organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o936-o937

Crystal structure of 1-(8-meth­­oxy-2H-chromen-3-yl)ethanone

aDepartment of Applied Chemistry, Dongduk Women's University, 23-1 Wolkok-dong, Sungbuk-ku, Seoul, 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 16 July 2014; accepted 21 July 2014; online 1 August 2014)

In the structure of the title compound, C12H12O3, the di­hydro­pyran ring is fused with the benzene ring. The di­hydro­pyran ring is in a half-chair conformation, with the ring O and methyl­ene C atoms positioned 1.367 (3) and 1.504 (4) Å, respectively, on either side of the mean plane formed by the other four atoms. The meth­oxy group is coplanar with the benzene ring to which it is connected [Cb—Cb—Om—Cm torsion angle = −0.2 (4)°; b = benzene and m = meth­oxy], and similarly the aldehyde is coplanar with respect to the double bond of the di­hydro­pyran ring [Cdh—Cdh—Ca—Oa = −178.1 (3)°; dh = di­hydro­pyran and a = aldehyde]. In the crystal, mol­ecules are linked by weak meth­yl–meth­oxy C—H⋯O hydrogen bonds into supra­molecular chains along the a-axis direction.

1. Related literature

For the synthesis and biological properties of chromene derivatives, see: Choi et al. (2014[Choi, M., Hwang, Y. S., Kumar, A. S., Jo, H., Jeong, Y., Oh, Y., Lee, J., Yun, J., Kim, Y., Han, S.-B., Jung, J.-K., Cho, J. & Lee, H. (2014). Bioorg. Med. Chem. Lett. 24, 2404-2407.]); Mun et al. (2012[Mun, J., Jabbar, A. A., Devi, N. S., Liu, Y., Meir, E. G. V. & Goodman, M. M. (2012). Bioorg. Med. Chem. Lett. 20, 4590-4597.]); Yoon et al. (2012[Yoon, H., Ahn, S., Hwang, D., Jo, G., Kim, D., Kim, S. H., Koh, D. & Lim, Y. (2012). Magn. Reson. Chem. 50, 759-764.]). For the chromene group in natural products, see: Starks et al. (2014[Starks, C. M., Williams, R. B., Norman, V. L., Rice, S. M., O'Neil-Johnson, M., Lawrence, J. A. & Eldridge, G. R. (2014). Phytochemistry, 98, 216-222.]); Escandón-Rivera et al. (2012[Escandón-Rivera, S., González-Andrade, M., Bye, R., Linares, E., Navarrete, A. & Mata, R. (2012). J. Nat. Prod. 75, 968-974.]). For related structures, see: Yan & Zhang (2013[Yan, L.-J. & Zhang, S.-Y. (2013). Acta Cryst. E69, o877.]): Yusufzai et al. (2012[Yusufzai, S. K., Osman, H., Rahim, A. S. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2416-o2417.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H12O3

  • Mr = 204.22

  • Orthorhombic, P 21 21 21

  • a = 5.1000 (4) Å

  • b = 12.7455 (9) Å

  • c = 15.130 (1) Å

  • V = 983.48 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.26 × 0.20 × 0.04 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 7256 measured reflections

  • 2439 independent reflections

  • 1943 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.148

  • S = 1.15

  • 2439 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.98 2.56 3.429 (4) 148
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Experimental top

Synthesis and crystallization top

To a solution of 2-hy­droxy-3-meth­oxy-benzaldehyde (750 mg, 5 mmol) in 1,4-dioxane (15 ml) was added excess amount of methyl vinyl ketone (0.7 mL, 8 mmol) and potassium carbonate (700 mg, 5 mmol) at room temperature. The reaction mixture was refluxed for 12 h and TLC showed no evidence for the starting material. After cooling to room temperature, the mixture was poured into iced water (40 ml) and extracted with methyl­ene chloride (3 x 20 ml) and the combined organic layers were dried under MgSO4. Filtration, evaporation of filtrate gave residue which was purified by flash chromatography to give the titled compound (22%). Recrystallization from its ethanol solution gave crystals (M.pt: 375–376 K).

Refinement top

The H atoms were placed in calculated positions and refined as riding with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Results and discussion top

Chromenes have been shown to be potential pharmaceuticals which show anti-inflammatory (Choi et al., 2014) and anti­cancer (Mun et al., 2012) activities. Especially, the 2H-chromene skeleton is a core structure of oxygen heterocycles in many natural products having versatile biological activities (Starks et al., 2014; Escandón-Rivera et al., 2012). In continuation of our research inter­est to develop novel chromene derivatives (Yoon et al., 2012), the title compound was synthesized and its crystal structure was determined (Fig. 1). In the chromene compound, the di­hydro­pyran ring is fused with the benzene ring and is in a half-chair conformation with atoms C1 and O1 positioned 1.367 (3) and 1.504 (4) Å, respectively, on either side of the mean plane formed by the other four atoms (C2/C3/C4/C5). In the crystal, weak C—H—-O hydrogen bonds link molecules along [100] (Fig. 2). Examples of structures of chromene compounds have been published (Yan et al., 2013; Yusufzai et al., 2012).

Related literature top

For the synthesis and biological properties of chromene derivatives, see: Choi et al. (2014); Mun et al. (2012); Yoon et al. (2012). For the chromene group in natural products, see: Starks et al. (2014); Escandón-Rivera et al. (2012). For related structures, see: Yan et al. (2013): Yusufzai et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with weak intermolecular C—H···O hydrogen bonds shown as dashed lines.
1-(8-Methoxy-2H-chromen-3-yl)ethanone top
Crystal data top
C12H12O3F(000) = 432
Mr = 204.22Dx = 1.379 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4995 reflections
a = 5.1000 (4) Åθ = 2.7–28.3°
b = 12.7455 (9) ŵ = 0.10 mm1
c = 15.130 (1) ÅT = 173 K
V = 983.48 (12) Å3Block, white
Z = 40.26 × 0.20 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1943 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.3°, θmin = 2.1°
ϕ and ω scansh = 46
7256 measured reflectionsk = 1616
2439 independent reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.8069P]
where P = (Fo2 + 2Fc2)/3
2439 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H12O3V = 983.48 (12) Å3
Mr = 204.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1000 (4) ŵ = 0.10 mm1
b = 12.7455 (9) ÅT = 173 K
c = 15.130 (1) Å0.26 × 0.20 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1943 reflections with I > 2σ(I)
7256 measured reflectionsRint = 0.029
2439 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.15Δρmax = 0.30 e Å3
2439 reflectionsΔρmin = 0.36 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2139 (4)0.13132 (13)0.78457 (12)0.0369 (5)
C10.0935 (6)0.1378 (2)0.69905 (18)0.0382 (6)
H1A0.05960.09000.69760.046*
H1B0.22020.11300.65410.046*
C20.0045 (5)0.2465 (2)0.67470 (17)0.0317 (5)
C30.1318 (5)0.32861 (19)0.70942 (16)0.0315 (5)
H30.08410.39770.69210.038*
C40.3416 (5)0.31384 (19)0.77314 (16)0.0290 (5)
C50.3744 (5)0.21278 (18)0.80743 (16)0.0304 (5)
C60.5662 (5)0.19364 (19)0.87130 (17)0.0323 (6)
C70.7236 (6)0.27498 (19)0.90030 (17)0.0327 (5)
H70.85430.26210.94370.039*
C80.6916 (6)0.3759 (2)0.86613 (17)0.0335 (6)
H80.80130.43140.88600.040*
C90.5011 (5)0.39520 (19)0.80357 (17)0.0320 (5)
H90.47830.46420.78110.038*
C100.2116 (5)0.2531 (2)0.61005 (18)0.0357 (6)
O20.3175 (4)0.17219 (16)0.58488 (14)0.0471 (5)
C110.2923 (6)0.3576 (2)0.57362 (18)0.0414 (7)
H11A0.16660.37970.52830.062*
H11B0.29560.40950.62140.062*
H11C0.46730.35190.54730.062*
O30.5790 (4)0.09230 (15)0.90143 (14)0.0430 (5)
C120.7723 (6)0.0714 (2)0.9676 (2)0.0435 (7)
H12A0.94710.08610.94370.065*
H12B0.76200.00250.98530.065*
H12C0.74030.11621.01910.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0406 (10)0.0278 (9)0.0424 (10)0.0065 (8)0.0104 (9)0.0029 (7)
C10.0443 (15)0.0297 (12)0.0405 (13)0.0008 (12)0.0109 (13)0.0034 (11)
C20.0296 (12)0.0307 (12)0.0350 (12)0.0021 (10)0.0010 (10)0.0026 (10)
C30.0318 (13)0.0285 (12)0.0341 (12)0.0045 (10)0.0022 (11)0.0001 (10)
C40.0286 (12)0.0268 (11)0.0316 (12)0.0013 (10)0.0034 (10)0.0018 (9)
C50.0336 (13)0.0257 (11)0.0318 (12)0.0022 (10)0.0013 (11)0.0016 (9)
C60.0347 (13)0.0272 (12)0.0349 (12)0.0009 (10)0.0002 (11)0.0018 (10)
C70.0335 (13)0.0334 (13)0.0311 (12)0.0017 (10)0.0015 (11)0.0003 (10)
C80.0379 (14)0.0285 (12)0.0342 (12)0.0044 (11)0.0000 (11)0.0013 (10)
C90.0348 (13)0.0261 (11)0.0351 (12)0.0023 (10)0.0034 (11)0.0016 (10)
C100.0340 (13)0.0400 (14)0.0330 (12)0.0047 (12)0.0014 (11)0.0041 (11)
O20.0446 (12)0.0441 (12)0.0527 (12)0.0028 (10)0.0110 (10)0.0106 (9)
C110.0437 (16)0.0451 (15)0.0354 (13)0.0064 (14)0.0037 (12)0.0011 (11)
O30.0498 (12)0.0285 (9)0.0508 (11)0.0036 (9)0.0161 (10)0.0082 (8)
C120.0464 (17)0.0345 (14)0.0497 (16)0.0006 (13)0.0131 (14)0.0096 (12)
Geometric parameters (Å, º) top
O1—C51.366 (3)C7—C81.396 (3)
O1—C11.435 (3)C7—H70.9500
C1—C21.504 (4)C8—C91.378 (4)
C1—H1A0.9900C8—H80.9500
C1—H1B0.9900C9—H90.9500
C2—C31.339 (4)C10—O21.224 (3)
C2—C101.476 (4)C10—C111.499 (4)
C3—C41.452 (4)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C4—C91.396 (3)C11—H11C0.9800
C4—C51.399 (3)O3—C121.430 (3)
C5—C61.397 (3)C12—H12A0.9800
C6—O31.371 (3)C12—H12B0.9800
C6—C71.383 (4)C12—H12C0.9800
C5—O1—C1116.2 (2)C8—C7—H7119.8
O1—C1—C2113.8 (2)C9—C8—C7120.1 (2)
O1—C1—H1A108.8C9—C8—H8120.0
C2—C1—H1A108.8C7—C8—H8120.0
O1—C1—H1B108.8C8—C9—C4120.3 (2)
C2—C1—H1B108.8C8—C9—H9119.8
H1A—C1—H1B107.7C4—C9—H9119.8
C3—C2—C10125.3 (2)O2—C10—C2119.2 (2)
C3—C2—C1118.5 (2)O2—C10—C11120.8 (2)
C10—C2—C1116.1 (2)C2—C10—C11119.9 (2)
C2—C3—C4121.1 (2)C10—C11—H11A109.5
C2—C3—H3119.5C10—C11—H11B109.5
C4—C3—H3119.5H11A—C11—H11B109.5
C9—C4—C5119.5 (2)C10—C11—H11C109.5
C9—C4—C3123.5 (2)H11A—C11—H11C109.5
C5—C4—C3117.0 (2)H11B—C11—H11C109.5
O1—C5—C6117.5 (2)C6—O3—C12116.2 (2)
O1—C5—C4122.3 (2)O3—C12—H12A109.5
C6—C5—C4120.1 (2)O3—C12—H12B109.5
O3—C6—C7125.0 (2)H12A—C12—H12B109.5
O3—C6—C5115.3 (2)O3—C12—H12C109.5
C7—C6—C5119.7 (2)H12A—C12—H12C109.5
C6—C7—C8120.4 (2)H12B—C12—H12C109.5
C6—C7—H7119.8
C5—O1—C1—C239.4 (3)O1—C5—C6—C7176.4 (2)
O1—C1—C2—C328.1 (4)C4—C5—C6—C70.1 (4)
O1—C1—C2—C10154.7 (2)O3—C6—C7—C8179.0 (3)
C10—C2—C3—C4179.7 (2)C5—C6—C7—C80.0 (4)
C1—C2—C3—C43.5 (4)C6—C7—C8—C90.5 (4)
C2—C3—C4—C9172.2 (2)C7—C8—C9—C40.9 (4)
C2—C3—C4—C510.5 (4)C5—C4—C9—C80.8 (4)
C1—O1—C5—C6156.5 (2)C3—C4—C9—C8178.1 (2)
C1—O1—C5—C427.3 (3)C3—C2—C10—O2178.1 (3)
C9—C4—C5—O1175.8 (2)C1—C2—C10—O25.0 (4)
C3—C4—C5—O11.7 (4)C3—C2—C10—C114.2 (4)
C9—C4—C5—C60.3 (4)C1—C2—C10—C11172.7 (2)
C3—C4—C5—C6177.7 (2)C7—C6—O3—C120.2 (4)
O1—C5—C6—O32.8 (3)C5—C6—O3—C12179.3 (2)
C4—C5—C6—O3179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.982.563.429 (4)148
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.982.563.429 (4)148
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The author acknowledges financial support from Dongduk Women's University.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, M., Hwang, Y. S., Kumar, A. S., Jo, H., Jeong, Y., Oh, Y., Lee, J., Yun, J., Kim, Y., Han, S.-B., Jung, J.-K., Cho, J. & Lee, H. (2014). Bioorg. Med. Chem. Lett. 24, 2404–2407.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEscandón-Rivera, S., González-Andrade, M., Bye, R., Linares, E., Navarrete, A. & Mata, R. (2012). J. Nat. Prod. 75, 968–974.  Web of Science PubMed Google Scholar
First citationMun, J., Jabbar, A. A., Devi, N. S., Liu, Y., Meir, E. G. V. & Goodman, M. M. (2012). Bioorg. Med. Chem. Lett. 20, 4590–4597.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarks, C. M., Williams, R. B., Norman, V. L., Rice, S. M., O'Neil-Johnson, M., Lawrence, J. A. & Eldridge, G. R. (2014). Phytochemistry, 98, 216–222.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYan, L.-J. & Zhang, S.-Y. (2013). Acta Cryst. E69, o877.  CSD CrossRef IUCr Journals Google Scholar
First citationYoon, H., Ahn, S., Hwang, D., Jo, G., Kim, D., Kim, S. H., Koh, D. & Lim, Y. (2012). Magn. Reson. Chem. 50, 759–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYusufzai, S. K., Osman, H., Rahim, A. S. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2416–o2417.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o936-o937
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds