organic compounds
of 1-(4-formylbenzylidene)-4-methylthiosemicarbazone
aDepartamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Galicia, Spain
*Correspondence e-mail: ezequiel@uvigo.es
The structure of the title compound, C10H11N3OS, comprises an approximately planar molecule, with the r.m.s. deviation for the 15 non-H atoms being 0.089 Å. The conformation about the imine bond is E and an intramolecular N—H⋯N hydrogen bond is evident. Molecules are linked into a supramolecular chain along the b axis by N—H⋯S hydrogen bonds.
Keywords: crystal structure; thiosemicarbazone; thiourea; hydrogen bonding.
CCDC reference: 1014062
1. Related literature
For the synthesis of the title compound, see: Jagst et al. (2005). For biological properties, see: Serda et al. (2012). For supramolecular studies of thiosemicarbazones, see: Alonso et al. (2002).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1014062
10.1107/S1600536814016407/tk5328sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814016407/tk5328Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814016407/tk5328Isup3.cml
A solution of 4-methyl-3-thiosemicarbazide (392 mg, 3.72 mmol) in water (50 mL) was slowly added at 50°C to a solution of terephthaldicarboxaldehyde (500 mg, 3.73 mmol) in 100 mL water. Then the mixture was stirred at 50°C for 30 mins. Once cooled to room temperature, the yellow solid was filtered off and vacuum dried. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from EtOH/H2O (1:1). Yield: 91%, M. pt: 213-216 °C. IR data (KBr, cm-1): 3368m, 3150m ν(N—H); 2838w, 2742w ν(C—H aldehyde); 1692 s ν(C═O); 1545 s, 1257m ν(C═N), 833m, 777w ν(C═S). 1H NMR data (DMSO-d6, ppm): 11.72 (s, 1H, N(2)—H); 10.03 (s, 1H, C(1)—H); 8.69 (s, 1H, N(2)—H); 8.11 (s, 1H, C(8)—H); 8.04 (d, 2H, J = 8.1 Hz, C(3,7)-H); 7.94 (d, 2H, J = 8.1 Hz, C(4,6)-H); 3.04 (s, 3H, C(10)—H).
Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the
in the riding model approximation, with Uiso(H) = 1.2Ueq(C). The N-bound H-atoms were located in a difference Fourier map but were refined with distance restraints N—H = 0.84 (1) and 0.90 (1) Å, and with Uiso(H) = 1.2Ueq(N).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007; data reduction: SAINT (Bruker, 2007; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. View of supramolecular chain formed by N—H···S interactions (dashed lines). |
C10H11N3OS | F(000) = 928 |
Mr = 221.28 | Dx = 1.306 Mg m−3 |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 9894 reflections |
a = 13.1231 (3) Å | θ = 4.6–66.6° |
b = 8.8559 (2) Å | µ = 2.38 mm−1 |
c = 19.3702 (4) Å | T = 296 K |
V = 2251.14 (9) Å3 | Plate, yellow |
Z = 8 | 0.14 × 0.13 × 0.05 mm |
Bruker CCD SMART 6000 diffractometer | 1986 independent reflections |
Radiation source: fine-focus sealed tube | 1798 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ϕ and ω scans | θmax = 66.6°, θmin = 4.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −15→15 |
Tmin = 0.730, Tmax = 0.898 | k = −10→10 |
22698 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0559P)2 + 0.3598P] where P = (Fo2 + 2Fc2)/3 |
1986 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C10H11N3OS | V = 2251.14 (9) Å3 |
Mr = 221.28 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 13.1231 (3) Å | µ = 2.38 mm−1 |
b = 8.8559 (2) Å | T = 296 K |
c = 19.3702 (4) Å | 0.14 × 0.13 × 0.05 mm |
Bruker CCD SMART 6000 diffractometer | 1986 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1798 reflections with I > 2σ(I) |
Tmin = 0.730, Tmax = 0.898 | Rint = 0.046 |
22698 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.21 e Å−3 |
1986 reflections | Δρmin = −0.16 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.90393 (3) | 1.04683 (4) | 0.40705 (2) | 0.06222 (18) | |
O1 | 0.88220 (12) | −0.01792 (18) | 0.72752 (8) | 0.0921 (5) | |
N1 | 0.81376 (12) | 0.78044 (16) | 0.39148 (7) | 0.0655 (4) | |
C1 | 0.87314 (11) | 0.86850 (16) | 0.42864 (8) | 0.0517 (3) | |
N2 | 0.90945 (10) | 0.81086 (15) | 0.48868 (7) | 0.0579 (3) | |
C2 | 0.92328 (12) | 0.62083 (19) | 0.56504 (9) | 0.0605 (4) | |
H2 | 0.9617 | 0.6879 | 0.5913 | 0.073* | |
N3 | 0.88781 (9) | 0.66473 (14) | 0.50704 (7) | 0.0542 (3) | |
C3 | 0.90556 (11) | 0.46928 (19) | 0.59137 (8) | 0.0536 (4) | |
C4 | 0.93836 (15) | 0.43343 (19) | 0.65777 (9) | 0.0678 (4) | |
H4 | 0.9707 | 0.5066 | 0.6844 | 0.081* | |
C5 | 0.92354 (14) | 0.2913 (2) | 0.68448 (9) | 0.0675 (4) | |
H5 | 0.9454 | 0.2692 | 0.7290 | 0.081* | |
C6 | 0.87602 (11) | 0.18070 (18) | 0.64526 (8) | 0.0554 (4) | |
C7 | 0.84324 (11) | 0.21631 (18) | 0.57902 (8) | 0.0558 (4) | |
H7 | 0.8112 | 0.1429 | 0.5524 | 0.067* | |
C8 | 0.85745 (11) | 0.35836 (17) | 0.55224 (8) | 0.0543 (4) | |
H8 | 0.8349 | 0.3805 | 0.5079 | 0.065* | |
C9 | 0.86069 (14) | 0.0265 (2) | 0.67155 (10) | 0.0678 (4) | |
H9 | 0.8313 | −0.0428 | 0.6415 | 0.081* | |
C10 | 0.76953 (19) | 0.8229 (2) | 0.32581 (10) | 0.0924 (7) | |
H10A | 0.7165 | 0.8957 | 0.3332 | 0.139* | |
H10B | 0.7415 | 0.7351 | 0.3038 | 0.139* | |
H10C | 0.8213 | 0.8660 | 0.2968 | 0.139* | |
H2N | 0.9542 (15) | 0.865 (2) | 0.5138 (9) | 0.075 (5)* | |
H1 | 0.8010 (15) | 0.695 (2) | 0.4085 (9) | 0.073 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0655 (3) | 0.0429 (3) | 0.0782 (3) | −0.00218 (15) | −0.01004 (18) | 0.00628 (16) |
O1 | 0.1022 (10) | 0.0890 (10) | 0.0851 (9) | 0.0013 (8) | −0.0037 (8) | 0.0320 (8) |
N1 | 0.0797 (9) | 0.0507 (8) | 0.0662 (8) | −0.0120 (7) | −0.0135 (7) | 0.0075 (6) |
C1 | 0.0458 (7) | 0.0469 (8) | 0.0622 (8) | 0.0028 (6) | 0.0023 (6) | 0.0008 (6) |
N2 | 0.0550 (7) | 0.0479 (7) | 0.0707 (8) | −0.0065 (5) | −0.0097 (6) | 0.0089 (6) |
C2 | 0.0566 (8) | 0.0555 (9) | 0.0693 (9) | −0.0066 (7) | −0.0097 (7) | 0.0047 (7) |
N3 | 0.0477 (6) | 0.0487 (7) | 0.0663 (8) | −0.0014 (5) | −0.0001 (5) | 0.0069 (6) |
C3 | 0.0468 (8) | 0.0555 (10) | 0.0585 (9) | 0.0000 (6) | −0.0032 (6) | 0.0047 (6) |
C4 | 0.0759 (11) | 0.0641 (10) | 0.0635 (9) | −0.0119 (8) | −0.0176 (8) | 0.0023 (7) |
C5 | 0.0763 (10) | 0.0707 (11) | 0.0555 (9) | −0.0044 (8) | −0.0131 (8) | 0.0106 (8) |
C6 | 0.0504 (8) | 0.0573 (9) | 0.0585 (8) | 0.0032 (6) | 0.0018 (6) | 0.0059 (7) |
C7 | 0.0539 (8) | 0.0544 (9) | 0.0590 (8) | −0.0013 (6) | −0.0037 (6) | −0.0017 (7) |
C8 | 0.0536 (8) | 0.0564 (9) | 0.0531 (7) | 0.0013 (6) | −0.0071 (6) | 0.0040 (6) |
C9 | 0.0656 (10) | 0.0653 (10) | 0.0724 (10) | 0.0035 (8) | 0.0001 (8) | 0.0122 (8) |
C10 | 0.1231 (18) | 0.0784 (12) | 0.0756 (11) | −0.0277 (12) | −0.0324 (12) | 0.0131 (10) |
S1—C1 | 1.6829 (15) | C3—C8 | 1.392 (2) |
O1—C9 | 1.187 (2) | C3—C4 | 1.393 (2) |
N1—C1 | 1.317 (2) | C4—C5 | 1.375 (2) |
N1—C10 | 1.448 (2) | C5—C6 | 1.388 (2) |
C1—N2 | 1.356 (2) | C6—C7 | 1.390 (2) |
N2—N3 | 1.3718 (18) | C6—C9 | 1.471 (2) |
C2—N3 | 1.277 (2) | C7—C8 | 1.373 (2) |
C2—C3 | 1.454 (2) | ||
C1—N1—C10 | 124.33 (15) | C4—C3—C2 | 118.99 (15) |
N1—C1—N2 | 116.98 (14) | C5—C4—C3 | 120.82 (15) |
N1—C1—S1 | 124.20 (12) | C4—C5—C6 | 120.26 (15) |
N2—C1—S1 | 118.81 (12) | C5—C6—C7 | 118.98 (15) |
C1—N2—N3 | 120.30 (13) | C5—C6—C9 | 121.80 (15) |
N3—C2—C3 | 122.09 (15) | C7—C6—C9 | 119.21 (15) |
C2—N3—N2 | 116.10 (13) | C8—C7—C6 | 120.97 (15) |
C8—C3—C4 | 118.82 (15) | C7—C8—C3 | 120.15 (14) |
C8—C3—C2 | 122.19 (14) | O1—C9—C6 | 126.24 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···S1i | 0.902 (19) | 2.53 (2) | 3.4154 (14) | 165.6 (16) |
N1—H1···N3 | 0.84 (2) | 2.238 (18) | 2.6467 (18) | 109.9 (15) |
N1—H1···S1ii | 0.84 (2) | 2.992 (19) | 3.5401 (15) | 124.6 (16) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+3/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···S1i | 0.902 (19) | 2.53 (2) | 3.4154 (14) | 165.6 (16) |
N1—H1···N3 | 0.84 (2) | 2.238 (18) | 2.6467 (18) | 109.9 (15) |
N1—H1···S1ii | 0.84 (2) | 2.992 (19) | 3.5401 (15) | 124.6 (16) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+3/2, y−1/2, z. |
Acknowledgements
This research was supported by the European Rural Development Fund and the Spanish Ministry of Education and Science through Project CTQ2010–19386/BQU.
References
Alonso, R., Bermejo, E., Carballo, R., Castiñeiras, A. & Pérez, T. (2002). J. Mol. Struct. 606, 155–173. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jagst, A., Sánchez, A., Vázquez-López, E. M. & Abram, U. (2005). Inorg. Chem. 44, 5738–5744. Web of Science CSD CrossRef PubMed CAS Google Scholar
Serda, M., Mrozek-Wilczkiewicz, A., Jampilek, J., Pesko, M., Kralova, K., Vejsova, M., Musiol, R., Ratuszna, A. & Polanski, J. (2012). Molecules, 17, 13483–13502. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.