organic compounds
E)-4-(4-chlorophenyl)-4-methoxy-2-oxobut-3-enoate
of ethyl (aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil, and bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900, Santa Maria, RS, Brazil
*Correspondence e-mail: darlenecflores@hotmail.com
In the title compound, C13H13ClO4, the dihedral angle between the chlorobenezene ring and the least-squares plane through the 4-methoxy-2-oxobut-3-enoate ethyl ester residue (r.m.s. deviation = 0.0975 Å) is 54.10 (5)°. In the crystal, molecules are connected by methoxy–ketone and benzene–carboxylate carbonyl C—H⋯O interactions, generating a supramolecular layer in the ac plane.
Keywords: crystal structure; methoxy–ketone interactions; benzene–carboxylate carbonyl interactions; 4-methoxy-2-oxobut-3-enoate ethyl ester.
CCDC reference: 1016203
1. Related literature
For background to 1,2,4-trielectrophile systems, see: Machado et al. (2007); Siddiqui et al. (2013). For C—H⋯O interactions, see: Thakur et al. (2010).
2. Experimental
2.1.1. Crystal data
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1016203
10.1107/S1600536814017280/tk5332sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814017280/tk5332Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017280/tk5332Isup3.cml
To a stirred solution of ethyl oxalyl chloride (4.6 ml, 41 mmol) in dry CHCl3 (25 ml) at 0 °C, a solution containing the acetal (20 mmol), CHCl3 (15 ml) and pyridine (3.25 ml, 41 mmol) were added dropwise. The mixture was left to cool for at least 1 h, then was allowed to warm to room temperature and refluxed for 5 h. The mixture was washed with distilled water (3 times 10 ml) and dried over Na2SO4. The solvent was evaporated and methyl ethyl oxalate formed was distilled at 80 °C (10 mbar) and solid residue was recrystallized from a diluted solution CHCl3. Yield: 14.8 mmol (74%); M.pt: 85–87 °C; 1H NMR (400 MHz, CDCl3): δ 1.31 (t, 3H, CH3), 3.95 (s, 3H, OCH3), 4.17 (q, 2H, OCH2), 6.28 (s, 1H, C9—H), 7.37 (m, 2H, Ph), 7.43 (m, 2H, Ph); 13C NMR (100 MHz, CDCl3): δ p.p.m. 13.8 (CH3), 57.1 (OCH3), 62.1 (OCH2), 96.7 (C9), 128.1, 130.5, 132.5, 136.9 (Ph), 163.2 (C11), 174.4 (C8), 180.9 (C10).
With exception of H9 (refined freely), all H atoms attached to C atoms were positioned with idealized geometry (C—H = 0.96 Å for CH3, 0.97 Å for CH2, and 0.93 Å for aromatic CH) and were refined isotropically with Ueq(H) set to 1.5Ueq(C) for CH3 groups, and 1.2 otherwise.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C13H13ClO4 | F(000) = 560 |
Mr = 268.68 | Dx = 1.397 Mg m−3 |
Monoclinic, P21/c | Melting point: 358 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4557 (4) Å | Cell parameters from 9103 reflections |
b = 16.6411 (7) Å | θ = 2.2–28.3° |
c = 8.4319 (3) Å | µ = 0.30 mm−1 |
β = 105.644 (2)° | T = 293 K |
V = 1277.64 (9) Å3 | Block, yellow |
Z = 4 | 0.76 × 0.67 × 0.59 mm |
Bruker APEXII CCD diffractometer | 3130 independent reflections |
Radiation source: fine-focus sealed tube | 2613 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: gaussian (XPREP; Bruker, 2009) | h = −12→12 |
Tmin = 0.667, Tmax = 0.746 | k = −21→22 |
30885 measured reflections | l = −7→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4231P] where P = (Fo2 + 2Fc2)/3 |
3130 reflections | (Δ/σ)max < 0.001 |
167 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C13H13ClO4 | V = 1277.64 (9) Å3 |
Mr = 268.68 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.4557 (4) Å | µ = 0.30 mm−1 |
b = 16.6411 (7) Å | T = 293 K |
c = 8.4319 (3) Å | 0.76 × 0.67 × 0.59 mm |
β = 105.644 (2)° |
Bruker APEXII CCD diffractometer | 3130 independent reflections |
Absorption correction: gaussian (XPREP; Bruker, 2009) | 2613 reflections with I > 2σ(I) |
Tmin = 0.667, Tmax = 0.746 | Rint = 0.023 |
30885 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.40 e Å−3 |
3130 reflections | Δρmin = −0.24 e Å−3 |
167 parameters |
Experimental. Absorption correction: XPREP (Bruker, 2009) was used to perform the Gaussian absorption correction based on the face-indexed crystal size. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.19495 (5) | 0.25347 (3) | 0.03984 (7) | 0.06279 (18) | |
O1 | 0.63288 (14) | 0.15936 (9) | 0.30504 (14) | 0.0569 (3) | |
O4 | 0.32749 (13) | 0.05109 (8) | −0.38027 (14) | 0.0510 (3) | |
O3 | 0.23337 (14) | 0.06369 (8) | −0.16544 (17) | 0.0563 (3) | |
O2 | 0.56617 (15) | 0.12613 (11) | −0.21718 (15) | 0.0712 (5) | |
C9 | 0.50581 (17) | 0.11348 (10) | 0.03902 (18) | 0.0415 (3) | |
C11 | 0.33264 (17) | 0.07073 (9) | −0.22767 (19) | 0.0399 (3) | |
C4 | 1.02876 (16) | 0.22136 (10) | 0.06886 (18) | 0.0409 (3) | |
C8 | 0.62536 (17) | 0.14559 (10) | 0.14599 (17) | 0.0398 (3) | |
C2 | 0.84722 (17) | 0.11991 (9) | 0.04448 (19) | 0.0409 (3) | |
H2 | 0.8124 | 0.0685 | 0.0121 | 0.049* | |
C1 | 0.76449 (16) | 0.17142 (9) | 0.11332 (16) | 0.0372 (3) | |
C3 | 0.98081 (17) | 0.14431 (10) | 0.02372 (19) | 0.0423 (3) | |
H3 | 1.0373 | 0.1094 | −0.0199 | 0.051* | |
C5 | 0.94873 (19) | 0.27354 (10) | 0.1372 (2) | 0.0459 (4) | |
H5 | 0.9828 | 0.3253 | 0.1666 | 0.055* | |
C6 | 0.81702 (19) | 0.24804 (10) | 0.1614 (2) | 0.0440 (4) | |
H6 | 0.7633 | 0.2824 | 0.2101 | 0.053* | |
C10 | 0.48443 (16) | 0.10629 (10) | −0.13642 (18) | 0.0415 (3) | |
C12 | 0.1854 (2) | 0.01897 (14) | −0.4754 (2) | 0.0622 (5) | |
H121 | 0.1646 | −0.0310 | −0.4269 | 0.075* | |
H122 | 0.1078 | 0.0569 | −0.4745 | 0.075* | |
C7 | 0.5069 (2) | 0.14405 (18) | 0.3642 (2) | 0.0710 (6) | |
H71 | 0.5297 | 0.1566 | 0.4794 | 0.107* | |
H73 | 0.4802 | 0.0884 | 0.3478 | 0.107* | |
H72 | 0.4266 | 0.1769 | 0.3049 | 0.107* | |
C13 | 0.1921 (3) | 0.00503 (18) | −0.6446 (3) | 0.0811 (7) | |
H131 | 0.0998 | −0.0161 | −0.7084 | 0.122* | |
H132 | 0.2689 | −0.0327 | −0.6444 | 0.122* | |
H133 | 0.2119 | 0.0548 | −0.6919 | 0.122* | |
H9 | 0.420 (2) | 0.0960 (13) | 0.077 (3) | 0.056 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0423 (3) | 0.0725 (3) | 0.0767 (3) | −0.0126 (2) | 0.0215 (2) | −0.0086 (2) |
O1 | 0.0497 (7) | 0.0898 (10) | 0.0324 (5) | −0.0089 (7) | 0.0130 (5) | −0.0059 (6) |
O4 | 0.0392 (6) | 0.0679 (8) | 0.0440 (6) | −0.0100 (5) | 0.0080 (5) | −0.0148 (5) |
O3 | 0.0433 (6) | 0.0666 (8) | 0.0639 (7) | −0.0125 (6) | 0.0232 (6) | −0.0090 (6) |
O2 | 0.0506 (7) | 0.1280 (14) | 0.0374 (6) | −0.0351 (8) | 0.0159 (5) | −0.0089 (7) |
C9 | 0.0393 (8) | 0.0500 (9) | 0.0372 (7) | −0.0039 (6) | 0.0136 (6) | −0.0013 (6) |
C11 | 0.0365 (7) | 0.0392 (7) | 0.0438 (7) | −0.0025 (6) | 0.0106 (6) | −0.0032 (6) |
C4 | 0.0335 (7) | 0.0478 (8) | 0.0392 (7) | −0.0022 (6) | 0.0060 (5) | 0.0011 (6) |
C8 | 0.0406 (8) | 0.0463 (8) | 0.0331 (7) | 0.0010 (6) | 0.0109 (6) | 0.0009 (6) |
C2 | 0.0446 (8) | 0.0370 (7) | 0.0413 (7) | −0.0013 (6) | 0.0121 (6) | −0.0015 (6) |
C1 | 0.0355 (7) | 0.0440 (8) | 0.0304 (6) | 0.0000 (6) | 0.0061 (5) | 0.0008 (5) |
C3 | 0.0409 (8) | 0.0425 (8) | 0.0441 (8) | 0.0052 (6) | 0.0128 (6) | −0.0016 (6) |
C5 | 0.0443 (8) | 0.0431 (8) | 0.0491 (8) | −0.0054 (7) | 0.0101 (7) | −0.0088 (7) |
C6 | 0.0423 (8) | 0.0460 (9) | 0.0433 (8) | 0.0025 (6) | 0.0110 (6) | −0.0090 (6) |
C10 | 0.0361 (7) | 0.0510 (9) | 0.0387 (7) | −0.0075 (6) | 0.0120 (6) | −0.0043 (6) |
C12 | 0.0446 (9) | 0.0753 (13) | 0.0604 (11) | −0.0159 (9) | 0.0032 (8) | −0.0172 (9) |
C7 | 0.0589 (12) | 0.120 (2) | 0.0396 (9) | −0.0031 (12) | 0.0235 (8) | −0.0041 (10) |
C13 | 0.0690 (14) | 0.108 (2) | 0.0559 (11) | −0.0218 (13) | −0.0014 (10) | −0.0194 (12) |
Cl1—C4 | 1.7386 (16) | C2—H2 | 0.9300 |
O1—C8 | 1.3434 (18) | C1—C6 | 1.388 (2) |
O1—C7 | 1.432 (2) | C3—H3 | 0.9300 |
O4—C11 | 1.3156 (19) | C5—C6 | 1.382 (2) |
O4—C12 | 1.4669 (19) | C5—H5 | 0.9300 |
O3—C11 | 1.198 (2) | C6—H6 | 0.9300 |
O2—C10 | 1.2058 (19) | C12—C13 | 1.463 (3) |
C9—C8 | 1.352 (2) | C12—H121 | 0.9700 |
C9—C10 | 1.443 (2) | C12—H122 | 0.9700 |
C9—H9 | 0.99 (2) | C7—H71 | 0.9600 |
C11—C10 | 1.551 (2) | C7—H73 | 0.9600 |
C4—C5 | 1.376 (2) | C7—H72 | 0.9600 |
C4—C3 | 1.379 (2) | C13—H131 | 0.9600 |
C8—C1 | 1.479 (2) | C13—H132 | 0.9600 |
C2—C3 | 1.382 (2) | C13—H133 | 0.9600 |
C2—C1 | 1.389 (2) | ||
C8—O1—C7 | 119.46 (14) | C6—C5—H5 | 120.4 |
C11—O4—C12 | 114.34 (13) | C5—C6—C1 | 120.31 (15) |
C8—C9—C10 | 125.29 (14) | C5—C6—H6 | 119.8 |
C8—C9—H9 | 120.5 (12) | C1—C6—H6 | 119.8 |
C10—C9—H9 | 114.0 (12) | O2—C10—C9 | 128.48 (15) |
O3—C11—O4 | 125.25 (15) | O2—C10—C11 | 118.20 (14) |
O3—C11—C10 | 123.32 (14) | C9—C10—C11 | 113.28 (13) |
O4—C11—C10 | 111.42 (13) | C13—C12—O4 | 108.48 (17) |
C5—C4—C3 | 121.70 (15) | C13—C12—H121 | 110.0 |
C5—C4—Cl1 | 119.01 (13) | O4—C12—H121 | 110.0 |
C3—C4—Cl1 | 119.30 (13) | C13—C12—H122 | 110.0 |
O1—C8—C9 | 122.91 (14) | O4—C12—H122 | 110.0 |
O1—C8—C1 | 109.03 (12) | H121—C12—H122 | 108.4 |
C9—C8—C1 | 128.07 (13) | O1—C7—H71 | 109.5 |
C3—C2—C1 | 120.57 (14) | O1—C7—H73 | 109.5 |
C3—C2—H2 | 119.7 | H71—C7—H73 | 109.5 |
C1—C2—H2 | 119.7 | O1—C7—H72 | 109.5 |
C6—C1—C2 | 119.42 (14) | H71—C7—H72 | 109.5 |
C6—C1—C8 | 118.61 (14) | H73—C7—H72 | 109.5 |
C2—C1—C8 | 121.87 (14) | C12—C13—H131 | 109.5 |
C4—C3—C2 | 118.81 (14) | C12—C13—H132 | 109.5 |
C4—C3—H3 | 120.6 | H131—C13—H132 | 109.5 |
C2—C3—H3 | 120.6 | C12—C13—H133 | 109.5 |
C4—C5—C6 | 119.16 (15) | H131—C13—H133 | 109.5 |
C4—C5—H5 | 120.4 | H132—C13—H133 | 109.5 |
C12—O4—C11—O3 | 0.5 (2) | C1—C2—C3—C4 | −1.6 (2) |
C12—O4—C11—C10 | −178.46 (15) | C3—C4—C5—C6 | 0.1 (3) |
C7—O1—C8—C9 | −3.7 (3) | Cl1—C4—C5—C6 | −179.59 (13) |
C7—O1—C8—C1 | 175.94 (18) | C4—C5—C6—C1 | −1.7 (3) |
C10—C9—C8—O1 | 172.10 (16) | C2—C1—C6—C5 | 1.6 (2) |
C10—C9—C8—C1 | −7.4 (3) | C8—C1—C6—C5 | 178.17 (15) |
C3—C2—C1—C6 | 0.0 (2) | C8—C9—C10—O2 | 0.6 (3) |
C3—C2—C1—C8 | −176.42 (13) | C8—C9—C10—C11 | −177.11 (15) |
O1—C8—C1—C6 | −50.98 (19) | O3—C11—C10—O2 | −165.08 (18) |
C9—C8—C1—C6 | 128.62 (18) | O4—C11—C10—O2 | 13.9 (2) |
O1—C8—C1—C2 | 125.51 (16) | O3—C11—C10—C9 | 12.9 (2) |
C9—C8—C1—C2 | −54.9 (2) | O4—C11—C10—C9 | −168.14 (14) |
C5—C4—C3—C2 | 1.5 (2) | C11—O4—C12—C13 | 176.14 (19) |
Cl1—C4—C3—C2 | −178.80 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H71···O2i | 0.96 | 2.54 | 3.434 (2) | 155 |
C3—H3···O3ii | 0.93 | 2.60 | 3.479 (2) | 158 |
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H71···O2i | 0.96 | 2.54 | 3.434 (2) | 155 |
C3—H3···O3ii | 0.93 | 2.60 | 3.479 (2) | 158 |
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z. |
Acknowledgements
The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support and fellowships (PIBIC and PROBIC).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Machado, P., Rossato, M., Sant'Anna, G. S., Sauzem, P. D., Silva, R. M. S., Rubin, M. A., Ferreira, J., Bonacorso, H. G., Zanatta, N. & Martins, M. A. P. (2007). Arkivoc, 16, 281–297. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siddiqui, N.-J., Idrees, M., Khati, N. T. & Dhonde, M. G. (2013). S. Afr. J. Chem. 66, 248–253. CAS Google Scholar
Thakur, T. S., Azim, Y., Srinu, T. & Desiraju, G. R. (2010). Curr. Sci. 98, 793–802. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ethyl-4-aryl-4-methoxy-2-oxo-3-butenoates are interesting precursors for heterocyclic compounds. These 1, 2, 4-trielectrophile systems are synthetic equivalents to 4-aryl-2,4-di,oxobutanoat es (Siddiqui et al., 2013) and were used to produce 1H-pyrazoles (Machado et al., 2007). In the title compound (E)-Ethyl-4-(4-chlorophenyl)-4-methoxy-2-oxo-3-butenoate, C13H13O4Cl, the whole molecule matches the asymmetric unit (Fig. 1). The molecule presents two almost planar sites (Fig. 2): C7/O1/C8/C9/C10/O2/C11/O3/O4/C12/C13 showed a r.m.s. value of 0.0975 Å with maximum deviation from the mean plane observed for O2 (0.1865 (14) Å). The dihedral angle of 54.10 (5)° confirms that these two fragments are not perfectly perpendicular, suggesting probably the influence of the crystal packing. In the solid state, molecules are connected only through weak non-classical hydrogen bond interactions of the type C—H···O (Thakur et al., 2010), Table 1, generating a supramolecular layer in the ac plane.