organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o960-o961

Crystal structure of 4-bromo-N-(2-bromo-3-nitro­benz­yl)-2-nitro­naphthalen-1-amine

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 27 June 2014; accepted 25 July 2014; online 1 August 2014)

In the title compound, C17H11Br2N3O4, the dihedral angle between the planes of the naphthalene system and the benzene ring is 52.86 (8)°. The nitro substituent and the attached naphthalene system are almost coplanar [dihedral angle = 5.6 (4)°], probably as a consequence of an intra­molecular N—H⋯O hydrogen bond with the amine group. The nitro substituent attached to the benzene ring is disordered over two sets of sites with occupancies of 0.694 (3) and 0.306 (3). The major component deviates significantly from the ring plane [dihedral angle = 53.6 (2)°]. In the crystal, the mol­ecules are linked into a three-dimensional array by extensive ππ inter­actions involving both the naphthalene and benzene rings [range of centroid–centroid distances = 3.5295 (16)–3.9629 (18) Å] and C—H⋯O inter­actions involving the methyl­ene H atoms and the phenyl-attached nitro group.

1. Related literature

For the role of secondary inter­actions in stabilizing organoselenium compounds, see; Singh et al. (2010[Singh, V. P., Singh, H. B. & Butcher, R. J. (2010). Eur. J. Inorg. Chem. pp. 637-647.], 2012[Singh, V. P., Singh, P., Singh, H. B. & Butcher, R. J. (2012). Tetrahedron Lett. 53, 4591-4594.]); Mugesh & Singh (2000[Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347-357.]). For the isolation of novel photoluminescent seleno­spiro­cyclic compounds via inter­molecular C—C bond formation, see: Singh et al. (2011[Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221-7223.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H11Br2N3O4

  • Mr = 481.11

  • Triclinic, [P \overline 1]

  • a = 8.3675 (4) Å

  • b = 8.5812 (5) Å

  • c = 12.2691 (5) Å

  • α = 76.973 (4)°

  • β = 81.053 (4)°

  • γ = 76.302 (5)°

  • V = 829.00 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.92 mm−1

  • T = 123 K

  • 0.44 × 0.32 × 0.12 mm

2.2. Data collection

  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.345, Tmax = 1.000

  • 12164 measured reflections

  • 6700 independent reflections

  • 4118 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.129

  • S = 1.02

  • 6700 reflections

  • 246 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.84 (3) 1.91 (3) 2.624 (3) 141 (3)
C12—H12B⋯O4Ai 0.99 2.54 3.532 (4) 177
C12—H12B⋯O4Bi 0.99 2.61 3.462 (8) 144
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Aryl­selenium compounds having one ortho-coordinating group have been widely studied as reagents in organic synthesis, gluta­thione peroxidase mimics, and precursors for the synthesis of macrocycles (Singh et al., 2012; Mugesh & Singh, 2000). Introduction of a second ortho-coordinating group towards selenium leads to inter­esting reactivity of the selenium derivatives and isolation of unusual species (Singh et al., 2010). Recently, we reported the isolation of novel photoluminescent seleno­spiro­cyclic compounds via inter­molecular C—C bond formation (Singh et al., 2011). In continuation of this research, we attempted the synthesis of naphthyl­amine based spiro­cyclic compounds. However, the reaction led to the isolation of 4-bromo-N-(2-bromo-3-nitro­benzyl)-2-nitro­naphthalen-1-amine (2) instead of the desired spiro-compound (3) (Fig. 1).

In the structure of the title compound, Fig. 2, the naphthyl nitro substituent is almost coplanar with the naphthyl ring (dihedral angle = 5.6 (4)°) probably as a consequence of an intra­molecular hydrogen bond with the N—H moiety. However, the nitro substituent attached to the benzene deviates significantly from the ring plane (dihedral angle = 53.6 (2)° for the major component); this is disordered with occupancies of 0.694 (3) and 0.306 (3). The dihedral angle between the two ring systems is 52.86 (8)°. The molecules are linked into a three-dimensional array, Fig. 3, by extensive ππ inter­actions involving both the naphthyl ring (Cg1; C1, C2, C3, C4, C5, C10: Cg2; C5, C6, C7, C8, C9, C10) and benzene ring (Cg3; C13, C14, C15, C16, C17, C18), see Table 1, and, in addition, there are weak inter­molecular C—H···O inter­actions involving the methyl­ene H atoms and the benzene­nitro group, Table 2.

