organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a monoclinic polymorph of 5-amino-1,3,4-thia­diazol-2(3H)-one

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 7 July 2014; accepted 9 July 2014; online 1 August 2014)

The title compound, C2H3N3OS, is a monoclinic (P21/c) polymorph of the previously reported triclinic structure [Kang et al. (2012[Kang, S. K., Cho, N. S. & Jang, S. (2012). Acta Cryst. E68, o1198.]). Acta Cryst. E68, o1198]. The asymmetric unit contains two independent mol­ecules which are essentially planar, with r.m.s. deviations of 0.001 and 0.032 Å from the mean plane defined by the seven non-H atoms. In the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a sheet parallel to (111).

1. Related literature

For structures and reactivity of thia­diazole derivatives, see: Parkanyi et al. (1989[Parkanyi, C., Yuan, H. L., Cho, N. S., Jaw, J. J., Woodhouse, T. E. & Aung, T. L. (1989). J. Heterocycl. Chem. 26, 1331-1334.]); Cho et al. (1996[Cho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170-1174.]). For the triclinic polymorph, see; Kang et al. (2012[Kang, S. K., Cho, N. S. & Jang, S. (2012). Acta Cryst. E68, o1198.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C2H3N3OS

  • Mr = 117.13

  • Monoclinic, P 21 /c

  • a = 3.8182 (3) Å

  • b = 10.8166 (7) Å

  • c = 21.8043 (15) Å

  • β = 91.015 (4)°

  • V = 900.37 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 296 K

  • 0.21 × 0.1 × 0.09 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.931

  • 5812 measured reflections

  • 1709 independent reflections

  • 1376 reflections with I > 2σ(I)

  • Rint = 0.048

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.099

  • S = 1.08

  • 1709 reflections

  • 151 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N11 0.77 (3) 2.12 (3) 2.891 (4) 174 (3)
N7—H7A⋯O13i 0.86 (3) 2.07 (4) 2.913 (4) 167 (3)
N7—H7B⋯N4ii 0.85 (4) 2.21 (4) 3.048 (4) 171 (3)
N10—H10⋯O13iii 0.84 (3) 2.09 (3) 2.910 (3) 165 (3)
N14—H14A⋯O6iv 0.91 (4) 2.14 (4) 3.005 (4) 159 (4)
N14—H14B⋯O6 0.73 (4) 2.58 (4) 3.306 (5) 173 (4)
Symmetry codes: (i) x+1, y-1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Structural commentary top

5-Amino-2H-1,2,4-thia­diazo­lin-3-one heterocycle is an analog of cytosine (Parkanyi et al., 1989). Derivatives of this heterocyclic compound are inter­esting in the anti­bacterial activity, potential carcinogenicity, and kinase inhibitor activity (Cho et al., 1996). The title compound, 5-amino-1,3,4-thia­diazol-2(3H)-one (I) is an isomer of 5-amino-2H-1,2,4-thia­diazo­lin-3-one, which has become an attractive moiety due to potential biological activities. These heterocyclic compounds are potentially good ligands because of N, O, and S atoms which are good donor atoms to both transition metals (Cu, Zn, Cd) and lanthanide metals (Tb and Eu). In our inter­est to metal complexes with these heterocyclic compounds, the title compound was isolated accidently.

In (I), Fig. 1, two independent molecules comprise the asymmetric unit, which are linked by the inter­molecular N—H···N and N—H···O hydrogen bonds. The 1,3,4-thia­diazol-2-one units are almost planar, with r.m.s. deviations of 0.001 – 0.032 Å from the corresponding least-squares plane defined by the seven constituent atoms. The crystal structure is stabilized by the inter­molecular N—H···N and N—H···O hydrogen bonds, which link the molecules into a two-dimensional sheet parallel to 111 plane (Table 1 and Fig. 2).

Synthesis and crystallization top

The title compound (I) was synthesized by the process of the previous report (Kang et al. 2012). Copper(II) chloride (1.36 g, 8 mmol) dissolved in ethanol, was added drop wise to a stirred ethano­lic solution containing 5-amino-1,3,4-thia­diazol-2(3H-one (1.87 g, 16 mmol). The mixture was stirred for 10 h at room temperature. The resulting solution was filtered and allowed to stand at room temperature. Colourless crystals of (I) were obtained at room temperature over a period of a few weeks.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms of the NH and NH2 groups were located in a difference Fourier map and refined freely [refined distances = 0.73 (4)–0.91 (4) Å].

Related literature top

For structures and reactivity of thiadiazole derivatives, see: Parkanyi et al. (1989); Cho et al. (1996). For the triclinic polymorph, see; Kang et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Intermolecular N—H···N and N—H···O hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing molecules linked by intermolecular N—H···N and N—H···O hydrogen bonds (dashed lines).
5-Amino-1,3,4-thiadiazol-2(3H)-one top
Crystal data top
C2H3N3OSF(000) = 480
Mr = 117.13Dx = 1.728 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1700 reflections
a = 3.8182 (3) Åθ = 2.7–25.7°
b = 10.8166 (7) ŵ = 0.58 mm1
c = 21.8043 (15) ÅT = 296 K
β = 91.015 (4)°Block, colourless
V = 900.37 (11) Å30.21 × 0.1 × 0.09 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
1376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 44
Tmin = 0.911, Tmax = 0.931k = 1213
5812 measured reflectionsl = 2626
1709 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0317P)2 + 0.833P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1709 reflectionsΔρmax = 0.37 e Å3
151 parametersΔρmin = 0.29 e Å3
Crystal data top
C2H3N3OSV = 900.37 (11) Å3
Mr = 117.13Z = 8
Monoclinic, P21/cMo Kα radiation
a = 3.8182 (3) ŵ = 0.58 mm1
b = 10.8166 (7) ÅT = 296 K
c = 21.8043 (15) Å0.21 × 0.1 × 0.09 mm
β = 91.015 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1709 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1376 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.931Rint = 0.048
5812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.099All H-atom parameters refined
S = 1.08Δρmax = 0.37 e Å3
1709 reflectionsΔρmin = 0.29 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.5670 (2)0.33458 (7)0.36148 (3)0.0316 (2)
C20.4389 (8)0.4860 (3)0.33723 (13)0.0297 (7)
N30.5448 (8)0.5631 (3)0.38116 (12)0.0327 (7)
H30.487 (9)0.631 (3)0.3829 (14)0.030 (10)*
N40.7091 (7)0.5177 (2)0.43328 (11)0.0301 (6)
C50.7362 (8)0.3992 (3)0.42932 (13)0.0259 (7)
O60.2779 (7)0.5107 (2)0.28964 (10)0.0454 (6)
N70.8708 (8)0.3270 (3)0.47486 (13)0.0349 (7)
H7A0.968 (9)0.259 (3)0.4641 (14)0.035 (10)*
H7B0.983 (10)0.364 (3)0.5033 (17)0.049 (11)*
S80.0629 (2)1.02405 (7)0.34352 (4)0.0334 (2)
C90.2461 (8)1.0171 (3)0.41853 (13)0.0294 (7)
N100.3361 (7)0.9003 (2)0.42943 (12)0.0315 (6)
H100.438 (8)0.884 (3)0.4630 (14)0.024 (8)*
N110.2747 (8)0.8126 (2)0.38422 (11)0.0359 (7)
C120.1325 (8)0.8645 (3)0.33686 (13)0.0296 (7)
O130.2843 (7)1.1052 (2)0.45367 (10)0.0458 (7)
N140.0397 (10)0.8045 (4)0.28504 (14)0.0502 (9)
H14A0.052 (11)0.853 (4)0.2546 (19)0.068 (13)*
H14B0.074 (10)0.738 (4)0.2852 (17)0.043 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0410 (5)0.0227 (4)0.0307 (4)0.0018 (4)0.0078 (3)0.0059 (3)
C20.0324 (18)0.0272 (17)0.0295 (16)0.0007 (14)0.0021 (13)0.0011 (13)
N30.0497 (19)0.0174 (14)0.0307 (15)0.0063 (13)0.0095 (12)0.0019 (11)
N40.0401 (16)0.0220 (14)0.0278 (13)0.0087 (12)0.0088 (11)0.0033 (11)
C50.0287 (17)0.0221 (16)0.0269 (15)0.0020 (13)0.0001 (12)0.0042 (12)
O60.0609 (17)0.0390 (14)0.0355 (13)0.0025 (12)0.0201 (12)0.0028 (11)
N70.0482 (19)0.0240 (16)0.0319 (15)0.0073 (14)0.0118 (13)0.0026 (13)
S80.0422 (5)0.0250 (4)0.0326 (4)0.0077 (4)0.0091 (3)0.0031 (3)
C90.0343 (18)0.0242 (16)0.0296 (16)0.0068 (14)0.0037 (13)0.0004 (13)
N100.0479 (18)0.0233 (14)0.0229 (13)0.0116 (12)0.0093 (12)0.0023 (11)
N110.0550 (19)0.0239 (14)0.0284 (14)0.0093 (13)0.0091 (12)0.0033 (11)
C120.0358 (19)0.0242 (16)0.0288 (16)0.0051 (14)0.0027 (13)0.0019 (13)
O130.0714 (18)0.0255 (13)0.0400 (13)0.0124 (12)0.0154 (12)0.0079 (11)
N140.079 (3)0.036 (2)0.0346 (18)0.0114 (18)0.0230 (16)0.0056 (15)
Geometric parameters (Å, º) top
S1—C51.749 (3)S8—C121.753 (3)
S1—C21.786 (3)S8—C91.769 (3)
C2—O61.226 (4)C9—O131.230 (3)
C2—N31.328 (4)C9—N101.329 (4)
N3—N41.379 (3)N10—N111.385 (3)
N3—H30.77 (3)N10—H100.84 (3)
N4—C51.289 (4)N11—C121.287 (4)
C5—N71.357 (4)C12—N141.345 (4)
N7—H7A0.86 (3)N14—H14A0.91 (4)
N7—H7B0.85 (4)N14—H14B0.73 (4)
C5—S1—C288.81 (14)C12—S8—C988.66 (14)
O6—C2—N3127.9 (3)O13—C9—N10126.7 (3)
O6—C2—S1125.5 (2)O13—C9—S8125.7 (2)
N3—C2—S1106.5 (2)N10—C9—S8107.6 (2)
C2—N3—N4120.0 (3)C9—N10—N11118.9 (3)
C2—N3—H3123 (2)C9—N10—H10118 (2)
N4—N3—H3115 (2)N11—N10—H10123 (2)
C5—N4—N3109.5 (2)C12—N11—N10109.6 (2)
N4—C5—N7123.6 (3)N11—C12—N14124.4 (3)
N4—C5—S1115.1 (2)N11—C12—S8115.2 (2)
N7—C5—S1121.2 (2)N14—C12—S8120.4 (3)
C5—N7—H7A117 (2)C12—N14—H14A115 (3)
C5—N7—H7B116 (2)C12—N14—H14B115 (3)
H7A—N7—H7B113 (3)H14A—N14—H14B130 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N110.77 (3)2.12 (3)2.891 (4)174 (3)
N7—H7A···O13i0.86 (3)2.07 (4)2.913 (4)167 (3)
N7—H7B···N4ii0.85 (4)2.21 (4)3.048 (4)171 (3)
N10—H10···O13iii0.84 (3)2.09 (3)2.910 (3)165 (3)
N14—H14A···O6iv0.91 (4)2.14 (4)3.005 (4)159 (4)
N14—H14B···O60.73 (4)2.58 (4)3.306 (5)173 (4)
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N110.77 (3)2.12 (3)2.891 (4)174 (3)
N7—H7A···O13i0.86 (3)2.07 (4)2.913 (4)167 (3)
N7—H7B···N4ii0.85 (4)2.21 (4)3.048 (4)171 (3)
N10—H10···O13iii0.84 (3)2.09 (3)2.910 (3)165 (3)
N14—H14A···O6iv0.91 (4)2.14 (4)3.005 (4)159 (4)
N14—H14B···O60.73 (4)2.58 (4)3.306 (5)173 (4)
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the research fund of Chungnam National University.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170–1174.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKang, S. K., Cho, N. S. & Jang, S. (2012). Acta Cryst. E68, o1198.  CSD CrossRef IUCr Journals Google Scholar
First citationParkanyi, C., Yuan, H. L., Cho, N. S., Jaw, J. J., Woodhouse, T. E. & Aung, T. L. (1989). J. Heterocycl. Chem. 26, 1331–1334.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds