organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(4-formyl­benzyl­­idene)-4-methyl­thio­semicarbazone

aDepartamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Galicia, Spain
*Correspondence e-mail: ezequiel@uvigo.es

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 11 July 2014; accepted 15 July 2014; online 1 August 2014)

The structure of the title compound, C10H11N3OS, comprises an approximately planar mol­ecule, with the r.m.s. deviation for the 15 non-H atoms being 0.089 Å. The conformation about the imine bond is E and an intra­molecular N—H⋯N hydrogen bond is evident. Mol­ecules are linked into a supra­molecular chain along the b axis by N—H⋯S hydrogen bonds.

1. Related literature

For the synthesis of the title compound, see: Jagst et al. (2005[Jagst, A., Sánchez, A., Vázquez-López, E. M. & Abram, U. (2005). Inorg. Chem. 44, 5738-5744.]). For biological properties, see: Serda et al. (2012[Serda, M., Mrozek-Wilczkiewicz, A., Jampilek, J., Pesko, M., Kralova, K., Vejsova, M., Musiol, R., Ratuszna, A. & Polanski, J. (2012). Molecules, 17, 13483-13502.]). For supra­molecular studies of thio­semicarbazones, see: Alonso et al. (2002[Alonso, R., Bermejo, E., Carballo, R., Castiñeiras, A. & Pérez, T. (2002). J. Mol. Struct. 606, 155-173.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H11N3OS

  • Mr = 221.28

  • Orthorhombic, P b c a

  • a = 13.1231 (3) Å

  • b = 8.8559 (2) Å

  • c = 19.3702 (4) Å

  • V = 2251.14 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.38 mm−1

  • T = 296 K

  • 0.14 × 0.13 × 0.05 mm

2.2. Data collection

  • Bruker CCD SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.730, Tmax = 0.898

  • 22698 measured reflections

  • 1986 independent reflections

  • 1798 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.08

  • 1986 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.902 (19) 2.53 (2) 3.4154 (14) 165.6 (16)
N1—H1⋯N3 0.84 (2) 2.238 (18) 2.6467 (18) 109.9 (15)
N1—H1⋯S1ii 0.84 (2) 2.992 (19) 3.5401 (15) 124.6 (16)
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

A solution of 4-methyl-3-thio­semicarbazide (392 mg, 3.72 mmol) in water (50 mL) was slowly added at 50°C to a solution of terephthaldicarboxaldehyde (500 mg, 3.73 mmol) in 100 mL water. Then the mixture was stirred at 50°C for 30 mins. Once cooled to room temperature, the yellow solid was filtered off and vacuum dried. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from EtOH/H2O (1:1). Yield: 91%, M. pt: 213-216 °C. IR data (KBr, cm-1): 3368m, 3150m ν(N—H); 2838w, 2742w ν(C—H aldehyde); 1692 s ν(CO); 1545 s, 1257m ν(CN), 833m, 777w ν(CS). 1H NMR data (DMSO-d6, ppm): 11.72 (s, 1H, N(2)—H); 10.03 (s, 1H, C(1)—H); 8.69 (s, 1H, N(2)—H); 8.11 (s, 1H, C(8)—H); 8.04 (d, 2H, J = 8.1 Hz, C(3,7)-H); 7.94 (d, 2H, J = 8.1 Hz, C(4,6)-H); 3.04 (s, 3H, C(10)—H).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C). The N-bound H-atoms were located in a difference Fourier map but were refined with distance restraints N—H = 0.84 (1) and 0.90 (1) Å, and with Uiso(H) = 1.2Ueq(N).

Related literature top

For the synthesis of the title compound, see: Jagst et al. (2005). For biological properties, see: Serda et al. (2012). For supramolecular studies of thiosemicarbazones, see: Alonso et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007; data reduction: SAINT (Bruker, 2007; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of supramolecular chain formed by N—H···S interactions (dashed lines).
1-[(4-formylbenzylidene)amino]-3-methylthiourea top
Crystal data top
C10H11N3OSF(000) = 928
Mr = 221.28Dx = 1.306 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 9894 reflections
a = 13.1231 (3) Åθ = 4.6–66.6°
b = 8.8559 (2) ŵ = 2.38 mm1
c = 19.3702 (4) ÅT = 296 K
V = 2251.14 (9) Å3Plate, yellow
Z = 80.14 × 0.13 × 0.05 mm
Data collection top
Bruker CCD SMART 6000
diffractometer
1986 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 66.6°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1515
Tmin = 0.730, Tmax = 0.898k = 1010
22698 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.3598P]
where P = (Fo2 + 2Fc2)/3
1986 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H11N3OSV = 2251.14 (9) Å3
Mr = 221.28Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 13.1231 (3) ŵ = 2.38 mm1
b = 8.8559 (2) ÅT = 296 K
c = 19.3702 (4) Å0.14 × 0.13 × 0.05 mm
Data collection top
Bruker CCD SMART 6000
diffractometer
1986 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1798 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.898Rint = 0.046
22698 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.21 e Å3
1986 reflectionsΔρmin = 0.16 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90393 (3)1.04683 (4)0.40705 (2)0.06222 (18)
O10.88220 (12)0.01792 (18)0.72752 (8)0.0921 (5)
N10.81376 (12)0.78044 (16)0.39148 (7)0.0655 (4)
C10.87314 (11)0.86850 (16)0.42864 (8)0.0517 (3)
N20.90945 (10)0.81086 (15)0.48868 (7)0.0579 (3)
C20.92328 (12)0.62083 (19)0.56504 (9)0.0605 (4)
H20.96170.68790.59130.073*
N30.88781 (9)0.66473 (14)0.50704 (7)0.0542 (3)
C30.90556 (11)0.46928 (19)0.59137 (8)0.0536 (4)
C40.93836 (15)0.43343 (19)0.65777 (9)0.0678 (4)
H40.97070.50660.68440.081*
C50.92354 (14)0.2913 (2)0.68448 (9)0.0675 (4)
H50.94540.26920.72900.081*
C60.87602 (11)0.18070 (18)0.64526 (8)0.0554 (4)
C70.84324 (11)0.21631 (18)0.57902 (8)0.0558 (4)
H70.81120.14290.55240.067*
C80.85745 (11)0.35836 (17)0.55224 (8)0.0543 (4)
H80.83490.38050.50790.065*
C90.86069 (14)0.0265 (2)0.67155 (10)0.0678 (4)
H90.83130.04280.64150.081*
C100.76953 (19)0.8229 (2)0.32581 (10)0.0924 (7)
H10A0.71650.89570.33320.139*
H10B0.74150.73510.30380.139*
H10C0.82130.86600.29680.139*
H2N0.9542 (15)0.865 (2)0.5138 (9)0.075 (5)*
H10.8010 (15)0.695 (2)0.4085 (9)0.073 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0655 (3)0.0429 (3)0.0782 (3)0.00218 (15)0.01004 (18)0.00628 (16)
O10.1022 (10)0.0890 (10)0.0851 (9)0.0013 (8)0.0037 (8)0.0320 (8)
N10.0797 (9)0.0507 (8)0.0662 (8)0.0120 (7)0.0135 (7)0.0075 (6)
C10.0458 (7)0.0469 (8)0.0622 (8)0.0028 (6)0.0023 (6)0.0008 (6)
N20.0550 (7)0.0479 (7)0.0707 (8)0.0065 (5)0.0097 (6)0.0089 (6)
C20.0566 (8)0.0555 (9)0.0693 (9)0.0066 (7)0.0097 (7)0.0047 (7)
N30.0477 (6)0.0487 (7)0.0663 (8)0.0014 (5)0.0001 (5)0.0069 (6)
C30.0468 (8)0.0555 (10)0.0585 (9)0.0000 (6)0.0032 (6)0.0047 (6)
C40.0759 (11)0.0641 (10)0.0635 (9)0.0119 (8)0.0176 (8)0.0023 (7)
C50.0763 (10)0.0707 (11)0.0555 (9)0.0044 (8)0.0131 (8)0.0106 (8)
C60.0504 (8)0.0573 (9)0.0585 (8)0.0032 (6)0.0018 (6)0.0059 (7)
C70.0539 (8)0.0544 (9)0.0590 (8)0.0013 (6)0.0037 (6)0.0017 (7)
C80.0536 (8)0.0564 (9)0.0531 (7)0.0013 (6)0.0071 (6)0.0040 (6)
C90.0656 (10)0.0653 (10)0.0724 (10)0.0035 (8)0.0001 (8)0.0122 (8)
C100.1231 (18)0.0784 (12)0.0756 (11)0.0277 (12)0.0324 (12)0.0131 (10)
Geometric parameters (Å, º) top
S1—C11.6829 (15)C3—C81.392 (2)
O1—C91.187 (2)C3—C41.393 (2)
N1—C11.317 (2)C4—C51.375 (2)
N1—C101.448 (2)C5—C61.388 (2)
C1—N21.356 (2)C6—C71.390 (2)
N2—N31.3718 (18)C6—C91.471 (2)
C2—N31.277 (2)C7—C81.373 (2)
C2—C31.454 (2)
C1—N1—C10124.33 (15)C4—C3—C2118.99 (15)
N1—C1—N2116.98 (14)C5—C4—C3120.82 (15)
N1—C1—S1124.20 (12)C4—C5—C6120.26 (15)
N2—C1—S1118.81 (12)C5—C6—C7118.98 (15)
C1—N2—N3120.30 (13)C5—C6—C9121.80 (15)
N3—C2—C3122.09 (15)C7—C6—C9119.21 (15)
C2—N3—N2116.10 (13)C8—C7—C6120.97 (15)
C8—C3—C4118.82 (15)C7—C8—C3120.15 (14)
C8—C3—C2122.19 (14)O1—C9—C6126.24 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.902 (19)2.53 (2)3.4154 (14)165.6 (16)
N1—H1···N30.84 (2)2.238 (18)2.6467 (18)109.9 (15)
N1—H1···S1ii0.84 (2)2.992 (19)3.5401 (15)124.6 (16)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.902 (19)2.53 (2)3.4154 (14)165.6 (16)
N1—H1···N30.84 (2)2.238 (18)2.6467 (18)109.9 (15)
N1—H1···S1ii0.84 (2)2.992 (19)3.5401 (15)124.6 (16)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3/2, y1/2, z.
 

Acknowledgements

This research was supported by the European Rural Development Fund and the Spanish Ministry of Education and Science through Project CTQ2010–19386/BQU.

References

First citationAlonso, R., Bermejo, E., Carballo, R., Castiñeiras, A. & Pérez, T. (2002). J. Mol. Struct. 606, 155–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJagst, A., Sánchez, A., Vázquez-López, E. M. & Abram, U. (2005). Inorg. Chem. 44, 5738–5744.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSerda, M., Mrozek-Wilczkiewicz, A., Jampilek, J., Pesko, M., Kralova, K., Vejsova, M., Musiol, R., Ratuszna, A. & Polanski, J. (2012). Molecules, 17, 13483–13502.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds