organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1029-o1030

Crystal structure of N-(1-allyl-3-chloro-4-eth­­oxy-1H-indazol-5-yl)-4-meth­oxybenzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_bouissane@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 August 2014; accepted 13 August 2014; online 20 August 2014)

In the title compound, C19H20ClN3O4S, the benzene ring is inclined to the indazole ring system (r.m.s. deviation = 0.014 Å) by 65.07 (8)°. The allyl and eth­oxy groups are almost normal to the indazole ring, as indicated by the respective torsion angles [N—N—C—C = 111.6 (2) and C—C—O—C = −88.1 (2)°]. In the crystal, mol­ecules are connected by N—H⋯N hydrogen bonds, forming helical chains propagating along [010]. The chains are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

1. Related literature

For the biological activity of sulfonamides, see: El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Mustafa et al. (2012[Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]); Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]); Ghorab et al. (2009[Ghorab, M. M., Ragab, F. A. & Hamed, M. M. (2009). Eur. J. Med. Chem. 44, 4211-4217.]). For similar compounds, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2014[Chicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H20ClN3O4S

  • Mr = 421.89

  • Monoclinic, P 21

  • a = 8.2699 (7) Å

  • b = 13.1235 (12) Å

  • c = 10.0026 (9) Å

  • β = 110.379 (5)°

  • V = 1017.64 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.42 × 0.32 × 0.28 mm

2.2. Data collection

  • Bruker X8 APEX Diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.670, Tmax = 0.746

  • 12792 measured reflections

  • 5605 independent reflections

  • 4754 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.03

  • 5605 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.])

  • Absolute structure parameter: −0.04 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯N2i 0.84 2.11 2.931 (2) 166
C19—H19A⋯O3ii 0.96 2.37 3.285 (2) 159
C3—H3B⋯O2iii 0.97 2.47 3.418 (3) 165
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For the biological activity of sulfonamides, see: El-Sayed et al. (2011); Mustafa et al. (2012); Bouissane et al. (2006); Ghorab et al. (2009). For similar compounds, see: Abbassi et al. (2012, 2013); Chicha et al. (2014).

Experimental top

A mixture of 1-allyl-3-chloro-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate:hexane 2:8). Crystals of the title compound were obtained by recrystallization from ethanol (yield = 43%; m.p. = 397 K).

Refinement top

Reflections (001) and (100), affected by the beam stop, were removed from the refinement. The H atoms were located in a difference map and treated as riding atoms: N–H = 0.84 Å, C–H = 0.93 - 0.97 Å, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
N-(1-Allyl-3-chloro-4-ethoxy-1H-indazol-5-yl)-4-methoxybenzenesulfonamide top
Crystal data top
C19H20ClN3O4SF(000) = 440
Mr = 421.89Dx = 1.377 Mg m3
Monoclinic, P21Melting point: 397 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.2699 (7) ÅCell parameters from 5605 reflections
b = 13.1235 (12) Åθ = 2.6–29.6°
c = 10.0026 (9) ŵ = 0.32 mm1
β = 110.379 (5)°T = 296 K
V = 1017.64 (16) Å3Prism, colourless
Z = 20.42 × 0.32 × 0.28 mm
Data collection top
Bruker X8 APEX Diffractometer5605 independent reflections
Radiation source: fine-focus sealed tube4754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 29.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1111
Tmin = 0.670, Tmax = 0.746k = 1818
12792 measured reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.0481P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5605 reflectionsΔρmax = 0.18 e Å3
253 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
C19H20ClN3O4SV = 1017.64 (16) Å3
Mr = 421.89Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.2699 (7) ŵ = 0.32 mm1
b = 13.1235 (12) ÅT = 296 K
c = 10.0026 (9) Å0.42 × 0.32 × 0.28 mm
β = 110.379 (5)°
Data collection top
Bruker X8 APEX Diffractometer5605 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4754 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.746Rint = 0.028
12792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.18 e Å3
S = 1.03Δρmin = 0.20 e Å3
5605 reflectionsAbsolute structure: Flack & Bernardinelli (2000)
253 parametersAbsolute structure parameter: 0.04 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5375 (4)0.8680 (4)0.9417 (3)0.1124 (13)
H1A0.61820.81590.95770.135*
H1B0.53440.90841.01730.135*
C20.4301 (3)0.8844 (2)0.8151 (3)0.0706 (7)
H20.35060.93700.80180.085*
C30.4268 (2)0.82350 (16)0.6893 (2)0.0519 (4)
H3A0.46290.86630.62570.062*
H3B0.50890.76800.72060.062*
C40.0173 (2)0.76621 (13)0.43723 (18)0.0438 (4)
C50.0066 (2)0.69652 (13)0.54239 (16)0.0396 (3)
C60.1670 (2)0.70913 (13)0.65413 (18)0.0411 (4)
C70.2124 (2)0.65003 (15)0.77993 (19)0.0472 (4)
H70.31870.65750.85260.057*
C80.0936 (2)0.58180 (14)0.78968 (19)0.0455 (4)
H80.12000.54200.87140.055*
C90.0697 (2)0.56870 (13)0.68005 (17)0.0387 (3)
C100.1141 (2)0.62525 (13)0.55548 (17)0.0389 (3)
C110.4058 (3)0.67175 (17)0.4348 (2)0.0595 (5)
H11A0.36800.74220.44670.071*
H11B0.44980.65480.51020.071*
C120.5450 (3)0.6575 (2)0.2914 (3)0.0826 (8)
H12A0.64100.70090.28460.124*
H12B0.58210.58770.28070.124*
H12C0.50060.67480.21760.124*
C130.1432 (2)0.47263 (13)0.97527 (17)0.0372 (3)
C140.0709 (2)0.37584 (14)1.00480 (19)0.0445 (4)
H140.09980.32610.93420.053*
C150.0440 (2)0.35386 (14)1.1395 (2)0.0472 (4)
H150.09360.28951.15940.057*
C160.0854 (2)0.42823 (14)1.24556 (18)0.0412 (4)
C170.0108 (3)0.52403 (15)1.21696 (19)0.0509 (5)
H170.03650.57321.28820.061*
C180.1031 (2)0.54584 (15)1.08055 (19)0.0472 (4)
H180.15250.61031.06030.057*
C190.2358 (3)0.4703 (2)1.4897 (2)0.0654 (6)
H19A0.31880.44141.57390.098*
H19B0.13100.48451.50710.098*
H19C0.28080.53231.46560.098*
N10.25612 (19)0.78146 (13)0.61078 (16)0.0475 (3)
H1N0.19660.43990.64540.057*
N20.1641 (2)0.81619 (12)0.47747 (17)0.0487 (4)
N30.18652 (19)0.49314 (12)0.69400 (14)0.0450 (3)
O10.26451 (16)0.60654 (10)0.44257 (13)0.0492 (3)
O20.3468 (2)0.60356 (12)0.80661 (15)0.0631 (4)
O30.41372 (18)0.41918 (13)0.76263 (15)0.0663 (4)
O40.20127 (17)0.39973 (12)1.37445 (14)0.0575 (4)
S10.29029 (5)0.50045 (3)0.80328 (4)0.04255 (11)
Cl10.13391 (7)0.78969 (4)0.27168 (5)0.06011 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0692 (16)0.197 (4)0.0710 (18)0.008 (2)0.0241 (14)0.035 (2)
C20.0470 (11)0.0776 (16)0.0869 (16)0.0028 (11)0.0230 (11)0.0236 (13)
C30.0415 (9)0.0562 (11)0.0615 (11)0.0034 (8)0.0223 (8)0.0045 (9)
C40.0545 (10)0.0401 (10)0.0375 (8)0.0026 (8)0.0168 (7)0.0043 (7)
C50.0474 (9)0.0380 (8)0.0345 (7)0.0047 (7)0.0155 (6)0.0034 (6)
C60.0436 (8)0.0399 (9)0.0415 (8)0.0019 (7)0.0169 (7)0.0041 (7)
C70.0441 (9)0.0529 (11)0.0404 (8)0.0016 (8)0.0096 (7)0.0075 (7)
C80.0517 (10)0.0480 (10)0.0367 (8)0.0037 (8)0.0154 (7)0.0096 (7)
C90.0471 (9)0.0340 (8)0.0377 (8)0.0011 (7)0.0184 (7)0.0012 (6)
C100.0460 (8)0.0355 (8)0.0343 (7)0.0020 (7)0.0129 (6)0.0020 (6)
C110.0527 (10)0.0579 (12)0.0599 (11)0.0003 (10)0.0097 (9)0.0046 (10)
C120.0651 (14)0.0873 (19)0.0745 (15)0.0002 (13)0.0023 (12)0.0097 (14)
C130.0374 (7)0.0407 (9)0.0341 (7)0.0006 (6)0.0129 (6)0.0056 (6)
C140.0526 (9)0.0398 (9)0.0398 (8)0.0039 (8)0.0145 (7)0.0014 (7)
C150.0530 (10)0.0396 (9)0.0487 (9)0.0108 (8)0.0171 (8)0.0061 (7)
C160.0353 (7)0.0475 (10)0.0390 (8)0.0030 (7)0.0108 (6)0.0053 (7)
C170.0548 (10)0.0466 (11)0.0424 (9)0.0043 (8)0.0057 (7)0.0067 (7)
C180.0532 (10)0.0382 (9)0.0447 (9)0.0072 (7)0.0100 (8)0.0024 (7)
C190.0630 (12)0.0784 (16)0.0416 (10)0.0014 (11)0.0013 (8)0.0019 (10)
N10.0483 (7)0.0480 (8)0.0464 (8)0.0015 (7)0.0169 (6)0.0078 (7)
N20.0601 (9)0.0433 (8)0.0465 (8)0.0024 (7)0.0234 (7)0.0091 (6)
N30.0608 (8)0.0372 (7)0.0419 (7)0.0087 (7)0.0241 (6)0.0053 (6)
O10.0551 (7)0.0475 (7)0.0390 (6)0.0016 (6)0.0089 (5)0.0066 (5)
O20.0731 (9)0.0687 (10)0.0497 (8)0.0340 (8)0.0242 (7)0.0146 (7)
O30.0477 (7)0.0917 (12)0.0499 (8)0.0213 (8)0.0049 (6)0.0132 (8)
O40.0520 (7)0.0689 (9)0.0419 (6)0.0142 (7)0.0041 (5)0.0047 (6)
S10.03950 (19)0.0505 (2)0.03584 (18)0.00353 (19)0.01090 (14)0.00789 (17)
Cl10.0752 (3)0.0580 (3)0.0390 (2)0.0010 (2)0.0097 (2)0.0121 (2)
Geometric parameters (Å, º) top
C1—C21.287 (4)C11—H11B0.9700
C1—H1A0.9300C12—H12A0.9600
C1—H1B0.9300C12—H12B0.9600
C2—C31.483 (3)C12—H12C0.9600
C2—H20.9300C13—C181.378 (3)
C3—N11.463 (2)C13—C141.391 (2)
C3—H3A0.9700C13—S11.7650 (16)
C3—H3B0.9700C14—C151.382 (2)
C4—N21.313 (2)C14—H140.9300
C4—C51.420 (2)C15—C161.393 (3)
C4—Cl11.7201 (17)C15—H150.9300
C5—C101.407 (2)C16—O41.3636 (19)
C5—C61.416 (2)C16—C171.386 (3)
C6—N11.362 (2)C17—C181.391 (2)
C6—C71.413 (2)C17—H170.9300
C7—C81.358 (3)C18—H180.9300
C7—H70.9300C19—O41.428 (3)
C8—C91.423 (2)C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C9—C101.385 (2)C19—H19C0.9600
C9—N31.425 (2)N1—N21.363 (2)
C10—O11.3801 (19)N3—S11.6106 (14)
C11—O11.428 (2)N3—H1N0.8390
C11—C121.506 (3)O2—S11.4358 (15)
C11—H11A0.9700O3—S11.4338 (15)
C2—C1—H1A120.0C11—C12—H12C109.5
C2—C1—H1B120.0H12A—C12—H12C109.5
H1A—C1—H1B120.0H12B—C12—H12C109.5
C1—C2—C3123.2 (3)C18—C13—C14120.21 (15)
C1—C2—H2118.4C18—C13—S1120.10 (13)
C3—C2—H2118.4C14—C13—S1119.68 (13)
N1—C3—C2112.82 (16)C15—C14—C13119.75 (16)
N1—C3—H3A109.0C15—C14—H14120.1
C2—C3—H3A109.0C13—C14—H14120.1
N1—C3—H3B109.0C14—C15—C16119.95 (16)
C2—C3—H3B109.0C14—C15—H15120.0
H3A—C3—H3B107.8C16—C15—H15120.0
N2—C4—C5112.59 (15)O4—C16—C17124.04 (16)
N2—C4—Cl1119.34 (13)O4—C16—C15115.67 (16)
C5—C4—Cl1128.07 (14)C17—C16—C15120.29 (15)
C10—C5—C6120.30 (15)C16—C17—C18119.33 (17)
C10—C5—C4136.61 (15)C16—C17—H17120.3
C6—C5—C4103.08 (15)C18—C17—H17120.3
N1—C6—C7131.36 (16)C13—C18—C17120.43 (17)
N1—C6—C5107.00 (15)C13—C18—H18119.8
C7—C6—C5121.61 (16)C17—C18—H18119.8
C8—C7—C6116.83 (15)O4—C19—H19A109.5
C8—C7—H7121.6O4—C19—H19B109.5
C6—C7—H7121.6H19A—C19—H19B109.5
C7—C8—C9122.74 (16)O4—C19—H19C109.5
C7—C8—H8118.6H19A—C19—H19C109.5
C9—C8—H8118.6H19B—C19—H19C109.5
C10—C9—C8120.76 (16)C6—N1—N2111.39 (14)
C10—C9—N3119.00 (15)C6—N1—C3128.29 (16)
C8—C9—N3120.16 (14)N2—N1—C3120.30 (16)
O1—C10—C9121.44 (16)C4—N2—N1105.93 (14)
O1—C10—C5120.56 (15)C9—N3—S1124.38 (12)
C9—C10—C5117.75 (15)C9—N3—H1N117.2
O1—C11—C12108.46 (19)S1—N3—H1N118.3
O1—C11—H11A110.0C10—O1—C11115.14 (13)
C12—C11—H11A110.0C16—O4—C19117.56 (16)
O1—C11—H11B110.0O3—S1—O2120.14 (10)
C12—C11—H11B110.0O3—S1—N3104.96 (9)
H11A—C11—H11B108.4O2—S1—N3109.07 (8)
C11—C12—H12A109.5O3—S1—C13107.67 (8)
C11—C12—H12B109.5O2—S1—C13106.96 (8)
H12A—C12—H12B109.5N3—S1—C13107.45 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···N2i0.842.112.931 (2)166
C19—H19A···O3ii0.962.373.285 (2)159
C3—H3B···O2iii0.972.473.418 (3)165
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···N2i0.842.112.931 (2)166
C19—H19A···O3ii0.962.373.285 (2)159
C3—H3B···O2iii0.972.473.418 (3)165
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhorab, M. M., Ragab, F. A. & Hamed, M. M. (2009). Eur. J. Med. Chem. 44, 4211–4217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1029-o1030
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds