organic compounds
N-(2-bromo-3-nitrobenzyl)-2-nitronaphthalen-1-amine
of 4-bromo-aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
In the title compound, C17H11Br2N3O4, the dihedral angle between the planes of the naphthalene system and the benzene ring is 52.86 (8)°. The nitro substituent and the attached naphthalene system are almost coplanar [dihedral angle = 5.6 (4)°], probably as a consequence of an intramolecular N—H⋯O hydrogen bond with the amine group. The nitro substituent attached to the benzene ring is disordered over two sets of sites with occupancies of 0.694 (3) and 0.306 (3). The major component deviates significantly from the ring plane [dihedral angle = 53.6 (2)°]. In the crystal, the molecules are linked into a three-dimensional array by extensive π–π interactions involving both the naphthalene and benzene rings [range of centroid–centroid distances = 3.5295 (16)–3.9629 (18) Å] and C—H⋯O interactions involving the methylene H atoms and the phenyl-attached nitro group.
Keywords: crystal structure; naphthalen-1-amine; π–π interactions; hydrogen bonding; arylselenium compounds; photoluminescent selenospirocyclic compounds.
CCDC reference: 1015963
1. Related literature
For the role of secondary interactions in stabilizing organoselenium compounds, see; Singh et al. (2010, 2012); Mugesh & Singh (2000). For the isolation of novel photoluminescent selenospirocyclic compounds via intermolecular C—C bond formation, see: Singh et al. (2011).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1015963
10.1107/S160053681401719X/tk5325sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681401719X/tk5325Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681401719X/tk5325Isup3.cml
Arylselenium compounds having one ortho-coordinating group have been widely studied as reagents in organic synthesis, glutathione peroxidase mimics, and precursors for the synthesis of macrocycles (Singh et al., 2012; Mugesh & Singh, 2000). Introduction of a second ortho-coordinating group towards selenium leads to interesting reactivity of the selenium derivatives and isolation of unusual species (Singh et al., 2010). Recently, we reported the isolation of novel photoluminescent selenospirocyclic compounds via intermolecular C—C bond formation (Singh et al., 2011). In continuation of this research, we attempted the synthesis of naphthylamine based spirocyclic compounds. However, the reaction led to the isolation of 4-bromo-N-(2-bromo-3-nitrobenzyl)-2-nitronaphthalen-1-amine (2) instead of the desired spiro-compound (3) (Fig. 1).
In the structure of the title compound, Fig. 2, the naphthyl nitro substituent is almost coplanar with the naphthyl ring (dihedral angle = 5.6 (4)°) probably as a consequence of an intramolecular hydrogen bond with the N—H moiety. However, the nitro substituent attached to the benzene deviates significantly from the ring plane (dihedral angle = 53.6 (2)° for the major component); this is disordered with occupancies of 0.694 (3) and 0.306 (3). The dihedral angle between the two ring systems is 52.86 (8)°. The molecules are linked into a three-dimensional array, Fig. 3, by extensive π–π interactions involving both the naphthyl ring (Cg1; C1, C2, C3, C4, C5, C10: Cg2; C5, C6, C7, C8, C9, C10) and benzene ring (Cg3; C13, C14, C15, C16, C17, C18), see Table 1, and, in addition, there are weak intermolecular C—H···O interactions involving the methylene H atoms and the benzenenitro group, Table 2.
Referring to Fig. 1, to a stirred solution of selenide 1 (0.400 g 1 mmol in 3 mL CHCl3) at 0° C, was added bromine (0.05 ml in 1 mL CHCl3). After 30 mins a yellow precipitate was formed. Stirring was continued for further 30 mins, Et3N (0.140 ml) added and the stirring continued for an additional 6 h. After completion of the reaction, the reaction mixture was poured into water and extracted with CHCl3 (2 × 30 mL). The combined organic layers were dried over sodium sulfate and evaporated on a rotary evaporator to get a brown solid. Yield: 0.230 g (49 %); 1H NMR (CDCl3): δ [ppm] = 7.57-7.83 (m, 6H), 8.12 (s, CH, 1H), 8.29-8.32 (d, J = 8.43 Hz, 1H), 8.55-8.58 (dd, J = 0.73, 7.33 Hz, 1H), 8.66-8.69 (dd, J = 0.73, 8.06 Hz, 1H). 13C NMR (CDCl3): δ [ppm] = 122.7, 123.8, 125.3, 128.1, 128.2, 128.3, 128.5, 129.2, 130.0, 132.2, 132.4, 133.2, 133.4, 135.8, 138.2, 142.5, 164.9. IR (KBr): 3455, 2924, 1666, 1510, 1374, 1296, 768, 734 cm-1.
C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95–0.99 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was refined freely. One of the nitro groups was disordered over two conformations with occupancies of 0.694 (3) and 0.306 (4). The two conformers were constrained to have similar metrical parameters. Highest residual electron density peak; 1.02 e/Å3 is 0.74 A from Br2, and the deepest hole of -0.81 e/Å3 is 0.65 A from Br1. Twelve reflections were removed from the final
owing to poor agreement.Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).C17H11Br2N3O4 | Z = 2 |
Mr = 481.11 | F(000) = 472 |
Triclinic, P1 | Dx = 1.927 Mg m−3 |
a = 8.3675 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5812 (5) Å | Cell parameters from 3926 reflections |
c = 12.2691 (5) Å | θ = 5.0–34.9° |
α = 76.973 (4)° | µ = 4.92 mm−1 |
β = 81.053 (4)° | T = 123 K |
γ = 76.302 (5)° | Plate, orange |
V = 829.00 (8) Å3 | 0.44 × 0.32 × 0.12 mm |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 4118 reflections with I > 2σ(I) |
Detector resolution: 10.5081 pixels mm-1 | Rint = 0.033 |
ω scans | θmax = 35.0°, θmin = 5.0° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | h = −13→13 |
Tmin = 0.345, Tmax = 1.000 | k = −12→13 |
12164 measured reflections | l = −19→19 |
6700 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: mixed |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3384P] where P = (Fo2 + 2Fc2)/3 |
6700 reflections | (Δ/σ)max = 0.001 |
246 parameters | Δρmax = 1.04 e Å−3 |
1 restraint | Δρmin = −0.77 e Å−3 |
C17H11Br2N3O4 | γ = 76.302 (5)° |
Mr = 481.11 | V = 829.00 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.3675 (4) Å | Mo Kα radiation |
b = 8.5812 (5) Å | µ = 4.92 mm−1 |
c = 12.2691 (5) Å | T = 123 K |
α = 76.973 (4)° | 0.44 × 0.32 × 0.12 mm |
β = 81.053 (4)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 6700 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 4118 reflections with I > 2σ(I) |
Tmin = 0.345, Tmax = 1.000 | Rint = 0.033 |
12164 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 1 restraint |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 1.04 e Å−3 |
6700 reflections | Δρmin = −0.77 e Å−3 |
246 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.52119 (4) | 0.68126 (4) | 0.76444 (2) | 0.03410 (10) | |
Br2 | 0.98711 (4) | 0.82225 (4) | 0.23405 (3) | 0.03346 (10) | |
O1 | 0.9351 (3) | 0.3484 (3) | 0.5032 (2) | 0.0374 (6) | |
O2 | 0.8810 (3) | 0.4048 (3) | 0.3315 (2) | 0.0346 (5) | |
O3A | 1.3573 (4) | 0.6322 (4) | 0.0114 (3) | 0.0334 (7) | 0.694 (3) |
O4A | 1.2701 (4) | 0.8769 (5) | 0.0461 (4) | 0.0480 (10) | 0.694 (3) |
O3B | 1.3147 (8) | 0.8513 (9) | −0.0408 (7) | 0.0334 (7) | 0.306 (3) |
O4B | 1.3038 (10) | 0.6768 (10) | 0.1138 (8) | 0.0480 (10) | 0.306 (3) |
N1 | 0.6518 (3) | 0.6613 (3) | 0.2639 (2) | 0.0230 (5) | |
H1N | 0.724 (4) | 0.577 (4) | 0.254 (3) | 0.027 (9)* | |
N2 | 0.8518 (3) | 0.4286 (3) | 0.4272 (2) | 0.0240 (5) | |
N3 | 1.2471 (3) | 0.7536 (3) | 0.0266 (2) | 0.0276 (6) | |
C1 | 0.6183 (3) | 0.6659 (3) | 0.3756 (2) | 0.0171 (5) | |
C2 | 0.7114 (3) | 0.5555 (3) | 0.4567 (2) | 0.0196 (5) | |
C3 | 0.6804 (3) | 0.5624 (3) | 0.5728 (2) | 0.0211 (5) | |
H3A | 0.7467 | 0.4854 | 0.6252 | 0.025* | |
C4 | 0.5575 (3) | 0.6778 (4) | 0.6087 (2) | 0.0216 (5) | |
C5 | 0.4516 (3) | 0.7931 (3) | 0.5332 (2) | 0.0183 (5) | |
C6 | 0.3170 (3) | 0.9116 (4) | 0.5696 (3) | 0.0264 (6) | |
H6A | 0.2998 | 0.9217 | 0.6463 | 0.032* | |
C7 | 0.2119 (3) | 1.0113 (4) | 0.4962 (3) | 0.0292 (7) | |
H7A | 0.1240 | 1.0917 | 0.5220 | 0.035* | |
C8 | 0.2318 (3) | 0.9967 (4) | 0.3842 (3) | 0.0267 (6) | |
H8A | 0.1552 | 1.0642 | 0.3346 | 0.032* | |
C9 | 0.3622 (3) | 0.8845 (3) | 0.3448 (2) | 0.0216 (5) | |
H9A | 0.3741 | 0.8749 | 0.2682 | 0.026* | |
C10 | 0.4788 (3) | 0.7832 (3) | 0.4170 (2) | 0.0171 (5) | |
C12 | 0.6425 (3) | 0.8012 (4) | 0.1692 (2) | 0.0224 (6) | |
H12A | 0.6430 | 0.9014 | 0.1961 | 0.027* | |
H12B | 0.5383 | 0.8185 | 0.1351 | 0.027* | |
C13 | 0.7896 (3) | 0.7678 (3) | 0.0821 (2) | 0.0196 (5) | |
C14 | 0.9489 (3) | 0.7762 (3) | 0.0981 (2) | 0.0197 (5) | |
C15 | 1.0768 (3) | 0.7462 (4) | 0.0142 (2) | 0.0220 (6) | |
C16 | 1.0535 (3) | 0.7066 (4) | −0.0846 (2) | 0.0265 (6) | |
H16A | 1.1437 | 0.6861 | −0.1406 | 0.032* | |
C17 | 0.8958 (4) | 0.6977 (4) | −0.1002 (2) | 0.0286 (6) | |
H17A | 0.8765 | 0.6709 | −0.1674 | 0.034* | |
C18 | 0.7659 (3) | 0.7280 (4) | −0.0171 (2) | 0.0251 (6) | |
H18A | 0.6581 | 0.7213 | −0.0284 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03423 (17) | 0.0569 (2) | 0.01698 (15) | −0.01906 (15) | 0.00074 (12) | −0.01145 (14) |
Br2 | 0.03155 (17) | 0.0494 (2) | 0.02682 (17) | −0.01218 (14) | −0.00825 (13) | −0.01525 (14) |
O1 | 0.0319 (11) | 0.0295 (13) | 0.0449 (15) | 0.0057 (9) | −0.0109 (11) | −0.0035 (11) |
O2 | 0.0336 (12) | 0.0256 (12) | 0.0354 (13) | 0.0041 (9) | 0.0090 (10) | −0.0068 (10) |
O3A | 0.0187 (13) | 0.0379 (18) | 0.0399 (18) | −0.0008 (12) | −0.0021 (12) | −0.0062 (14) |
O4A | 0.0293 (16) | 0.042 (2) | 0.077 (3) | −0.0142 (15) | −0.0194 (17) | −0.0033 (19) |
O3B | 0.0187 (13) | 0.0379 (18) | 0.0399 (18) | −0.0008 (12) | −0.0021 (12) | −0.0062 (14) |
O4B | 0.0293 (16) | 0.042 (2) | 0.077 (3) | −0.0142 (15) | −0.0194 (17) | −0.0033 (19) |
N1 | 0.0283 (12) | 0.0210 (13) | 0.0178 (11) | −0.0034 (10) | 0.0014 (9) | −0.0045 (9) |
N2 | 0.0187 (10) | 0.0158 (12) | 0.0353 (14) | −0.0023 (9) | −0.0050 (10) | −0.0002 (10) |
N3 | 0.0184 (11) | 0.0345 (16) | 0.0282 (13) | −0.0085 (11) | −0.0050 (10) | 0.0023 (11) |
C1 | 0.0144 (10) | 0.0196 (13) | 0.0179 (12) | −0.0063 (9) | 0.0009 (9) | −0.0039 (10) |
C2 | 0.0168 (11) | 0.0173 (13) | 0.0237 (13) | −0.0033 (10) | −0.0009 (10) | −0.0032 (10) |
C3 | 0.0202 (12) | 0.0237 (14) | 0.0189 (13) | −0.0079 (10) | −0.0044 (10) | 0.0020 (10) |
C4 | 0.0213 (12) | 0.0310 (15) | 0.0162 (12) | −0.0127 (11) | −0.0005 (10) | −0.0056 (11) |
C5 | 0.0145 (10) | 0.0204 (13) | 0.0220 (13) | −0.0078 (9) | 0.0028 (9) | −0.0075 (10) |
C6 | 0.0230 (13) | 0.0292 (16) | 0.0311 (16) | −0.0082 (11) | 0.0046 (12) | −0.0163 (12) |
C7 | 0.0185 (12) | 0.0239 (16) | 0.046 (2) | −0.0037 (11) | 0.0035 (12) | −0.0147 (14) |
C8 | 0.0173 (12) | 0.0191 (14) | 0.0401 (18) | −0.0009 (10) | −0.0033 (12) | −0.0016 (12) |
C9 | 0.0164 (11) | 0.0251 (15) | 0.0229 (13) | −0.0046 (10) | −0.0052 (10) | −0.0018 (11) |
C10 | 0.0148 (10) | 0.0152 (12) | 0.0206 (13) | −0.0032 (9) | −0.0023 (9) | −0.0021 (9) |
C12 | 0.0187 (11) | 0.0292 (15) | 0.0179 (13) | −0.0031 (10) | −0.0026 (10) | −0.0033 (11) |
C13 | 0.0185 (11) | 0.0246 (14) | 0.0149 (12) | −0.0050 (10) | −0.0023 (9) | −0.0010 (10) |
C14 | 0.0221 (12) | 0.0208 (14) | 0.0167 (12) | −0.0060 (10) | −0.0062 (10) | −0.0002 (10) |
C15 | 0.0141 (11) | 0.0264 (15) | 0.0244 (14) | −0.0056 (10) | −0.0039 (10) | −0.0003 (11) |
C16 | 0.0183 (12) | 0.0381 (18) | 0.0205 (14) | −0.0055 (12) | 0.0021 (10) | −0.0036 (12) |
C17 | 0.0287 (14) | 0.0424 (19) | 0.0159 (13) | −0.0087 (13) | −0.0025 (11) | −0.0066 (12) |
C18 | 0.0205 (12) | 0.0385 (18) | 0.0185 (14) | −0.0105 (12) | −0.0042 (10) | −0.0039 (12) |
Br1—C4 | 1.893 (3) | C6—C7 | 1.364 (5) |
Br2—C14 | 1.887 (3) | C6—H6A | 0.9500 |
O1—N2 | 1.231 (3) | C7—C8 | 1.388 (5) |
O2—N2 | 1.214 (3) | C7—H7A | 0.9500 |
O3A—N3 | 1.245 (4) | C8—C9 | 1.378 (4) |
O4A—N3 | 1.199 (4) | C8—H8A | 0.9500 |
O3B—N3 | 1.214 (7) | C9—C10 | 1.419 (4) |
O4B—N3 | 1.224 (9) | C9—H9A | 0.9500 |
N1—C1 | 1.363 (3) | C12—C13 | 1.517 (4) |
N1—C12 | 1.467 (4) | C12—H12A | 0.9900 |
N1—H1N | 0.85 (3) | C12—H12B | 0.9900 |
N2—C2 | 1.461 (3) | C13—C18 | 1.390 (4) |
N3—C15 | 1.474 (3) | C13—C14 | 1.398 (4) |
C1—C2 | 1.400 (4) | C14—C15 | 1.386 (4) |
C1—C10 | 1.457 (4) | C15—C16 | 1.383 (4) |
C2—C3 | 1.420 (4) | C16—C17 | 1.385 (4) |
C3—C4 | 1.344 (4) | C16—H16A | 0.9500 |
C3—H3A | 0.9500 | C17—C18 | 1.388 (4) |
C4—C5 | 1.432 (4) | C17—H17A | 0.9500 |
C5—C6 | 1.417 (4) | C18—H18A | 0.9500 |
C5—C10 | 1.426 (4) | ||
C1—N1—C12 | 127.2 (2) | C9—C8—C7 | 120.2 (3) |
C1—N1—H1N | 111 (2) | C9—C8—H8A | 119.9 |
C12—N1—H1N | 116 (2) | C7—C8—H8A | 119.9 |
O2—N2—O1 | 122.8 (3) | C8—C9—C10 | 121.0 (3) |
O2—N2—C2 | 120.1 (2) | C8—C9—H9A | 119.5 |
O1—N2—C2 | 117.1 (3) | C10—C9—H9A | 119.5 |
O3B—N3—O4B | 122.8 (5) | C9—C10—C5 | 118.2 (2) |
O4A—N3—O3A | 125.1 (3) | C9—C10—C1 | 121.3 (2) |
O4A—N3—C15 | 118.2 (3) | C5—C10—C1 | 120.5 (2) |
O3B—N3—C15 | 119.2 (4) | N1—C12—C13 | 109.3 (2) |
O4B—N3—C15 | 117.1 (4) | N1—C12—H12A | 109.8 |
O3A—N3—C15 | 116.7 (3) | C13—C12—H12A | 109.8 |
N1—C1—C2 | 122.2 (2) | N1—C12—H12B | 109.8 |
N1—C1—C10 | 121.2 (2) | C13—C12—H12B | 109.8 |
C2—C1—C10 | 116.6 (2) | H12A—C12—H12B | 108.3 |
C1—C2—C3 | 122.5 (2) | C18—C13—C14 | 118.7 (2) |
C1—C2—N2 | 122.3 (3) | C18—C13—C12 | 119.2 (2) |
C3—C2—N2 | 115.1 (3) | C14—C13—C12 | 122.1 (3) |
C4—C3—C2 | 120.1 (3) | C15—C14—C13 | 118.8 (3) |
C4—C3—H3A | 120.0 | C15—C14—Br2 | 121.3 (2) |
C2—C3—H3A | 120.0 | C13—C14—Br2 | 119.9 (2) |
C3—C4—C5 | 121.8 (3) | C16—C15—C14 | 122.6 (2) |
C3—C4—Br1 | 118.3 (2) | C16—C15—N3 | 116.3 (2) |
C5—C4—Br1 | 119.9 (2) | C14—C15—N3 | 121.1 (3) |
C6—C5—C10 | 118.8 (3) | C15—C16—C17 | 118.5 (3) |
C6—C5—C4 | 122.8 (3) | C15—C16—H16A | 120.7 |
C10—C5—C4 | 118.4 (2) | C17—C16—H16A | 120.7 |
C7—C6—C5 | 121.0 (3) | C16—C17—C18 | 119.7 (3) |
C7—C6—H6A | 119.5 | C16—C17—H17A | 120.2 |
C5—C6—H6A | 119.5 | C18—C17—H17A | 120.2 |
C6—C7—C8 | 120.8 (3) | C17—C18—C13 | 121.7 (3) |
C6—C7—H7A | 119.6 | C17—C18—H18A | 119.2 |
C8—C7—H7A | 119.6 | C13—C18—H18A | 119.2 |
C12—N1—C1—C2 | −141.9 (3) | N1—C1—C10—C9 | 7.0 (4) |
C12—N1—C1—C10 | 40.5 (4) | C2—C1—C10—C9 | −170.8 (2) |
N1—C1—C2—C3 | 178.1 (2) | N1—C1—C10—C5 | −176.1 (2) |
C10—C1—C2—C3 | −4.1 (4) | C2—C1—C10—C5 | 6.2 (3) |
N1—C1—C2—N2 | 0.6 (4) | C1—N1—C12—C13 | 138.6 (3) |
C10—C1—C2—N2 | 178.3 (2) | N1—C12—C13—C18 | 105.6 (3) |
O2—N2—C2—C1 | −7.7 (4) | N1—C12—C13—C14 | −74.5 (3) |
O1—N2—C2—C1 | 173.1 (2) | C18—C13—C14—C15 | 0.6 (4) |
O2—N2—C2—C3 | 174.6 (2) | C12—C13—C14—C15 | −179.2 (3) |
O1—N2—C2—C3 | −4.6 (3) | C18—C13—C14—Br2 | −177.7 (2) |
C1—C2—C3—C4 | 0.2 (4) | C12—C13—C14—Br2 | 2.4 (4) |
N2—C2—C3—C4 | 177.9 (2) | C13—C14—C15—C16 | −0.6 (4) |
C2—C3—C4—C5 | 1.9 (4) | Br2—C14—C15—C16 | 177.7 (2) |
C2—C3—C4—Br1 | 179.86 (19) | C13—C14—C15—N3 | 179.9 (3) |
C3—C4—C5—C6 | 177.4 (3) | Br2—C14—C15—N3 | −1.7 (4) |
Br1—C4—C5—C6 | −0.6 (3) | O4A—N3—C15—C16 | 125.2 (4) |
C3—C4—C5—C10 | 0.2 (4) | O3B—N3—C15—C16 | 60.9 (6) |
Br1—C4—C5—C10 | −177.74 (18) | O4B—N3—C15—C16 | −129.3 (6) |
C10—C5—C6—C7 | 2.0 (4) | O3A—N3—C15—C16 | −52.1 (4) |
C4—C5—C6—C7 | −175.2 (3) | O4A—N3—C15—C14 | −55.3 (4) |
C5—C6—C7—C8 | 1.5 (4) | O3B—N3—C15—C14 | −119.6 (6) |
C6—C7—C8—C9 | −2.3 (4) | O4B—N3—C15—C14 | 50.2 (6) |
C7—C8—C9—C10 | −0.5 (4) | O3A—N3—C15—C14 | 127.4 (3) |
C8—C9—C10—C5 | 3.9 (4) | C14—C15—C16—C17 | 0.4 (5) |
C8—C9—C10—C1 | −179.1 (2) | N3—C15—C16—C17 | 179.8 (3) |
C6—C5—C10—C9 | −4.6 (4) | C15—C16—C17—C18 | −0.1 (5) |
C4—C5—C10—C9 | 172.7 (2) | C16—C17—C18—C13 | 0.2 (5) |
C6—C5—C10—C1 | 178.4 (2) | C14—C13—C18—C17 | −0.4 (4) |
C4—C5—C10—C1 | −4.3 (4) | C12—C13—C18—C17 | 179.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2 | 0.84 (3) | 1.91 (3) | 2.624 (3) | 141 (3) |
C12—H12A···O3Bi | 0.99 | 2.57 | 3.117 (8) | 115 |
C12—H12B···O4Aii | 0.99 | 2.54 | 3.532 (4) | 177 |
C12—H12B···O4Bii | 0.99 | 2.61 | 3.462 (8) | 144 |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2 | 0.84 (3) | 1.91 (3) | 2.624 (3) | 141 (3) |
C12—H12A···O3Bi | 0.99 | 2.57 | 3.117 (8) | 115 |
C12—H12B···O4Aii | 0.99 | 2.54 | 3.532 (4) | 177 |
C12—H12B···O4Bii | 0.99 | 2.61 | 3.462 (8) | 144 |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) x−1, y, z. |
Ring 1 | Ring 2 | Distance | Perpedicular distance | Slippage | Symmetry | |
Cg1 | Cg1 | 3.5295 (16) | 3.3867 (11) | 0.94 | 1-x,1-y,1-z | |
Cg2 | Cg2 | 3.8868 (15) | 3.3859 (12) | 1.91 | 1-x,-y,1-z | |
Cg3 | Cg3 | 3.9629 (18) | 3.5873 (12) | 1.68 | -x,1-y,2-z |
Acknowledgements
RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, V. P., Singh, H. B. & Butcher, R. J. (2010). Eur. J. Inorg. Chem. pp. 637–647. Web of Science CSD CrossRef Google Scholar
Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221–7223. Web of Science CSD CrossRef CAS Google Scholar
Singh, V. P., Singh, P., Singh, H. B. & Butcher, R. J. (2012). Tetrahedron Lett. 53, 4591–4594. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.