Experimental top

Referring to Fig. 1, to a stirred solution of selenide 1 (0.400 g 1 mmol in 3 mL CHCl3) at 0° C, was added bromine (0.05 ml in 1 mL CHCl3). After 30 mins a yellow precipitate was formed. Stirring was continued for further 30 mins, Et3N (0.140 ml) added and the stirring continued for an additional 6 h. After completion of the reaction, the reaction mixture was poured into water and extracted with CHCl3 (2 × 30 mL). The combined organic layers were dried over sodium sulfate and evaporated on a rotary evaporator to get a brown solid. Yield: 0.230 g (49 %); 1H NMR (CDCl3): δ [ppm] = 7.57-7.83 (m, 6H), 8.12 (s, CH, 1H), 8.29-8.32 (d, J = 8.43 Hz, 1H), 8.55-8.58 (dd, J = 0.73, 7.33 Hz, 1H), 8.66-8.69 (dd, J = 0.73, 8.06 Hz, 1H). 13C NMR (CDCl3): δ [ppm] = 122.7, 123.8, 125.3, 128.1, 128.2, 128.3, 128.5, 129.2, 130.0, 132.2, 132.4, 133.2, 133.4, 135.8, 138.2, 142.5, 164.9. IR (KBr): 3455, 2924, 1666, 1510, 1374, 1296, 768, 734 cm-1.

Refinement top

C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95–0.99 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was refined freely. One of the nitro groups was disordered over two conformations with occupancies of 0.694 (3) and 0.306 (4). The two conformers were constrained to have similar metrical parameters. Highest residual electron density peak; 1.02 e/Å3 is 0.74 A from Br2, and the deepest hole of -0.81 e/Å3 is 0.65 A from Br1. Twelve reflections were removed from the final refinement owing to poor agreement.

Related literature top

For the role of secondary interactions in stabilizing organoselenium compounds, see; Singh et al. (2010, 2012); Mugesh & Singh (2000). For the isolation of novel photoluminescent selenospirocyclic compounds via intermolecular C—C bond formation, see: Singh et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The reaction scheme.
[Figure 2] Fig. 2. The molecular structure of C17H11Br2N3O4 showing the numbering scheme and 30% probability displacement ellipsoids and the intramolecular N—H···O hydrogen bond (shown as a dashed bond).
[Figure 3] Fig. 3. The molecular packing for C17H11Br2N3O4 viewed along the c axis showing the linking of the molecules into a three-dimensional array by ππ interactions as well as a network of C—H···O interactions (shown as dashed bonds).
4-Bromo-N-(2-bromo-3-nitrobenzyl)-2-nitronaphthalen-1-amine top
Crystal data top
C17H11Br2N3O4Z = 2
Mr = 481.11F(000) = 472
Triclinic, P1Dx = 1.927 Mg m3
a = 8.3675 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5812 (5) ÅCell parameters from 3926 reflections
c = 12.2691 (5) Åθ = 5.0–34.9°
α = 76.973 (4)°µ = 4.92 mm1
β = 81.053 (4)°T = 123 K
γ = 76.302 (5)°Plate, orange
V = 829.00 (8) Å30.44 × 0.32 × 0.12 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
4118 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.033
ω scansθmax = 35.0°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1313
Tmin = 0.345, Tmax = 1.000k = 1213
12164 measured reflectionsl = 1919
6700 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3384P]
where P = (Fo2 + 2Fc2)/3
6700 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 1.04 e Å3
1 restraintΔρmin = 0.77 e Å3
Crystal data top
C17H11Br2N3O4γ = 76.302 (5)°
Mr = 481.11V = 829.00 (8) Å3
Triclinic, P1Z = 2
a = 8.3675 (4) ÅMo Kα radiation
b = 8.5812 (5) ŵ = 4.92 mm1
c = 12.2691 (5) ÅT = 123 K
α = 76.973 (4)°0.44 × 0.32 × 0.12 mm
β = 81.053 (4)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
6700 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4118 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 1.000Rint = 0.033
12164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.04 e Å3
6700 reflectionsΔρmin = 0.77 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.52119 (4)0.68126 (4)0.76444 (2)0.03410 (10)
Br20.98711 (4)0.82225 (4)0.23405 (3)0.03346 (10)
O10.9351 (3)0.3484 (3)0.5032 (2)0.0374 (6)
O20.8810 (3)0.4048 (3)0.3315 (2)0.0346 (5)
O3A1.3573 (4)0.6322 (4)0.0114 (3)0.0334 (7)0.694 (3)
O4A1.2701 (4)0.8769 (5)0.0461 (4)0.0480 (10)0.694 (3)
O3B1.3147 (8)0.8513 (9)0.0408 (7)0.0334 (7)0.306 (3)
O4B1.3038 (10)0.6768 (10)0.1138 (8)0.0480 (10)0.306 (3)
N10.6518 (3)0.6613 (3)0.2639 (2)0.0230 (5)
H1N0.724 (4)0.577 (4)0.254 (3)0.027 (9)*
N20.8518 (3)0.4286 (3)0.4272 (2)0.0240 (5)
N31.2471 (3)0.7536 (3)0.0266 (2)0.0276 (6)
C10.6183 (3)0.6659 (3)0.3756 (2)0.0171 (5)
C20.7114 (3)0.5555 (3)0.4567 (2)0.0196 (5)
C30.6804 (3)0.5624 (3)0.5728 (2)0.0211 (5)
H3A0.74670.48540.62520.025*
C40.5575 (3)0.6778 (4)0.6087 (2)0.0216 (5)
C50.4516 (3)0.7931 (3)0.5332 (2)0.0183 (5)
C60.3170 (3)0.9116 (4)0.5696 (3)0.0264 (6)
H6A0.29980.92170.64630.032*
C70.2119 (3)1.0113 (4)0.4962 (3)0.0292 (7)
H7A0.12401.09170.52200.035*
C80.2318 (3)0.9967 (4)0.3842 (3)0.0267 (6)
H8A0.15521.06420.33460.032*
C90.3622 (3)0.8845 (3)0.3448 (2)0.0216 (5)
H9A0.37410.87490.26820.026*
C100.4788 (3)0.7832 (3)0.4170 (2)0.0171 (5)
C120.6425 (3)0.8012 (4)0.1692 (2)0.0224 (6)
H12A0.64300.90140.19610.027*
H12B0.53830.81850.13510.027*
C130.7896 (3)0.7678 (3)0.0821 (2)0.0196 (5)
C140.9489 (3)0.7762 (3)0.0981 (2)0.0197 (5)
C151.0768 (3)0.7462 (4)0.0142 (2)0.0220 (6)
C161.0535 (3)0.7066 (4)0.0846 (2)0.0265 (6)
H16A1.14370.68610.14060.032*
C170.8958 (4)0.6977 (4)0.1002 (2)0.0286 (6)
H17A0.87650.67090.16740.034*
C180.7659 (3)0.7280 (4)0.0171 (2)0.0251 (6)
H18A0.65810.72130.02840.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03423 (17)0.0569 (2)0.01698 (15)0.01906 (15)0.00074 (12)0.01145 (14)
Br20.03155 (17)0.0494 (2)0.02682 (17)0.01218 (14)0.00825 (13)0.01525 (14)
O10.0319 (11)0.0295 (13)0.0449 (15)0.0057 (9)0.0109 (11)0.0035 (11)
O20.0336 (12)0.0256 (12)0.0354 (13)0.0041 (9)0.0090 (10)0.0068 (10)
O3A0.0187 (13)0.0379 (18)0.0399 (18)0.0008 (12)0.0021 (12)0.0062 (14)
O4A0.0293 (16)0.042 (2)0.077 (3)0.0142 (15)0.0194 (17)0.0033 (19)
O3B0.0187 (13)0.0379 (18)0.0399 (18)0.0008 (12)0.0021 (12)0.0062 (14)
O4B0.0293 (16)0.042 (2)0.077 (3)0.0142 (15)0.0194 (17)0.0033 (19)
N10.0283 (12)0.0210 (13)0.0178 (11)0.0034 (10)0.0014 (9)0.0045 (9)
N20.0187 (10)0.0158 (12)0.0353 (14)0.0023 (9)0.0050 (10)0.0002 (10)
N30.0184 (11)0.0345 (16)0.0282 (13)0.0085 (11)0.0050 (10)0.0023 (11)
C10.0144 (10)0.0196 (13)0.0179 (12)0.0063 (9)0.0009 (9)0.0039 (10)
C20.0168 (11)0.0173 (13)0.0237 (13)0.0033 (10)0.0009 (10)0.0032 (10)
C30.0202 (12)0.0237 (14)0.0189 (13)0.0079 (10)0.0044 (10)0.0020 (10)
C40.0213 (12)0.0310 (15)0.0162 (12)0.0127 (11)0.0005 (10)0.0056 (11)
C50.0145 (10)0.0204 (13)0.0220 (13)0.0078 (9)0.0028 (9)0.0075 (10)
C60.0230 (13)0.0292 (16)0.0311 (16)0.0082 (11)0.0046 (12)0.0163 (12)
C70.0185 (12)0.0239 (16)0.046 (2)0.0037 (11)0.0035 (12)0.0147 (14)
C80.0173 (12)0.0191 (14)0.0401 (18)0.0009 (10)0.0033 (12)0.0016 (12)
C90.0164 (11)0.0251 (15)0.0229 (13)0.0046 (10)0.0052 (10)0.0018 (11)
C100.0148 (10)0.0152 (12)0.0206 (13)0.0032 (9)0.0023 (9)0.0021 (9)
C120.0187 (11)0.0292 (15)0.0179 (13)0.0031 (10)0.0026 (10)0.0033 (11)
C130.0185 (11)0.0246 (14)0.0149 (12)0.0050 (10)0.0023 (9)0.0010 (10)
C140.0221 (12)0.0208 (14)0.0167 (12)0.0060 (10)0.0062 (10)0.0002 (10)
C150.0141 (11)0.0264 (15)0.0244 (14)0.0056 (10)0.0039 (10)0.0003 (11)
C160.0183 (12)0.0381 (18)0.0205 (14)0.0055 (12)0.0021 (10)0.0036 (12)
C170.0287 (14)0.0424 (19)0.0159 (13)0.0087 (13)0.0025 (11)0.0066 (12)
C180.0205 (12)0.0385 (18)0.0185 (14)0.0105 (12)0.0042 (10)0.0039 (12)
Geometric parameters (Å, º) top
Br1—C41.893 (3)C6—C71.364 (5)
Br2—C141.887 (3)C6—H6A0.9500
O1—N21.231 (3)C7—C81.388 (5)
O2—N21.214 (3)C7—H7A0.9500
O3A—N31.245 (4)C8—C91.378 (4)
O4A—N31.199 (4)C8—H8A0.9500
O3B—N31.214 (7)C9—C101.419 (4)
O4B—N31.224 (9)C9—H9A0.9500
N1—C11.363 (3)C12—C131.517 (4)
N1—C121.467 (4)C12—H12A0.9900
N1—H1N0.85 (3)C12—H12B0.9900
N2—C21.461 (3)C13—C181.390 (4)
N3—C151.474 (3)C13—C141.398 (4)
C1—C21.400 (4)C14—C151.386 (4)
C1—C101.457 (4)C15—C161.383 (4)
C2—C31.420 (4)C16—C171.385 (4)
C3—C41.344 (4)C16—H16A0.9500
C3—H3A0.9500C17—C181.388 (4)
C4—C51.432 (4)C17—H17A0.9500
C5—C61.417 (4)C18—H18A0.9500
C5—C101.426 (4)
C1—N1—C12127.2 (2)C9—C8—C7120.2 (3)
C1—N1—H1N111 (2)C9—C8—H8A119.9
C12—N1—H1N116 (2)C7—C8—H8A119.9
O2—N2—O1122.8 (3)C8—C9—C10121.0 (3)
O2—N2—C2120.1 (2)C8—C9—H9A119.5
O1—N2—C2117.1 (3)C10—C9—H9A119.5
O3B—N3—O4B122.8 (5)C9—C10—C5118.2 (2)
O4A—N3—O3A125.1 (3)C9—C10—C1121.3 (2)
