryst. E69, o514.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H18O4

  • Mr = 334.35

  • Monoclinic, C 2/c

  • a = 14.1148 (9) Å

  • b = 14.7489 (9) Å

  • c = 15.5929 (10) Å

  • β = 92.804 (4)°

  • V = 3242.2 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 147 K

  • 0.19 × 0.12 × 0.08 mm

2.2. Data collection

  • Bruker Kappa APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.669, Tmax = 0.753

  • 8800 measured reflections

  • 2755 independent reflections

  • 2505 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.05

  • 2755 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1 0.97 (2) 1.59 (2) 2.499 (1) 155.1 (19)
C10—H10A⋯O1i 0.98 2.57 3.538 (2) 167
C11—H11B⋯O2ii 0.98 2.58 3.442 (2) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Synthesis and crystallization top

To a solution of 2,4-di­meth­oxy­benzaldehyde (830 mg, 5 mmol) in 50 ml of ethanol was added 1-hy­droxy-2-aceto­naphthone (930 mg, 1 mmol) and the temperature was adjusted to around 275–276 K in an ice-bath. To the cooled reaction mixture 5 ml of 50% aqueous KOH solution was added, and the reaction mixture was stirred at room temperature for 24 h. This mixture was poured into iced water (100 ml) and was acidified (pH = 3) with 6 N HCl solution to give a precipitate. Filtration and washing with water afforded the crude solid of the title compound (520 mg, 31%). Recrystallization of the solid from ethanol gave single crystals crystals which were suitable for X-ray diffraction (M.p. 434–435 K).

Refinement details top

The OH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C–H = 0.95 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Related literature top

For the synthesis and biological properties of chalcone derivatives, see: Fuchigami et al. (2014); Kim et al. (2014); Mai et al. (2014); Smit & D'Na (2014). For details concerning benzochalcone derivatives, see: Juvale et al. (2013); Shin et al. (2013). For related structures, see: Ahn et al. (2013); Lim & Koh (2013).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
(E)-3-(2,4-Dimethoxyphenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one top
Crystal data top
C21H18O4F(000) = 1408
Mr = 334.35Dx = 1.370 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 4341 reflections
a = 14.1148 (9) Åθ = 4.3–66.4°
b = 14.7489 (9) ŵ = 0.77 mm1
c = 15.5929 (10) ÅT = 147 K
β = 92.804 (4)°Needle, orange
V = 3242.2 (4) Å30.19 × 0.12 × 0.08 mm
Z = 8
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2755 independent reflections
Radiation source: Bruker ImuS2505 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.026
ϕ and ω scansθmax = 66.5°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1616
Tmin = 0.669, Tmax = 0.753k = 1717
8800 measured reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.049P)2 + 1.958P]
where P = (Fo2 + 2Fc2)/3
2755 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H18O4V = 3242.2 (4) Å3
Mr = 334.35Z = 8
Monoclinic, C2/cCu Kα radiation
a = 14.1148 (9) ŵ = 0.77 mm1
b = 14.7489 (9) ÅT = 147 K
c = 15.5929 (10) Å0.19 × 0.12 × 0.08 mm
β = 92.804 (4)°
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2755 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2505 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.753Rint = 0.026
8800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
2755 reflectionsΔρmin = 0.27 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46036 (6)0.17828 (6)1.03233 (6)0.0275 (2)
O20.19523 (6)0.11183 (7)0.85783 (7)0.0345 (3)
O30.17234 (6)0.10692 (6)0.63594 (6)0.0266 (2)
O40.59612 (6)0.24290 (6)1.12130 (6)0.0251 (2)
C10.51556 (9)0.13224 (8)0.98872 (8)0.0210 (3)
C20.47622 (9)0.07880 (8)0.91593 (8)0.0223 (3)
H2A0.51730.04320.88320.027*
C30.38286 (9)0.07983 (8)0.89525 (8)0.0213 (3)
H3A0.34540.11770.92940.026*
C40.33198 (8)0.03012 (8)0.82693 (8)0.0201 (3)
C50.23466 (9)0.04712 (8)0.80855 (8)0.0226 (3)
C60.18419 (9)0.00040 (9)0.74439 (8)0.0240 (3)
H6A0.11900.01340.73240.029*
C70.22926 (9)0.06572 (9)0.69744 (8)0.0215 (3)
C80.32474 (9)0.08523 (9)0.71418 (8)0.0233 (3)
H8A0.35570.13020.68220.028*
C90.37358 (9)0.03735 (9)0.77878 (8)0.0222 (3)
H9A0.43860.05120.79080.027*
C100.09670 (11)0.13031 (13)0.84355 (13)0.0516 (5)
H10A0.07720.17630.88450.077*
H10B0.06030.07460.85140.077*
H10C0.08470.15280.78490.077*
C110.21279 (10)0.17857 (10)0.58794 (9)0.0339 (3)
H11A0.16480.20290.54660.051*
H11B0.23490.22690.62720.051*
H11C0.26650.15510.55710.051*
C120.61749 (8)0.13277 (8)1.01100 (8)0.0193 (3)
C130.65294 (8)0.18928 (8)1.07709 (7)0.0190 (3)
C140.75210 (8)0.19224 (8)1.10073 (7)0.0193 (3)
C150.78867 (9)0.25063 (8)1.16617 (8)0.0220 (3)
H15A0.74700.28931.19520.026*
C160.88385 (9)0.25175 (9)1.18786 (8)0.0251 (3)
H16A0.90810.29161.23150.030*
C170.94584 (9)0.19415 (9)1.14567 (8)0.0259 (3)
H17A1.01170.19461.16160.031*
C180.91205 (9)0.13741 (9)1.08185 (8)0.0246 (3)
H18A0.95490.09911.05370.030*
C190.81422 (9)0.13491 (8)1.05720 (8)0.0203 (3)
C200.77706 (9)0.07710 (9)0.99071 (8)0.0228 (3)
H20A0.81850.03820.96170.027*
C210.68288 (9)0.07699 (8)0.96827 (8)0.0216 (3)
H21A0.65990.03870.92290.026*
H4O0.5337 (15)0.2284 (14)1.0965 (13)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (4)0.0320 (5)0.0312 (5)0.0025 (4)0.0004 (4)0.0075 (4)
O20.0217 (5)0.0350 (6)0.0455 (6)0.0096 (4)0.0106 (4)0.0179 (5)
O30.0286 (5)0.0265 (5)0.0242 (5)0.0033 (4)0.0046 (4)0.0038 (4)
O40.0202 (5)0.0282 (5)0.0267 (5)0.0035 (4)0.0002 (4)0.0078 (4)
C10.0217 (6)0.0192 (6)0.0221 (6)0.0003 (5)0.0010 (5)0.0028 (5)
C20.0208 (6)0.0227 (6)0.0234 (6)0.0006 (5)0.0006 (5)0.0010 (5)
C30.0229 (6)0.0184 (6)0.0224 (6)0.0006 (5)0.0001 (5)0.0019 (5)
C40.0206 (6)0.0188 (6)0.0208 (6)0.0020 (5)0.0004 (5)0.0037 (5)
C50.0228 (6)0.0193 (6)0.0254 (6)0.0018 (5)0.0015 (5)0.0003 (5)
C60.0207 (6)0.0238 (7)0.0270 (7)0.0004 (5)0.0052 (5)0.0009 (5)
C70.0251 (6)0.0212 (6)0.0179 (6)0.0055 (5)0.0019 (5)0.0038 (5)
C80.0251 (6)0.0234 (7)0.0217 (6)0.0009 (5)0.0046 (5)0.0000 (5)
C90.0187 (6)0.0255 (7)0.0224 (6)0.0019 (5)0.0012 (5)0.0026 (5)
C100.0254 (8)0.0575 (11)0.0703 (12)0.0182 (7)0.0136 (7)0.0335 (9)
C110.0387 (8)0.0336 (8)0.0291 (7)0.0041 (6)0.0006 (6)0.0114 (6)
C120.0201 (6)0.0181 (6)0.0197 (6)0.0007 (5)0.0004 (5)0.0023 (5)
C130.0218 (6)0.0168 (6)0.0184 (6)0.0011 (5)0.0020 (5)0.0020 (5)
C140.0209 (6)0.0189 (6)0.0178 (6)0.0012 (5)0.0009 (5)0.0037 (5)
C150.0249 (6)0.0215 (6)0.0195 (6)0.0004 (5)0.0003 (5)0.0008 (5)
C160.0266 (7)0.0264 (7)0.0218 (6)0.0045 (5)0.0051 (5)0.0008 (5)
C170.0196 (6)0.0320 (7)0.0254 (6)0.0019 (5)0.0043 (5)0.0039 (5)
C180.0204 (6)0.0277 (7)0.0255 (7)0.0022 (5)0.0000 (5)0.0020 (5)
C190.0211 (6)0.0207 (6)0.0191 (6)0.0001 (5)0.0004 (5)0.0045 (5)
C200.0223 (6)0.0224 (6)0.0237 (6)0.0030 (5)0.0019 (5)0.0023 (5)
C210.0231 (6)0.0204 (6)0.0211 (6)0.0008 (5)0.0012 (5)0.0017 (5)
Geometric parameters (Å, º) top
O1—C11.2580 (15)C10—H10B0.9800
O2—C51.3612 (16)C10—H10C0.9800
O2—C101.4239 (17)C11—H11A0.9800
O3—C71.3635 (15)C11—H11B0.9800
O3—C111.4299 (17)C11—H11C0.9800
O4—C131.3408 (15)C12—C131.3987 (17)
O4—H4O0.97 (2)C12—C211.4258 (17)
C1—C121.4634 (17)C13—C141.4306 (17)
C1—C21.4683 (18)C14—C151.4133 (17)
C2—C31.3414 (18)C14—C191.4152 (17)
C2—H2A0.9500C15—C161.3693 (18)
C3—C41.4537 (17)C15—H15A0.9500
C3—H3A0.9500C16—C171.4059 (19)
C4—C91.3936 (18)C16—H16A0.9500
C4—C51.4119 (17)C17—C181.3680 (19)
C5—C61.3832 (18)C17—H17A0.9500
C6—C71.3919 (18)C18—C191.4156 (17)
C6—H6A0.9500C18—H18A0.9500
C7—C81.3902 (18)C19—C201.4227 (18)
C8—C91.3858 (18)C20—C211.3580 (17)
C8—H8A0.9500C20—H20A0.9500
C9—H9A0.9500C21—H21A0.9500
C10—H10A0.9800
C5—O2—C10117.97 (11)O3—C11—H11A109.5
C7—O3—C11117.44 (10)O3—C11—H11B109.5
C13—O4—H4O102.7 (12)H11A—C11—H11B109.5
O1—C1—C12119.77 (11)O3—C11—H11C109.5
O1—C1—C2119.13 (11)H11A—C11—H11C109.5
C12—C1—C2121.11 (11)H11B—C11—H11C109.5
C3—C2—C1120.65 (11)C13—C12—C21118.15 (11)
C3—C2—H2A119.7C13—C12—C1119.35 (11)
C1—C2—H2A119.7C21—C12—C1122.50 (11)
C2—C3—C4127.94 (12)O4—C13—C12121.93 (11)
C2—C3—H3A116.0O4—C13—C14116.85 (11)
C4—C3—H3A116.0C12—C13—C14121.22 (11)
C9—C4—C5116.67 (11)C15—C14—C19119.82 (11)
C9—C4—C3123.29 (11)C15—C14—C13121.53 (11)
C5—C4—C3120.00 (11)C19—C14—C13118.65 (11)
O2—C5—C6123.18 (11)C16—C15—C14120.33 (12)
O2—C5—C4115.50 (11)C16—C15—H15A119.8
C6—C5—C4121.32 (12)C14—C15—H15A119.8
C5—C6—C7119.80 (11)C15—C16—C17120.18 (12)
C5—C6—H6A120.1C15—C16—H16A119.9
C7—C6—H6A120.1C17—C16—H16A119.9
O3—C7—C8124.91 (11)C18—C17—C16120.48 (12)
O3—C7—C6114.42 (11)C18—C17—H17A119.8
C8—C7—C6120.67 (11)C16—C17—H17A119.8
C9—C8—C7118.31 (12)C17—C18—C19120.94 (12)
C9—C8—H8A120.8C17—C18—H18A119.5
C7—C8—H8A120.8C19—C18—H18A119.5
C8—C9—C4123.21 (12)C14—C19—C18118.24 (11)
C8—C9—H9A118.4C14—C19—C20119.51 (11)
C4—C9—H9A118.4C18—C19—C20122.24 (11)
O2—C10—H10A109.5C21—C20—C19120.66 (11)
O2—C10—H10B109.5C21—C20—H20A119.7
H10A—C10—H10B109.5C19—C20—H20A119.7
O2—C10—H10C109.5C20—C21—C12121.79 (11)
H10A—C10—H10C109.5C20—C21—H21A119.1
H10B—C10—H10C109.5C12—C21—H21A119.1
O1—C1—C2—C30.91 (18)C2—C1—C12—C214.86 (18)
C12—C1—C2—C3179.00 (11)C21—C12—C13—O4179.06 (10)
C1—C2—C3—C4178.69 (11)C1—C12—C13—O40.41 (17)
C2—C3—C4—C99.1 (2)C21—C12—C13—C140.81 (17)
C2—C3—C4—C5173.07 (12)C1—C12—C13—C14179.73 (10)
C10—O2—C5—C61.6 (2)O4—C13—C14—C151.54 (17)
C10—O2—C5—C4178.52 (14)C12—C13—C14—C15178.59 (11)
C9—C4—C5—O2178.52 (11)O4—C13—C14—C19178.34 (10)
C3—C4—C5—O20.59 (17)C12—C13—C14—C191.53 (17)
C9—C4—C5—C61.56 (18)C19—C14—C15—C160.24 (18)
C3—C4—C5—C6179.48 (11)C13—C14—C15—C16179.64 (11)
O2—C5—C6—C7179.17 (12)C14—C15—C16—C170.57 (19)
C4—C5—C6—C70.91 (19)C15—C16—C17—C180.90 (19)
C11—O3—C7—C83.18 (17)C16—C17—C18—C190.38 (19)
C11—O3—C7—C6177.12 (11)C15—C14—C19—C180.74 (17)
C5—C6—C7—O3179.88 (11)C13—C14—C19—C18179.15 (11)
C5—C6—C7—C80.17 (19)C15—C14—C19—C20179.25 (11)
O3—C7—C8—C9179.82 (11)C13—C14—C19—C200.86 (17)
C6—C7—C8—C90.13 (18)C17—C18—C19—C140.43 (18)
C7—C8—C9—C40.87 (19)C17—C18—C19—C20179.56 (12)
C5—C4—C9—C81.56 (18)C14—C19—C20—C210.52 (18)
C3—C4—C9—C8179.41 (11)C18—C19—C20—C21179.47 (12)
O1—C1—C12—C134.21 (17)C19—C20—C21—C121.29 (19)
C2—C1—C12—C13175.70 (11)C13—C12—C21—C200.62 (18)
O1—C1—C12—C21175.23 (11)C1—C12—C21—C20178.83 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O10.97 (2)1.59 (2)2.499 (1)155.1 (19)
C10—H10A···O1i0.982.573.538 (2)167
C11—H11B···O2ii0.982.583.442 (2)147
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O10.97 (2)1.59 (2)2.499 (1)155.1 (19)
C10—H10A···O1i0.982.573.538 (2)167
C11—H11B···O2ii0.982.583.442 (2)147
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1/2, y1/2, z+3/2.
 

References

First citationAhn, S., Lee, H.-J., Lim, Y. & Koh, D. (2013). Acta Cryst. E69, o666.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFuchigami, T., Yamashita, Y., Haratake, M., Ono, M. & Yoshida, S. (2014). Bioorg. Med. Chem. 22, 2622–2628.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJuvale, K., Stefan, K. & Wiese, M. (2013). Eur. J. Med. Chem. 67, 115–126.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKim, S.-J., Kim, C. G., Yun, S.-R., Kim, J.-K. & Jun, J.-G. (2014). Bioorg. Med. Chem. Lett. 24, 181–185.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLim, Y. & Koh, D. (2013). Acta Cryst. E69, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationMai, C. W., Yaebhoobi, M., Abd-Rhaman, N., Kang, Y. B. & Pichchika, M. R. (2014). Eur. J. Med. Chem. 77, 378–387.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018–7024.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSmit, F. J. & D'Na, D. D. (2014). Bioorg. Med. Chem. 22, 1128–1138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1034-o1035
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds