organic compounds
H)-one
of a monoclinic polymorph of 5-amino-1,3,4-thiadiazol-2(3aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
The title compound, C2H3N3OS, is a monoclinic (P21/c) polymorph of the previously reported triclinic structure [Kang et al. (2012). Acta Cryst. E68, o1198]. The contains two independent molecules which are essentially planar, with r.m.s. deviations of 0.001 and 0.032 Å from the mean plane defined by the seven non-H atoms. In the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the molecules into a sheet parallel to (111).
Keywords: crystal structure; polymorph; thiadiazolone; hydrogen bonds.
CCDC reference: 1013072
1. Related literature
For structures and reactivity of thiadiazole derivatives, see: Parkanyi et al. (1989); Cho et al. (1996). For the triclinic polymorph, see; Kang et al. (2012).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1013072
10.1107/S1600536814016055/tk5326sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814016055/tk5326Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814016055/tk5326Isup3.cml
5-Amino-2H-1,2,4-thiadiazolin-3-one heterocycle is an analog of cytosine (Parkanyi et al., 1989). Derivatives of this heterocyclic compound are interesting in the antibacterial activity, potential carcinogenicity, and kinase inhibitor activity (Cho et al., 1996). The title compound, 5-amino-1,3,4-thiadiazol-2(3H)-one (I) is an isomer of 5-amino-2H-1,2,4-thiadiazolin-3-one, which has become an attractive moiety due to potential biological activities. These
are potentially good ligands because of N, O, and S atoms which are good donor atoms to both transition metals (Cu, Zn, Cd) and lanthanide metals (Tb and Eu). In our interest to metal complexes with these the title compound was isolated accidently.In (I), Fig. 1, two independent molecules comprise the
which are linked by the intermolecular N—H···N and N—H···O hydrogen bonds. The 1,3,4-thiadiazol-2-one units are almost planar, with r.m.s. deviations of 0.001 – 0.032 Å from the corresponding least-squares plane defined by the seven constituent atoms. The is stabilized by the intermolecular N—H···N and N—H···O hydrogen bonds, which link the molecules into a two-dimensional sheet parallel to 111 plane (Table 1 and Fig. 2).The title compound (I) was synthesized by the process of the previous report (Kang et al. 2012). Copper(II) chloride (1.36 g, 8 mmol) dissolved in ethanol, was added drop wise to a stirred ethanolic solution containing 5-amino-1,3,4-thiadiazol-2(3H-one (1.87 g, 16 mmol). The mixture was stirred for 10 h at room temperature. The resulting solution was filtered and allowed to stand at room temperature. Colourless crystals of (I) were obtained at room temperature over a period of a few weeks.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Intermolecular N—H···N and N—H···O hydrogen bonds are indicated by dashed lines. | |
Fig. 2. Part of the crystal structure of the title compound, showing molecules linked by intermolecular N—H···N and N—H···O hydrogen bonds (dashed lines). |
C2H3N3OS | F(000) = 480 |
Mr = 117.13 | Dx = 1.728 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1700 reflections |
a = 3.8182 (3) Å | θ = 2.7–25.7° |
b = 10.8166 (7) Å | µ = 0.58 mm−1 |
c = 21.8043 (15) Å | T = 296 K |
β = 91.015 (4)° | Block, colourless |
V = 900.37 (11) Å3 | 0.21 × 0.1 × 0.09 mm |
Z = 8 |
Bruker SMART CCD area-detector diffractometer | 1376 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans | θmax = 25.8°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −4→4 |
Tmin = 0.911, Tmax = 0.931 | k = −12→13 |
5812 measured reflections | l = −26→26 |
1709 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | All H-atom parameters refined |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0317P)2 + 0.833P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1709 reflections | Δρmax = 0.37 e Å−3 |
151 parameters | Δρmin = −0.29 e Å−3 |
C2H3N3OS | V = 900.37 (11) Å3 |
Mr = 117.13 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.8182 (3) Å | µ = 0.58 mm−1 |
b = 10.8166 (7) Å | T = 296 K |
c = 21.8043 (15) Å | 0.21 × 0.1 × 0.09 mm |
β = 91.015 (4)° |
Bruker SMART CCD area-detector diffractometer | 1709 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1376 reflections with I > 2σ(I) |
Tmin = 0.911, Tmax = 0.931 | Rint = 0.048 |
5812 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.099 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.37 e Å−3 |
1709 reflections | Δρmin = −0.29 e Å−3 |
151 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.5670 (2) | 0.33458 (7) | 0.36148 (3) | 0.0316 (2) | |
C2 | 0.4389 (8) | 0.4860 (3) | 0.33723 (13) | 0.0297 (7) | |
N3 | 0.5448 (8) | 0.5631 (3) | 0.38116 (12) | 0.0327 (7) | |
H3 | 0.487 (9) | 0.631 (3) | 0.3829 (14) | 0.030 (10)* | |
N4 | 0.7091 (7) | 0.5177 (2) | 0.43328 (11) | 0.0301 (6) | |
C5 | 0.7362 (8) | 0.3992 (3) | 0.42932 (13) | 0.0259 (7) | |
O6 | 0.2779 (7) | 0.5107 (2) | 0.28964 (10) | 0.0454 (6) | |
N7 | 0.8708 (8) | 0.3270 (3) | 0.47486 (13) | 0.0349 (7) | |
H7A | 0.968 (9) | 0.259 (3) | 0.4641 (14) | 0.035 (10)* | |
H7B | 0.983 (10) | 0.364 (3) | 0.5033 (17) | 0.049 (11)* | |
S8 | 0.0629 (2) | 1.02405 (7) | 0.34352 (4) | 0.0334 (2) | |
C9 | 0.2461 (8) | 1.0171 (3) | 0.41853 (13) | 0.0294 (7) | |
N10 | 0.3361 (7) | 0.9003 (2) | 0.42943 (12) | 0.0315 (6) | |
H10 | 0.438 (8) | 0.884 (3) | 0.4630 (14) | 0.024 (8)* | |
N11 | 0.2747 (8) | 0.8126 (2) | 0.38422 (11) | 0.0359 (7) | |
C12 | 0.1325 (8) | 0.8645 (3) | 0.33686 (13) | 0.0296 (7) | |
O13 | 0.2843 (7) | 1.1052 (2) | 0.45367 (10) | 0.0458 (7) | |
N14 | 0.0397 (10) | 0.8045 (4) | 0.28504 (14) | 0.0502 (9) | |
H14A | −0.052 (11) | 0.853 (4) | 0.2546 (19) | 0.068 (13)* | |
H14B | 0.074 (10) | 0.738 (4) | 0.2852 (17) | 0.043 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0410 (5) | 0.0227 (4) | 0.0307 (4) | 0.0018 (4) | −0.0078 (3) | −0.0059 (3) |
C2 | 0.0324 (18) | 0.0272 (17) | 0.0295 (16) | 0.0007 (14) | −0.0021 (13) | −0.0011 (13) |
N3 | 0.0497 (19) | 0.0174 (14) | 0.0307 (15) | 0.0063 (13) | −0.0095 (12) | −0.0019 (11) |
N4 | 0.0401 (16) | 0.0220 (14) | 0.0278 (13) | 0.0087 (12) | −0.0088 (11) | −0.0033 (11) |
C5 | 0.0287 (17) | 0.0221 (16) | 0.0269 (15) | 0.0020 (13) | 0.0001 (12) | −0.0042 (12) |
O6 | 0.0609 (17) | 0.0390 (14) | 0.0355 (13) | 0.0025 (12) | −0.0201 (12) | 0.0028 (11) |
N7 | 0.0482 (19) | 0.0240 (16) | 0.0319 (15) | 0.0073 (14) | −0.0118 (13) | −0.0026 (13) |
S8 | 0.0422 (5) | 0.0250 (4) | 0.0326 (4) | 0.0077 (4) | −0.0091 (3) | 0.0031 (3) |
C9 | 0.0343 (18) | 0.0242 (16) | 0.0296 (16) | 0.0068 (14) | −0.0037 (13) | 0.0004 (13) |
N10 | 0.0479 (18) | 0.0233 (14) | 0.0229 (13) | 0.0116 (12) | −0.0093 (12) | −0.0023 (11) |
N11 | 0.0550 (19) | 0.0239 (14) | 0.0284 (14) | 0.0093 (13) | −0.0091 (12) | −0.0033 (11) |
C12 | 0.0358 (19) | 0.0242 (16) | 0.0288 (16) | 0.0051 (14) | −0.0027 (13) | −0.0019 (13) |
O13 | 0.0714 (18) | 0.0255 (13) | 0.0400 (13) | 0.0124 (12) | −0.0154 (12) | −0.0079 (11) |
N14 | 0.079 (3) | 0.036 (2) | 0.0346 (18) | 0.0114 (18) | −0.0230 (16) | −0.0056 (15) |
S1—C5 | 1.749 (3) | S8—C12 | 1.753 (3) |
S1—C2 | 1.786 (3) | S8—C9 | 1.769 (3) |
C2—O6 | 1.226 (4) | C9—O13 | 1.230 (3) |
C2—N3 | 1.328 (4) | C9—N10 | 1.329 (4) |
N3—N4 | 1.379 (3) | N10—N11 | 1.385 (3) |
N3—H3 | 0.77 (3) | N10—H10 | 0.84 (3) |
N4—C5 | 1.289 (4) | N11—C12 | 1.287 (4) |
C5—N7 | 1.357 (4) | C12—N14 | 1.345 (4) |
N7—H7A | 0.86 (3) | N14—H14A | 0.91 (4) |
N7—H7B | 0.85 (4) | N14—H14B | 0.73 (4) |
C5—S1—C2 | 88.81 (14) | C12—S8—C9 | 88.66 (14) |
O6—C2—N3 | 127.9 (3) | O13—C9—N10 | 126.7 (3) |
O6—C2—S1 | 125.5 (2) | O13—C9—S8 | 125.7 (2) |
N3—C2—S1 | 106.5 (2) | N10—C9—S8 | 107.6 (2) |
C2—N3—N4 | 120.0 (3) | C9—N10—N11 | 118.9 (3) |
C2—N3—H3 | 123 (2) | C9—N10—H10 | 118 (2) |
N4—N3—H3 | 115 (2) | N11—N10—H10 | 123 (2) |
C5—N4—N3 | 109.5 (2) | C12—N11—N10 | 109.6 (2) |
N4—C5—N7 | 123.6 (3) | N11—C12—N14 | 124.4 (3) |
N4—C5—S1 | 115.1 (2) | N11—C12—S8 | 115.2 (2) |
N7—C5—S1 | 121.2 (2) | N14—C12—S8 | 120.4 (3) |
C5—N7—H7A | 117 (2) | C12—N14—H14A | 115 (3) |
C5—N7—H7B | 116 (2) | C12—N14—H14B | 115 (3) |
H7A—N7—H7B | 113 (3) | H14A—N14—H14B | 130 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N11 | 0.77 (3) | 2.12 (3) | 2.891 (4) | 174 (3) |
N7—H7A···O13i | 0.86 (3) | 2.07 (4) | 2.913 (4) | 167 (3) |
N7—H7B···N4ii | 0.85 (4) | 2.21 (4) | 3.048 (4) | 171 (3) |
N10—H10···O13iii | 0.84 (3) | 2.09 (3) | 2.910 (3) | 165 (3) |
N14—H14A···O6iv | 0.91 (4) | 2.14 (4) | 3.005 (4) | 159 (4) |
N14—H14B···O6 | 0.73 (4) | 2.58 (4) | 3.306 (5) | 173 (4) |
Symmetry codes: (i) x+1, y−1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N11 | 0.77 (3) | 2.12 (3) | 2.891 (4) | 174 (3) |
N7—H7A···O13i | 0.86 (3) | 2.07 (4) | 2.913 (4) | 167 (3) |
N7—H7B···N4ii | 0.85 (4) | 2.21 (4) | 3.048 (4) | 171 (3) |
N10—H10···O13iii | 0.84 (3) | 2.09 (3) | 2.910 (3) | 165 (3) |
N14—H14A···O6iv | 0.91 (4) | 2.14 (4) | 3.005 (4) | 159 (4) |
N14—H14B···O6 | 0.73 (4) | 2.58 (4) | 3.306 (5) | 173 (4) |
Symmetry codes: (i) x+1, y−1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the research fund of Chungnam National University.
References
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170–1174. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kang, S. K., Cho, N. S. & Jang, S. (2012). Acta Cryst. E68, o1198. CSD CrossRef IUCr Journals Google Scholar
Parkanyi, C., Yuan, H. L., Cho, N. S., Jaw, J. J., Woodhouse, T. E. & Aung, T. L. (1989). J. Heterocycl. Chem. 26, 1331–1334. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.