O4A—N3—C15118.2 (3)C5—C10—C1120.5 (2)
O3B—N3—C15119.2 (4)N1—C12—C13109.3 (2)
O4B—N3—C15117.1 (4)N1—C12—H12A109.8
O3A—N3—C15116.7 (3)C13—C12—H12A109.8
N1—C1—C2122.2 (2)N1—C12—H12B109.8
N1—C1—C10121.2 (2)C13—C12—H12B109.8
C2—C1—C10116.6 (2)H12A—C12—H12B108.3
C1—C2—C3122.5 (2)C18—C13—C14118.7 (2)
C1—C2—N2122.3 (3)C18—C13—C12119.2 (2)
C3—C2—N2115.1 (3)C14—C13—C12122.1 (3)
C4—C3—C2120.1 (3)C15—C14—C13118.8 (3)
C4—C3—H3A120.0C15—C14—Br2121.3 (2)
C2—C3—H3A120.0C13—C14—Br2119.9 (2)
C3—C4—C5121.8 (3)C16—C15—C14122.6 (2)
C3—C4—Br1118.3 (2)C16—C15—N3116.3 (2)
C5—C4—Br1119.9 (2)C14—C15—N3121.1 (3)
C6—C5—C10118.8 (3)C15—C16—C17118.5 (3)
C6—C5—C4122.8 (3)C15—C16—H16A120.7
C10—C5—C4118.4 (2)C17—C16—H16A120.7
C7—C6—C5121.0 (3)C16—C17—C18119.7 (3)
C7—C6—H6A119.5C16—C17—H17A120.2
C5—C6—H6A119.5C18—C17—H17A120.2
C6—C7—C8120.8 (3)C17—C18—C13121.7 (3)
C6—C7—H7A119.6C17—C18—H18A119.2
C8—C7—H7A119.6C13—C18—H18A119.2
C12—N1—C1—C2141.9 (3)N1—C1—C10—C97.0 (4)
C12—N1—C1—C1040.5 (4)C2—C1—C10—C9170.8 (2)
N1—C1—C2—C3178.1 (2)N1—C1—C10—C5176.1 (2)
C10—C1—C2—C34.1 (4)C2—C1—C10—C56.2 (3)
N1—C1—C2—N20.6 (4)C1—N1—C12—C13138.6 (3)
C10—C1—C2—N2178.3 (2)N1—C12—C13—C18105.6 (3)
O2—N2—C2—C17.7 (4)N1—C12—C13—C1474.5 (3)
O1—N2—C2—C1173.1 (2)C18—C13—C14—C150.6 (4)
O2—N2—C2—C3174.6 (2)C12—C13—C14—C15179.2 (3)
O1—N2—C2—C34.6 (3)C18—C13—C14—Br2177.7 (2)
C1—C2—C3—C40.2 (4)C12—C13—C14—Br22.4 (4)
N2—C2—C3—C4177.9 (2)C13—C14—C15—C160.6 (4)
C2—C3—C4—C51.9 (4)Br2—C14—C15—C16177.7 (2)
C2—C3—C4—Br1179.86 (19)C13—C14—C15—N3179.9 (3)
C3—C4—C5—C6177.4 (3)Br2—C14—C15—N31.7 (4)
Br1—C4—C5—C60.6 (3)O4A—N3—C15—C16125.2 (4)
C3—C4—C5—C100.2 (4)O3B—N3—C15—C1660.9 (6)
Br1—C4—C5—C10177.74 (18)O4B—N3—C15—C16129.3 (6)
C10—C5—C6—C72.0 (4)O3A—N3—C15—C1652.1 (4)
C4—C5—C6—C7175.2 (3)O4A—N3—C15—C1455.3 (4)
C5—C6—C7—C81.5 (4)O3B—N3—C15—C14119.6 (6)
C6—C7—C8—C92.3 (4)O4B—N3—C15—C1450.2 (6)
C7—C8—C9—C100.5 (4)O3A—N3—C15—C14127.4 (3)
C8—C9—C10—C53.9 (4)C14—C15—C16—C170.4 (5)
C8—C9—C10—C1179.1 (2)N3—C15—C16—C17179.8 (3)
C6—C5—C10—C94.6 (4)C15—C16—C17—C180.1 (5)
C4—C5—C10—C9172.7 (2)C16—C17—C18—C130.2 (5)
C6—C5—C10—C1178.4 (2)C14—C13—C18—C170.4 (4)
C4—C5—C10—C14.3 (4)C12—C13—C18—C17179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.84 (3)1.91 (3)2.624 (3)141 (3)
C12—H12A···O3Bi0.992.573.117 (8)115
C12—H12B···O4Aii0.992.543.532 (4)177
C12—H12B···O4Bii0.992.613.462 (8)144
Symmetry codes: (i) x+2, y+2, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.84 (3)1.91 (3)2.624 (3)141 (3)
C12—H12A···O3Bi0.992.573.117 (8)115
C12—H12B···O4Aii0.992.543.532 (4)177
C12—H12B···O4Bii0.992.613.462 (8)144
Symmetry codes: (i) x+2, y+2, z; (ii) x1, y, z.
ππ interactions (Å) top
Ring 1Ring 2DistancePerpedicular distanceSlippageSymmetry
Cg1Cg13.5295 (16)3.3867 (11)0.941-x,1-y,1-z
Cg2Cg23.8868 (15)3.3859 (12)1.911-x,-y,1-z
Cg3Cg33.9629 (18)3.5873 (12)1.68-x,1-y,2-z

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P., Singh, H. B. & Butcher, R. J. (2010). Eur. J. Inorg. Chem. pp. 637–647.  Web of Science CSD CrossRef Google Scholar
First citationSingh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221–7223.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, V. P., Singh, P., Singh, H. B. & Butcher, R. J. (2012). Tetrahedron Lett. 53, 4591–4594.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o960-o961
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds