organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1047-o1048

Crystal structure of 1-meth­­oxy-2,2,2-tris­­(pyrazol-1-yl)ethane

aDepartment of Biochemistry and Chemistry, Southern Arkansas University, Magnolia, AR 71753, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: GannaLyubartseva@saumag.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 August 2014; accepted 18 August 2014; online 23 August 2014)

The title compound, C12H14N6O, consists of three pyrazole rings bound via nitro­gen to the distal ethane carbon of meth­oxy ethane. The dihedral angles between the three pyrazole rings are 67.62 (14), 73.74 (14), and 78.92 (12)°. In the crystal, mol­ecules are linked by bifurcated C—H,H⋯N hydrogen bonds, forming double-stranded chains along [001]. The chains are linked via C—H⋯O hydrogen bonds, forming a three-dimensional framework structure. The crystal was refined as a perfect (0.5:0.5) inversion twin.

1. Related literature

For properties of pyrazole-based tridentate ligands, see: Paulo et al. (2004[Paulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. (2004). Polyhedron, 23, 331-360.]); Bigmore et al. (2005[Bigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635-651.]). For nickel and cobalt complexes of N-donor tridentate scorpionate ligands, see: Lyubartseva et al. (2011[Lyubartseva, G., Parkin, S. & Mallik, U. P. (2011). Acta Cryst. E67, m1656-m1657.], 2012[Lyubartseva, G., Parkin, S., Mallik, U. P. & Jeon, H. K. (2012). Acta Cryst. E68, m888.], 2013a[Lyubartseva, G., Parkin, S. & Mallik, U. P. (2013a). Acta Cryst. E69, m532-m533.],b[Lyubartseva, G., Parkin, S. & Mallik, U. P. (2013b). Acta Cryst. E69, m537.]); Lyubartseva & Parkin (2009[Lyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530.]). For the synthesis of the title compound, see: Maria et al. (2007[Maria, L., Cunha, S., Videira, M., Gano, L., Paulo, A., Santos, I. C. & Santos, I. (2007). Dalton Trans. pp. 3010-3019.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H14N6O

  • Mr = 258.29

  • Monoclinic, C c

  • a = 12.5828 (3) Å

  • b = 12.3847 (3) Å

  • c = 8.4807 (2) Å

  • β = 102.5635 (11)°

  • V = 1289.94 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.28 × 0.20 × 0.16 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.749, Tmax = 0.942

  • 11397 measured reflections

  • 2934 independent reflections

  • 2386 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.102

  • S = 1.10

  • 2934 reflections

  • 174 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Refined as a perfect (i.e. 50:50) inversion twin

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯N2i 0.95 2.51 3.453 (4) 171
C9—H9A⋯N2ii 0.95 2.61 3.433 (4) 145
C4—H4A⋯O1iii 0.95 2.53 3.444 (4) 162
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Synthesis and crystallization top

The title compound was prepared using the published procedure (Maria et al., 2007). Colourless block-like crystals were obtained by slow evaporation of a di­ethyl ether solution of pure product. Spectral and other characterizations are in good accordance with the previously reported data (Maria et al., 2007).

Refinement top

H atoms were located in difference Fourier maps, but were subsequently included in the refinement using a riding model approximation: C—H = 0.95 - 0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The crystal was refined as a perfect (0.5:0.5) inversion twin.

Related literature top

For properties of pyrazole-based tridentate ligands, see: Paulo et al. (2004); Bigmore et al. (2005). For nickel and cobalt complexes of N-donor tridentate scorpionate ligands, see: Lyubartseva et al. (2011, 2012, 2013a,b); Lyubartseva & Parkin (2009). For the synthesis of the title compound, see: Maria et al. (2007).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
1-Methoxy-2,2,2-tris(pyrazol-1-yl)ethane top
Crystal data top
C12H14N6OF(000) = 544
Mr = 258.29Dx = 1.330 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 12.5828 (3) ÅCell parameters from 1549 reflections
b = 12.3847 (3) Åθ = 1.0–27.5°
c = 8.4807 (2) ŵ = 0.09 mm1
β = 102.5635 (11)°T = 90 K
V = 1289.94 (5) Å3Block, colourless
Z = 40.28 × 0.20 × 0.16 mm
Data collection top
Nonius KappaCCD
diffractometer
2934 independent reflections
Radiation source: fine-focus sealed-tube2386 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.032
ϕ and ω scans at fixed χ = 55°θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.749, Tmax = 0.942k = 1616
11397 measured reflectionsl = 1011
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5917P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.23 e Å3
2934 reflectionsΔρmin = 0.18 e Å3
174 parametersExtinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0127 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as a perfect (i.e. 50:50) inversion twin.
Secondary atom site location: difference Fourier map
Crystal data top
C12H14N6OV = 1289.94 (5) Å3
Mr = 258.29Z = 4
Monoclinic, CcMo Kα radiation
a = 12.5828 (3) ŵ = 0.09 mm1
b = 12.3847 (3) ÅT = 90 K
c = 8.4807 (2) Å0.28 × 0.20 × 0.16 mm
β = 102.5635 (11)°
Data collection top
Nonius KappaCCD
diffractometer
2934 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2386 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.942Rint = 0.032
11397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.10Δρmax = 0.23 e Å3
2934 reflectionsΔρmin = 0.18 e Å3
174 parametersAbsolute structure: Refined as a perfect (i.e. 50:50) inversion twin.
Special details top

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34875 (17)0.16856 (16)0.5089 (3)0.0305 (5)
N10.62903 (19)0.25690 (19)0.5191 (3)0.0229 (5)
N20.6299 (2)0.2508 (2)0.3598 (3)0.0291 (6)
N30.4892 (2)0.35743 (18)0.5996 (3)0.0255 (6)
N40.5617 (2)0.4320 (2)0.6770 (4)0.0378 (7)
N50.5520 (2)0.1924 (2)0.7270 (3)0.0236 (5)
N60.5898 (2)0.0891 (2)0.7266 (3)0.0296 (6)
C10.5280 (2)0.2497 (2)0.5740 (3)0.0212 (6)
C20.7343 (3)0.2658 (3)0.3557 (4)0.0336 (7)
H2A0.76100.26580.25910.040*
C30.8001 (2)0.2816 (2)0.5100 (4)0.0318 (7)
H3A0.87650.29330.53760.038*
C40.7295 (3)0.2762 (2)0.6118 (4)0.0303 (7)
H4A0.74750.28450.72590.036*
C50.5010 (3)0.5170 (3)0.6921 (5)0.0426 (9)
H5A0.52900.58310.74060.051*
C60.3900 (3)0.4977 (3)0.6277 (5)0.0394 (8)
H6A0.33110.54610.62520.047*
C70.3848 (3)0.3954 (3)0.5699 (4)0.0307 (7)
H7A0.32100.35740.51870.037*
C80.6077 (3)0.0592 (3)0.8804 (4)0.0330 (7)
H8A0.63440.00980.91870.040*
C90.5825 (3)0.1410 (3)0.9791 (4)0.0379 (8)
H9A0.58840.13851.09270.045*
C100.5474 (2)0.2258 (3)0.8775 (4)0.0324 (7)
H10A0.52440.29460.90670.039*
C110.4437 (2)0.1869 (2)0.4498 (4)0.0252 (6)
H11A0.42490.22840.34780.030*
H11B0.47510.11690.42660.030*
C120.3184 (3)0.0580 (3)0.5101 (5)0.0384 (8)
H12A0.25170.05150.55110.058*
H12B0.37700.01710.58000.058*
H12C0.30570.02910.40000.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0238 (11)0.0263 (11)0.0426 (13)0.0028 (9)0.0099 (9)0.0036 (9)
N10.0226 (13)0.0254 (12)0.0214 (13)0.0009 (10)0.0062 (10)0.0004 (10)
N20.0335 (15)0.0325 (14)0.0239 (13)0.0045 (11)0.0115 (11)0.0029 (11)
N30.0233 (12)0.0213 (12)0.0324 (13)0.0003 (10)0.0072 (10)0.0024 (11)
N40.0282 (14)0.0256 (14)0.0600 (19)0.0051 (12)0.0103 (13)0.0140 (13)
N50.0247 (12)0.0237 (12)0.0227 (12)0.0018 (10)0.0058 (10)0.0001 (10)
N60.0359 (15)0.0213 (13)0.0294 (14)0.0003 (10)0.0025 (11)0.0033 (10)
C10.0197 (14)0.0219 (14)0.0233 (15)0.0004 (10)0.0074 (12)0.0010 (11)
C20.0357 (17)0.0306 (17)0.0400 (19)0.0029 (14)0.0203 (15)0.0051 (14)
C30.0222 (15)0.0285 (15)0.048 (2)0.0000 (12)0.0143 (15)0.0000 (14)
C40.0257 (16)0.0316 (17)0.0334 (17)0.0020 (13)0.0057 (13)0.0024 (13)
C50.0370 (18)0.0272 (18)0.064 (2)0.0032 (14)0.0130 (17)0.0149 (16)
C60.0308 (17)0.0274 (17)0.061 (2)0.0062 (14)0.0116 (16)0.0077 (15)
C70.0249 (15)0.0287 (16)0.0374 (17)0.0024 (12)0.0042 (13)0.0008 (13)
C80.0248 (16)0.0364 (18)0.0353 (18)0.0083 (14)0.0009 (13)0.0113 (15)
C90.0300 (17)0.060 (2)0.0246 (16)0.0035 (16)0.0075 (13)0.0056 (15)
C100.0260 (16)0.0457 (19)0.0282 (16)0.0028 (14)0.0122 (13)0.0058 (14)
C110.0214 (15)0.0256 (14)0.0280 (15)0.0008 (11)0.0041 (12)0.0027 (12)
C120.038 (2)0.0282 (17)0.051 (2)0.0059 (14)0.0126 (17)0.0031 (16)
Geometric parameters (Å, º) top
O1—C111.411 (3)C3—H3A0.9500
O1—C121.423 (4)C4—H4A0.9500
N1—N21.356 (3)C5—C61.405 (5)
N1—C41.357 (4)C5—H5A0.9500
N1—C11.448 (3)C6—C71.355 (5)
N2—C21.335 (4)C6—H6A0.9500
N3—N41.363 (4)C7—H7A0.9500
N3—C71.365 (4)C8—C91.394 (5)
N3—C11.454 (3)C8—H8A0.9500
N4—C51.323 (4)C9—C101.369 (5)
N5—C101.354 (4)C9—H9A0.9500
N5—N61.364 (3)C10—H10A0.9500
N5—C11.452 (4)C11—H11A0.9900
N6—C81.327 (4)C11—H11B0.9900
C1—C111.534 (4)C12—H12A0.9800
C2—C31.402 (5)C12—H12B0.9800
C2—H2A0.9500C12—H12C0.9800
C3—C41.369 (4)
C11—O1—C12114.0 (2)N4—C5—H5A124.0
N2—N1—C4112.3 (2)C6—C5—H5A124.0
N2—N1—C1121.0 (2)C7—C6—C5105.3 (3)
C4—N1—C1126.7 (2)C7—C6—H6A127.3
C2—N2—N1103.8 (3)C5—C6—H6A127.3
N4—N3—C7111.9 (2)C6—C7—N3106.7 (3)
N4—N3—C1118.8 (2)C6—C7—H7A126.7
C7—N3—C1129.0 (2)N3—C7—H7A126.7
C5—N4—N3104.2 (3)N6—C8—C9112.0 (3)
C10—N5—N6112.0 (3)N6—C8—H8A124.0
C10—N5—C1130.5 (3)C9—C8—H8A124.0
N6—N5—C1117.4 (2)C10—C9—C8105.3 (3)
C8—N6—N5104.1 (3)C10—C9—H9A127.4
N1—C1—N5106.9 (2)C8—C9—H9A127.4
N1—C1—N3109.8 (2)N5—C10—C9106.6 (3)
N5—C1—N3109.0 (2)N5—C10—H10A126.7
N1—C1—C11109.6 (2)C9—C10—H10A126.7
N5—C1—C11110.1 (2)O1—C11—C1110.5 (2)
N3—C1—C11111.3 (2)O1—C11—H11A109.5
N2—C2—C3112.3 (3)C1—C11—H11A109.5
N2—C2—H2A123.8O1—C11—H11B109.5
C3—C2—H2A123.8C1—C11—H11B109.5
C4—C3—C2104.4 (3)H11A—C11—H11B108.1
C4—C3—H3A127.8O1—C12—H12A109.5
C2—C3—H3A127.8O1—C12—H12B109.5
N1—C4—C3107.1 (3)H12A—C12—H12B109.5
N1—C4—H4A126.4O1—C12—H12C109.5
C3—C4—H4A126.4H12A—C12—H12C109.5
N4—C5—C6112.0 (3)H12B—C12—H12C109.5
C4—N1—N2—C20.6 (3)N4—N3—C1—C11165.4 (3)
C1—N1—N2—C2177.0 (3)C7—N3—C1—C1121.3 (4)
C7—N3—N4—C51.0 (4)N1—N2—C2—C30.1 (3)
C1—N3—N4—C5175.4 (3)N2—C2—C3—C40.4 (4)
C10—N5—N6—C80.5 (3)N2—N1—C4—C30.9 (3)
C1—N5—N6—C8178.0 (2)C1—N1—C4—C3177.1 (3)
N2—N1—C1—N5144.6 (2)C2—C3—C4—N10.8 (3)
C4—N1—C1—N539.6 (4)N3—N4—C5—C60.9 (4)
N2—N1—C1—N397.3 (3)N4—C5—C6—C70.5 (5)
C4—N1—C1—N378.6 (3)C5—C6—C7—N30.2 (4)
N2—N1—C1—C1125.2 (3)N4—N3—C7—C60.8 (4)
C4—N1—C1—C11158.9 (3)C1—N3—C7—C6174.4 (3)
C10—N5—C1—N1115.6 (3)N5—N6—C8—C90.2 (3)
N6—N5—C1—N161.3 (3)N6—C8—C9—C100.2 (4)
C10—N5—C1—N33.0 (4)N6—N5—C10—C90.6 (3)
N6—N5—C1—N3179.9 (2)C1—N5—C10—C9177.7 (3)
C10—N5—C1—C11125.4 (3)C8—C9—C10—N50.4 (3)
N6—N5—C1—C1157.7 (3)C12—O1—C11—C1124.7 (3)
N4—N3—C1—N143.9 (3)N1—C1—C11—O1173.5 (2)
C7—N3—C1—N1142.8 (3)N5—C1—C11—O156.2 (3)
N4—N3—C1—N572.9 (3)N3—C1—C11—O164.8 (3)
C7—N3—C1—N5100.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N2i0.952.513.453 (4)171
C9—H9A···N2ii0.952.613.433 (4)145
C4—H4A···O1iii0.952.533.444 (4)162
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N2i0.952.513.453 (4)171
C9—H9A···N2ii0.952.613.433 (4)145
C4—H4A···O1iii0.952.533.444 (4)162
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

GL is grateful to the Southern Arkansas University Faculty Research Grant for financial support.

References

First citationBigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635–651.  Web of Science CrossRef PubMed Google Scholar
First citationLyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLyubartseva, G., Parkin, S. & Mallik, U. P. (2011). Acta Cryst. E67, m1656–m1657.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLyubartseva, G., Parkin, S. & Mallik, U. P. (2013a). Acta Cryst. E69, m532–m533.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLyubartseva, G., Parkin, S. & Mallik, U. P. (2013b). Acta Cryst. E69, m537.  CSD CrossRef IUCr Journals Google Scholar
First citationLyubartseva, G., Parkin, S., Mallik, U. P. & Jeon, H. K. (2012). Acta Cryst. E68, m888.  CSD CrossRef IUCr Journals Google Scholar
First citationMaria, L., Cunha, S., Videira, M., Gano, L., Paulo, A., Santos, I. C. & Santos, I. (2007). Dalton Trans. pp. 3010–3019.  Web of Science CSD CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. (2004). Polyhedron, 23, 331–360.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1047-o1048
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds