research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl 2-[2,4-bis­­(4-fluoro­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-yl­­idene]hydrazine­carboxyl­ate

aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Chidambaram, Tamilnadu, India, and bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: krishnasamybala56@gmail.com, smurugavel27@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 August 2014; accepted 21 August 2014; online 30 August 2014)

In the title compound, C22H23F2N3O2, the bicyclic ring system exists in a twin-chair conformation with an equatorial disposition of the 4-fluoro­phenyl groups on the heterocycle. These aromatic rings are inclined to one another by 19.4 (1)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O and C—H⋯O hydrogen bonds into inversion dimers, incorporating R12(7) and R22(8) ring motifs; the same O atom accepts both hydrogen bonds. These dimers are further linked by a pair of C—H⋯F hydrogen bonds, enclosing R22(28) ring motifs, forming supra­molecular chains along [010]. The NH group of the pyridine ring is not involved in hydrogen bonding, probably due to the steric hindrance of the fluoro­phenyl groups.

1. Chemical context

Mol­ecules containing the 3-aza­bicyclo­[3.3.1]nonane nucleus are of great inter­est due to their presence in a wide range of naturally occurring diterpenoid/norditerpenoid alkaloids and their broad-spectrum biological activities, such as anti­microbial, analgesic, antagonistic, anti-inflammatory and local anesthetic hypotensive activity (Parthiban et al., 2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981-6985.]; Hardick et al., 1996[Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860-4866.]; Jeyaraman & Avila, 1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]). Hence, the synthesis of new mol­ecules with the 3-aza­bicyclo­[3.3.1]nonane nucleus and their stereochemical investigation are of inter­est in the field of medicinal chemistry. Also, the stereochemistry of such mol­ecules is a major criterium for their biological response. As a consequence, the present study was undertaken to examine the configuration and conformation of the synthesized title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, (I)[link], is illus­trated in Fig. 1[link]. The bi­cyclo ring system adopts a twin-chair conformation, with puckering parameters Q = 0.593 (2) Å, θ = 170.8 (2)° and φ = 353.9 (1)° for the N1/C1–C5 piperidine ring, and Q = 0.546 (2) Å, θ = 10.9 (2)° and φ = 65.0 (1)° for the C2–C4/C6–C8) cyclo­hexane ring. The fluoro­phenyl groups on the heterocycle occupy equatorial positions and are inclined to one another by 19.4 (1)°. The geometric parameters of the title mol­ecule agree well with those reported for similar structures, for example, 2,4-bis­(4-fluoro­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one, (II) (Parthiban et al., 2008[Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1710.]), and 2,4-bis­(4-fluoro­phen­yl)-1,5-dimethyl-3-aza­bicyclo­[3.3.1]nonan-9-one, (III) (Rizwana Begum et al., 2013[Rizwana Begum, S., Hema, R., Venkateswaramoorthi, R., Krishnasamy, K. & Anitha, A. G. (2013). Acta Cryst. E69, o1525.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, pairs of bifurcated acceptor N3—H3⋯O3i and C2—H2⋯O3i (Table 1[link]) hydrogen bonds link mol­ecules into inversion dimers, incorporating R12(7) and R22(8) ring motifs (Fig. 2[link]). These dimers are further linked through a pair of C22—H22C⋯F1ii (Table 1[link]) hydrogen bonds, enclosing R22(28) ring motifs, forming supra­molecular chains along the b-axis direction (Fig. 2).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.86 2.12 2.930 (2) 157
C2—H2⋯O3i 0.98 2.49 3.442 (2) 163
C22—H22C⋯F1ii 0.96 2.49 3.243 (3) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].
[Figure 2]
Figure 2
Partial view of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1[link] for details). H atoms not involved in hydrogen bonding have been omitted for clarity).

The NH group of the pyridine ring is not involved in hydrogen bonding, probably due to the steric hindrance of the fluoro­phenyl groups. Such a situation was reported for a similar bicyclic system substituted by di­fluoro­phenyl rings, viz. compound (III) (Rizwana Begum et al., 2013[Rizwana Begum, S., Hema, R., Venkateswaramoorthi, R., Krishnasamy, K. & Anitha, A. G. (2013). Acta Cryst. E69, o1525.]).

4. Database survey

38 `hits' for crystal structures containing the 3-aza­bicyclo­[3.3.1]nonane subunit were obtained for a search of the Cambridge Structural Database (CSD, Version 5.35, last update of February 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). However, extending the search to allow additional substitution of 4-fluoro­phenyl groups on the bicyclic ring gave two hits, namely compounds (II) and (III) mentioned above (Section 2). Compound (III) crystallized with two independent mol­ecules (A and B) in the asymmetric unit. In all three compounds, the bi­cyclo rings have twin-chair conformations with equatorially disposed 4-fluoro­phenyl groups on the heterocycle. The fluoro­phenyl rings are oriented at an angle of 28.7 (1)° in (II), and 55.3 (1) (mol­ecule A) and 56.4 (1)° (mol­ecule B) for (III), compared to 19.4 (1)° in the title compound, (I)[link].

5. Synthesis and crystallization

A mixture of 2,4-diphenyl-3-aza­bicyclo­[3.3.1]nonan-9-one (0.1 mmol), methyl hydrazine­carboxyl­ate (1.5 mmol) in an ethanol–chloro­form (1:1 v/v) medium, with the addition of few drops of acetic acid, was stirred for 10–12 h. After completion of the reaction a solid mass was formed. The precipitate was filtered off and washed with an ethanol–water mixture. The crude product was then recrystallized from ethanol–chloro­form to obtain colourless diffraction-quality crystals of title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and constrained to ride on their parent atom, with N—H = 0.86 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C22H23F2N3O2
Mr 399.43
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 19.751 (6), 7.087 (2), 28.492 (9)
β (°) 102.997 (4)
V3) 3886 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.38 × 0.36 × 0.34
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.962, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 18613, 3793, 2872
Rint 0.030
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.04
No. of reflections 3793
No. of parameters 263
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.44
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia (2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Molecules containing the 3-aza­bicyclo­[3.3.1]nonane nucleus are of great inter­est due to their presence in a wide range of naturally occurring diterpenoid/norditerpenoid alkaloids and their broad-spectrum biological activities, such as anti­microbial, analgesic, antagonistic, anti-inflammatory and local anesthetic hypotensive activity (Parthiban et al., 2009; Hardick et al., 1996; Jeyaraman & Avila, 1981). Hence, the synthesis of new molecules with the 3-aza­bicyclo­[3.3.1]nonane nucleus and their stereochemical investigation are of inter­est in the field of medicinal chemistry. Also, the stereochemistry of such molecules is a major criterium for their biological response. As a consequence, the present study was undertaken to examine the configuration and conformation of the synthesized title compound.

Structural commentary top

The molecular structure of the title compound, (I), is illustrated in Fig. 1. The bi­cyclo ring system adopts a twin-chair conformation, with puckering parameters Q = 0.593 (2) Å, θ = 170.8 (2)° and ϕ = 353.9 (1)° for the N1/C1–C5 piperidine ring, and Q = 0.546 (2) Å, θ = 10.9 (2)° and ϕ = 65.0 (1)° for the C2–C4/C6–C8) cyclo­hexane ring. The fluoro­phenyl groups on the heterocycle occupy equatorial positions and are inclined to one another by 19.4 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures, for example, 2,4-bis­(4-fluoro­phenyl)-3-aza­bicyclo­[3.3.1]nonan-9-one, (II) (Parthiban et al., 2008), and 2,4-bis­(4-fluoro­phenyl)-1,5-di­methyl-3-aza­bicyclo­[3.3.1]nonan-9-one, (III) (Rizwana Begum et al., 2013).

Supra­molecular features top

In the crystal, pairs of bifurcated acceptor N3—H3···O3i and C2—H2···O3i (Table 1) hydrogen bonds link molecules into inversion dimers, incorporating R12(7) and R22(8) ring motifs (Fig. 2). These dimers are further linked through a pair of C22—H22C···F1ii (Table 1) hydrogen bonds, enclosing R22(28) ring motifs, forming supra­molecular chains along the b-axis direction (Fig. 3).

The NH group of the pyridine ring is not involved in hydrogen bonding, probably due to the steric hindrance of the fluoro­phenyl groups. Such a situation was reported for a similar bicyclic system substituted by di­fluoro­phenyl rings, viz. compound (III) (Rizwana Begum et al., 2013).

Database survey top

38 `hits' for crystal structures containing the 3-aza­bicyclo­[3.3.1]nonane subunit were obtained for a search of the Cambridge Structural Database (CSD, Version 5.35, last update of February 2014; Allen, 2002). However, extending the search to allow additional substitution of 4-fluoro­phenyl groups on the bicyclic ring gave two hits, namely compounds (II) and (III) mentioned above (Section 2). Compound (III) crystallized with two independent molecules (A and B) in the asymmetric unit. In all three compounds, the bi­cyclo rings have twin-chair conformations with equatorially disposed 4-fluoro­phenyl groups on the heterocycle. The fluoro­phenyl rings are oriented at an angle of 28.7 (1)° in (II), and 55.3 (1) (molecule A) and 56.4 (1)° (molecule B) for (III), compared to 19.4 (1)° in the title compound, (I).

Synthesis and crystallization top

A mixture of 2,4-di­phenyl-3-aza­bicyclo­[3.3.1]nonan-9-one (0.1 mmol), methyl hydrazine­carboxyl­ate (1.5 mmol) in an ethanol–chloro­form (1:1 v/v) medium, with the addition of few drops of acetic acid, was stirred for 10–12 h. After completion of the reaction a solid mass was formed. The precipitate was filtered off and washed with an ethanol–water mixture. The crude product was then recrystallized from ethanol–chloro­form to obtain colourless diffraction-quality crystals of title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and constrained to ride on their parent atom, with N—H = 0.86 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for all other H atoms.

Related literature top

For related literature, see: Allen (2002); Hardick et al. (1996); Jeyaraman & Avila (1981); Parthiban et al. (2008, 2009); Rizwana Begum, Hema, Venkateswaramoorthi, Krishnasamy & Anitha (2013).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia (2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial view of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details). H atoms not involved in hydrogen bonding have been omitted for clarity).
2-[2,4-Bis(4-fluorophenyl)-3-azabicyclo[3.3.1]nonan-9-ylidene]hydrazinecarboxylate top
Crystal data top
C22H23F2N3O2F(000) = 1680
Mr = 399.43Dx = 1.365 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3821 reflections
a = 19.751 (6) Åθ = 1.5–26.1°
b = 7.087 (2) ŵ = 0.10 mm1
c = 28.492 (9) ÅT = 293 K
β = 102.997 (4)°Needle, colourless
V = 3886 (2) Å30.38 × 0.36 × 0.34 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3793 independent reflections
Radiation source: fine-focus sealed tube2872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.962, Tmax = 0.966k = 88
18613 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0752P)2 + 2.7221P]
where P = (Fo2 + 2Fc2)/3
3793 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C22H23F2N3O2V = 3886 (2) Å3
Mr = 399.43Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.751 (6) ŵ = 0.10 mm1
b = 7.087 (2) ÅT = 293 K
c = 28.492 (9) Å0.38 × 0.36 × 0.34 mm
β = 102.997 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3793 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2872 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.966Rint = 0.030
18613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
3793 reflectionsΔρmin = 0.44 e Å3
263 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34340 (10)0.7153 (3)0.09187 (6)0.0395 (4)
H10.29350.72160.07750.047*
C20.37276 (10)0.9185 (3)0.09443 (6)0.0397 (4)
H20.36140.97400.06210.048*
C30.33596 (9)1.0266 (3)0.12629 (6)0.0375 (4)
C40.35286 (10)0.9504 (3)0.17646 (6)0.0418 (4)
H40.32801.02580.19600.050*
C50.32457 (10)0.7461 (3)0.17394 (6)0.0411 (4)
H50.27400.75140.16250.049*
C60.45136 (10)0.9334 (3)0.11470 (7)0.0488 (5)
H6A0.47470.85210.09600.059*
H6B0.46581.06190.11050.059*
C70.47506 (11)0.8806 (4)0.16730 (8)0.0568 (6)
H7A0.47370.74450.17040.068*
H7B0.52280.92110.17900.068*
C80.43043 (11)0.9689 (3)0.19781 (7)0.0506 (5)
H8A0.44211.10160.20210.061*
H8B0.44110.91000.22940.061*
C90.37645 (10)0.5907 (3)0.06043 (7)0.0415 (4)
C100.35221 (11)0.5986 (3)0.01104 (7)0.0500 (5)
H100.31580.67970.00200.060*
C110.38109 (13)0.4882 (4)0.01910 (8)0.0609 (6)
H110.36480.49410.05230.073*
C120.43378 (14)0.3710 (3)0.00080 (9)0.0622 (7)
C130.45997 (13)0.3609 (3)0.04883 (9)0.0631 (6)
H130.49690.28080.06140.076*
C140.43080 (12)0.4716 (3)0.07882 (8)0.0530 (5)
H140.44820.46560.11190.064*
C150.34057 (10)0.6549 (3)0.22311 (6)0.0435 (5)
C160.38849 (13)0.5154 (3)0.23568 (8)0.0603 (6)
H160.41120.46930.21280.072*
C170.40412 (15)0.4407 (4)0.28160 (9)0.0718 (7)
H170.43680.34490.28970.086*
C180.37098 (14)0.5097 (4)0.31434 (8)0.0628 (6)
C190.32234 (13)0.6474 (4)0.30379 (7)0.0618 (6)
H190.30010.69200.32710.074*
C200.30660 (12)0.7197 (3)0.25771 (7)0.0530 (5)
H200.27280.81290.24970.064*
C210.22233 (9)1.3588 (3)0.05966 (6)0.0383 (4)
C220.14426 (13)1.5496 (4)0.08890 (9)0.0650 (6)
H22A0.16361.67210.08590.098*
H22B0.12141.55000.11530.098*
H22C0.11131.51890.05970.098*
N10.35236 (8)0.6352 (2)0.13996 (5)0.0416 (4)
H1A0.37280.52890.14770.050*
N20.29174 (8)1.1591 (2)0.11708 (5)0.0384 (4)
N30.27210 (8)1.2269 (2)0.07053 (5)0.0396 (4)
H30.29171.18460.04860.048*
O20.19861 (7)1.4123 (2)0.09762 (5)0.0516 (4)
O30.20192 (7)1.4228 (2)0.01966 (5)0.0487 (4)
F10.46171 (10)0.2594 (2)0.02847 (6)0.0940 (6)
F20.38685 (10)0.4378 (3)0.35949 (5)0.0986 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0405 (10)0.0478 (11)0.0313 (9)0.0021 (8)0.0106 (7)0.0020 (8)
C20.0476 (10)0.0434 (10)0.0304 (9)0.0083 (8)0.0135 (7)0.0069 (7)
C30.0404 (10)0.0407 (10)0.0313 (9)0.0023 (8)0.0076 (7)0.0024 (7)
C40.0489 (11)0.0472 (11)0.0297 (9)0.0082 (9)0.0099 (8)0.0010 (8)
C50.0401 (10)0.0529 (11)0.0321 (9)0.0018 (9)0.0118 (7)0.0029 (8)
C60.0480 (11)0.0475 (11)0.0548 (12)0.0002 (9)0.0196 (9)0.0048 (9)
C70.0443 (11)0.0638 (14)0.0594 (13)0.0012 (10)0.0058 (10)0.0053 (11)
C80.0551 (12)0.0540 (12)0.0389 (10)0.0035 (10)0.0025 (9)0.0043 (9)
C90.0470 (11)0.0421 (10)0.0393 (10)0.0047 (9)0.0176 (8)0.0004 (8)
C100.0563 (12)0.0567 (13)0.0398 (10)0.0074 (10)0.0166 (9)0.0040 (9)
C110.0782 (16)0.0654 (15)0.0465 (12)0.0200 (13)0.0297 (11)0.0146 (11)
C120.0825 (17)0.0447 (12)0.0751 (16)0.0148 (12)0.0510 (14)0.0160 (11)
C130.0748 (16)0.0466 (12)0.0798 (17)0.0107 (11)0.0427 (13)0.0097 (11)
C140.0636 (13)0.0503 (12)0.0507 (12)0.0054 (10)0.0247 (10)0.0076 (9)
C150.0483 (11)0.0491 (11)0.0357 (10)0.0036 (9)0.0148 (8)0.0044 (8)
C160.0775 (16)0.0636 (14)0.0453 (12)0.0138 (12)0.0253 (11)0.0119 (10)
C170.0903 (19)0.0704 (17)0.0563 (14)0.0167 (14)0.0196 (13)0.0236 (12)
C180.0850 (17)0.0676 (15)0.0365 (11)0.0139 (13)0.0149 (11)0.0140 (10)
C190.0779 (16)0.0761 (16)0.0387 (11)0.0159 (13)0.0286 (11)0.0025 (11)
C200.0594 (13)0.0634 (14)0.0411 (11)0.0017 (11)0.0217 (9)0.0018 (10)
C210.0400 (10)0.0384 (10)0.0379 (10)0.0013 (8)0.0114 (8)0.0006 (8)
C220.0655 (15)0.0639 (15)0.0700 (15)0.0241 (12)0.0245 (12)0.0003 (12)
N10.0524 (9)0.0429 (9)0.0319 (8)0.0040 (7)0.0146 (7)0.0046 (6)
N20.0431 (9)0.0424 (9)0.0303 (8)0.0052 (7)0.0093 (6)0.0031 (6)
N30.0439 (8)0.0449 (9)0.0317 (8)0.0089 (7)0.0122 (6)0.0041 (6)
O20.0583 (9)0.0564 (9)0.0440 (8)0.0180 (7)0.0196 (6)0.0038 (6)
O30.0555 (8)0.0514 (8)0.0389 (7)0.0143 (7)0.0099 (6)0.0087 (6)
F10.1259 (14)0.0680 (10)0.1142 (13)0.0134 (9)0.0820 (11)0.0356 (9)
F20.1409 (15)0.1101 (13)0.0446 (8)0.0095 (11)0.0204 (9)0.0314 (8)
Geometric parameters (Å, º) top
C1—N11.457 (2)C11—H110.9300
C1—C91.507 (3)C12—C131.352 (3)
C1—C21.548 (3)C12—F11.354 (2)
C1—H10.9800C13—C141.378 (3)
C2—C31.495 (2)C13—H130.9300
C2—C61.533 (3)C14—H140.9300
C2—H20.9800C15—C161.360 (3)
C3—N21.269 (2)C15—C201.389 (3)
C3—C41.494 (2)C16—C171.381 (3)
C4—C81.522 (3)C16—H160.9300
C4—C51.548 (3)C17—C181.346 (4)
C4—H40.9800C17—H170.9300
C5—N11.447 (2)C18—F21.353 (2)
C5—C151.510 (3)C18—C191.355 (4)
C5—H50.9800C19—C201.378 (3)
C6—C71.513 (3)C19—H190.9300
C6—H6A0.9700C20—H200.9300
C6—H6B0.9700C21—O31.208 (2)
C7—C81.506 (3)C21—O21.327 (2)
C7—H7A0.9700C21—N31.342 (2)
C7—H7B0.9700C22—O21.428 (3)
C8—H8A0.9700C22—H22A0.9600
C8—H8B0.9700C22—H22B0.9600
C9—C141.373 (3)C22—H22C0.9600
C9—C101.382 (3)N1—H1A0.8600
C10—C111.376 (3)N2—N31.3814 (19)
C10—H100.9300N3—H30.8600
C11—C121.352 (4)
N1—C1—C9110.73 (15)C11—C10—H10119.5
N1—C1—C2110.67 (15)C9—C10—H10119.5
C9—C1—C2111.42 (15)C12—C11—C10118.4 (2)
N1—C1—H1108.0C12—C11—H11120.8
C9—C1—H1108.0C10—C11—H11120.8
C2—C1—H1108.0C13—C12—C11122.7 (2)
C3—C2—C6108.99 (16)C13—C12—F1118.4 (2)
C3—C2—C1106.09 (14)C11—C12—F1118.8 (2)
C6—C2—C1114.73 (16)C12—C13—C14118.6 (2)
C3—C2—H2109.0C12—C13—H13120.7
C6—C2—H2109.0C14—C13—H13120.7
C1—C2—H2109.0C9—C14—C13120.9 (2)
N2—C3—C4117.43 (16)C9—C14—H14119.6
N2—C3—C2131.26 (16)C13—C14—H14119.6
C4—C3—C2111.18 (15)C16—C15—C20118.16 (18)
C3—C4—C8109.85 (16)C16—C15—C5122.92 (17)
C3—C4—C5107.04 (15)C20—C15—C5118.90 (19)
C8—C4—C5114.81 (16)C15—C16—C17121.5 (2)
C3—C4—H4108.3C15—C16—H16119.2
C8—C4—H4108.3C17—C16—H16119.2
C5—C4—H4108.3C18—C17—C16118.5 (2)
N1—C5—C15110.89 (16)C18—C17—H17120.7
N1—C5—C4110.59 (15)C16—C17—H17120.7
C15—C5—C4111.04 (15)C17—C18—F2118.5 (3)
N1—C5—H5108.1C17—C18—C19122.6 (2)
C15—C5—H5108.1F2—C18—C19118.9 (2)
C4—C5—H5108.1C18—C19—C20118.4 (2)
C7—C6—C2114.68 (16)C18—C19—H19120.8
C7—C6—H6A108.6C20—C19—H19120.8
C2—C6—H6A108.6C19—C20—C15120.8 (2)
C7—C6—H6B108.6C19—C20—H20119.6
C2—C6—H6B108.6C15—C20—H20119.6
H6A—C6—H6B107.6O3—C21—O2123.87 (17)
C8—C7—C6112.23 (18)O3—C21—N3123.44 (17)
C8—C7—H7A109.2O2—C21—N3112.68 (15)
C6—C7—H7A109.2O2—C22—H22A109.5
C8—C7—H7B109.2O2—C22—H22B109.5
C6—C7—H7B109.2H22A—C22—H22B109.5
H7A—C7—H7B107.9O2—C22—H22C109.5
C7—C8—C4113.64 (17)H22A—C22—H22C109.5
C7—C8—H8A108.8H22B—C22—H22C109.5
C4—C8—H8A108.8C5—N1—C1115.71 (15)
C7—C8—H8B108.8C5—N1—H1A122.1
C4—C8—H8B108.8C1—N1—H1A122.1
H8A—C8—H8B107.7C3—N2—N3119.17 (15)
C14—C9—C10118.38 (19)C21—N3—N2119.81 (14)
C14—C9—C1122.62 (17)C21—N3—H3120.1
C10—C9—C1118.98 (18)N2—N3—H3120.1
C11—C10—C9121.0 (2)C21—O2—C22116.23 (16)
N1—C1—C2—C356.46 (19)C11—C12—C13—C141.4 (4)
C9—C1—C2—C3179.87 (15)F1—C12—C13—C14178.8 (2)
N1—C1—C2—C663.9 (2)C10—C9—C14—C130.8 (3)
C9—C1—C2—C659.8 (2)C1—C9—C14—C13179.51 (19)
C6—C2—C3—N2124.6 (2)C12—C13—C14—C90.3 (3)
C1—C2—C3—N2111.4 (2)N1—C5—C15—C1614.8 (3)
C6—C2—C3—C459.9 (2)C4—C5—C15—C16108.6 (2)
C1—C2—C3—C464.16 (19)N1—C5—C15—C20167.30 (17)
N2—C3—C4—C8122.34 (19)C4—C5—C15—C2069.3 (2)
C2—C3—C4—C861.4 (2)C20—C15—C16—C170.9 (4)
N2—C3—C4—C5112.41 (19)C5—C15—C16—C17177.1 (2)
C2—C3—C4—C563.81 (19)C15—C16—C17—C180.3 (4)
C3—C4—C5—N155.25 (19)C16—C17—C18—F2179.3 (2)
C8—C4—C5—N167.0 (2)C16—C17—C18—C190.9 (4)
C3—C4—C5—C15178.80 (15)C17—C18—C19—C200.3 (4)
C8—C4—C5—C1556.6 (2)F2—C18—C19—C20180.0 (2)
C3—C2—C6—C752.2 (2)C18—C19—C20—C151.0 (4)
C1—C2—C6—C766.5 (2)C16—C15—C20—C191.5 (3)
C2—C6—C7—C845.8 (3)C5—C15—C20—C19176.5 (2)
C6—C7—C8—C446.3 (3)C15—C5—N1—C1176.69 (15)
C3—C4—C8—C754.2 (2)C4—C5—N1—C153.1 (2)
C5—C4—C8—C766.5 (2)C9—C1—N1—C5178.09 (15)
N1—C1—C9—C1426.0 (3)C2—C1—N1—C554.0 (2)
C2—C1—C9—C1497.7 (2)C4—C3—N2—N3176.76 (16)
N1—C1—C9—C10155.29 (17)C2—C3—N2—N31.5 (3)
C2—C1—C9—C1081.1 (2)O3—C21—N3—N2179.05 (17)
C14—C9—C10—C110.8 (3)O2—C21—N3—N21.6 (2)
C1—C9—C10—C11179.62 (18)C3—N2—N3—C21175.91 (17)
C9—C10—C11—C120.2 (3)O3—C21—O2—C222.0 (3)
C10—C11—C12—C131.4 (3)N3—C21—O2—C22178.61 (18)
C10—C11—C12—F1178.83 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.862.122.930 (2)157
C2—H2···O3i0.982.493.442 (2)163
C22—H22C···F1ii0.962.493.243 (3)136
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.862.122.930 (2)157
C2—H2···O3i0.982.493.442 (2)163
C22—H22C···F1ii0.962.493.243 (3)136
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC22H23F2N3O2
Mr399.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.751 (6), 7.087 (2), 28.492 (9)
β (°) 102.997 (4)
V3)3886 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.36 × 0.34
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.962, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
18613, 3793, 2872
Rint0.030
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.04
No. of reflections3793
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.44

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia (2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

KK thanks the University grant commission for the financial support (major research project, F. No. 42-342/2013) of this research work. We are also grateful to the UGC Networking Resource Centre, University of Hyderabad, for providing characterization facilities and Dr R. Nagarajan, School of Chemistry, University of Hyderabad, for providing laboratory facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRizwana Begum, S., Hema, R., Venkateswaramoorthi, R., Krishnasamy, K. & Anitha, A. G. (2013). Acta Cryst. E69, o1525.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds