organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl (E)-4-(4-chlorophen­yl)-4-meth­­oxy-2-oxobut-3-enoate

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil, and bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900, Santa Maria, RS, Brazil
*Correspondence e-mail: darlenecflores@hotmail.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 23 July 2014; accepted 26 July 2014; online 16 August 2014)

In the title compound, C13H13ClO4, the dihedral angle between the chloro­benezene ring and the least-squares plane through the 4-meth­oxy-2-oxobut-3-enoate ethyl ester residue (r.m.s. deviation = 0.0975 Å) is 54.10 (5)°. In the crystal, mol­ecules are connected by meth­oxy–ketone and benzene–carboxyl­ate carbonyl C—H⋯O inter­actions, generating a supra­molecular layer in the ac plane.

1. Related literature

For background to 1,2,4-trielectrophile systems, see: Machado et al. (2007[Machado, P., Rossato, M., Sant'Anna, G. S., Sauzem, P. D., Silva, R. M. S., Rubin, M. A., Ferreira, J., Bonacorso, H. G., Zanatta, N. & Martins, M. A. P. (2007). Arkivoc, 16, 281-297.]); Siddiqui et al. (2013[Siddiqui, N.-J., Idrees, M., Khati, N. T. & Dhonde, M. G. (2013). S. Afr. J. Chem. 66, 248-253.]). For C—H⋯O inter­actions, see: Thakur et al. (2010[Thakur, T. S., Azim, Y., Srinu, T. & Desiraju, G. R. (2010). Curr. Sci. 98, 793-802.]).

[Scheme 1]

2. Experimental

2.1.1. Crystal data
  • C13H13ClO4

  • Mr = 268.68

  • Monoclinic, P 21 /c

  • a = 9.4557 (4) Å

  • b = 16.6411 (7) Å

  • c = 8.4319 (3) Å

  • β = 105.644 (2)°

  • V = 1277.64 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.76 × 0.67 × 0.59 mm

2.1.2. Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: gaussian (XPREP; Bruker, 2009[Bruker (2009). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.667, Tmax = 0.746

  • 30885 measured reflections

  • 3130 independent reflections

  • 2613 reflections with I > 2σ(I)

  • Rint = 0.023

2.1.3. Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.07

  • 3130 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H71⋯O2i 0.96 2.54 3.434 (2) 155
C3—H3⋯O3ii 0.93 2.60 3.479 (2) 158
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ethyl-4-aryl-4-methoxy-2-oxo-3-butenoates are interesting precursors for heterocyclic compounds. These 1, 2, 4-trielectrophile systems are synthetic equivalents to 4-aryl-2,4-di,oxobutanoat es (Siddiqui et al., 2013) and were used to produce 1H-pyrazoles (Machado et al., 2007). In the title compound (E)-Ethyl-4-(4-chlorophenyl)-4-methoxy-2-oxo-3-butenoate, C13H13O4Cl, the whole molecule matches the asymmetric unit (Fig. 1). The molecule presents two almost planar sites (Fig. 2): C7/O1/C8/C9/C10/O2/C11/O3/O4/C12/C13 showed a r.m.s. value of 0.0975 Å with maximum deviation from the mean plane observed for O2 (0.1865 (14) Å). The dihedral angle of 54.10 (5)° confirms that these two fragments are not perfectly perpendicular, suggesting probably the influence of the crystal packing. In the solid state, molecules are connected only through weak non-classical hydrogen bond interactions of the type C—H···O (Thakur et al., 2010), Table 1, generating a supramolecular layer in the ac plane.

Related literature top

For background to 1,2,4-trielectrophile systems, see: Machado et al. (2007); Siddiqui et al. (2013). For C—H···O interactions, see: Thakur et al. (2010).

Experimental top

To a stirred solution of ethyl oxalyl chloride (4.6 ml, 41 mmol) in dry CHCl3 (25 ml) at 0 °C, a solution containing the acetal (20 mmol), CHCl3 (15 ml) and pyridine (3.25 ml, 41 mmol) were added dropwise. The mixture was left to cool for at least 1 h, then was allowed to warm to room temperature and refluxed for 5 h. The mixture was washed with distilled water (3 times 10 ml) and dried over Na2SO4. The solvent was evaporated and methyl ethyl oxalate formed was distilled at 80 °C (10 mbar) and solid residue was recrystallized from a diluted solution CHCl3. Yield: 14.8 mmol (74%); M.pt: 85–87 °C; 1H NMR (400 MHz, CDCl3): δ 1.31 (t, 3H, CH3), 3.95 (s, 3H, OCH3), 4.17 (q, 2H, OCH2), 6.28 (s, 1H, C9—H), 7.37 (m, 2H, Ph), 7.43 (m, 2H, Ph); 13C NMR (100 MHz, CDCl3): δ p.p.m. 13.8 (CH3), 57.1 (OCH3), 62.1 (OCH2), 96.7 (C9), 128.1, 130.5, 132.5, 136.9 (Ph), 163.2 (C11), 174.4 (C8), 180.9 (C10).

Refinement top

With exception of H9 (refined freely), all H atoms attached to C atoms were positioned with idealized geometry (C—H = 0.96 Å for CH3, 0.97 Å for CH2, and 0.93 Å for aromatic CH) and were refined isotropically with Ueq(H) set to 1.5Ueq(C) for CH3 groups, and 1.2 otherwise.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Arrangement between planes within the molecule.
Ethyl (E)-4-(4-chlorophenyl)-4-methoxy-2-oxobut-3-enoate top
Crystal data top
C13H13ClO4F(000) = 560
Mr = 268.68Dx = 1.397 Mg m3
Monoclinic, P21/cMelting point: 358 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.4557 (4) ÅCell parameters from 9103 reflections
b = 16.6411 (7) Åθ = 2.2–28.3°
c = 8.4319 (3) ŵ = 0.30 mm1
β = 105.644 (2)°T = 293 K
V = 1277.64 (9) Å3Block, yellow
Z = 40.76 × 0.67 × 0.59 mm
Data collection top
Bruker APEXII CCD
diffractometer
3130 independent reflections
Radiation source: fine-focus sealed tube2613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: gaussian
(XPREP; Bruker, 2009)
h = 1212
Tmin = 0.667, Tmax = 0.746k = 2122
30885 measured reflectionsl = 711
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4231P]
where P = (Fo2 + 2Fc2)/3
3130 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H13ClO4V = 1277.64 (9) Å3
Mr = 268.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4557 (4) ŵ = 0.30 mm1
b = 16.6411 (7) ÅT = 293 K
c = 8.4319 (3) Å0.76 × 0.67 × 0.59 mm
β = 105.644 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3130 independent reflections
Absorption correction: gaussian
(XPREP; Bruker, 2009)
2613 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.746Rint = 0.023
30885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.40 e Å3
3130 reflectionsΔρmin = 0.24 e Å3
167 parameters
Special details top

Experimental. Absorption correction: XPREP (Bruker, 2009) was used to perform the Gaussian absorption correction based on the face-indexed crystal size.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.19495 (5)0.25347 (3)0.03984 (7)0.06279 (18)
O10.63288 (14)0.15936 (9)0.30504 (14)0.0569 (3)
O40.32749 (13)0.05109 (8)0.38027 (14)0.0510 (3)
O30.23337 (14)0.06369 (8)0.16544 (17)0.0563 (3)
O20.56617 (15)0.12613 (11)0.21718 (15)0.0712 (5)
C90.50581 (17)0.11348 (10)0.03902 (18)0.0415 (3)
C110.33264 (17)0.07073 (9)0.22767 (19)0.0399 (3)
C41.02876 (16)0.22136 (10)0.06886 (18)0.0409 (3)
C80.62536 (17)0.14559 (10)0.14599 (17)0.0398 (3)
C20.84722 (17)0.11991 (9)0.04448 (19)0.0409 (3)
H20.81240.06850.01210.049*
C10.76449 (16)0.17142 (9)0.11332 (16)0.0372 (3)
C30.98081 (17)0.14431 (10)0.02372 (19)0.0423 (3)
H31.03730.10940.01990.051*
C50.94873 (19)0.27354 (10)0.1372 (2)0.0459 (4)
H50.98280.32530.16660.055*
C60.81702 (19)0.24804 (10)0.1614 (2)0.0440 (4)
H60.76330.28240.21010.053*
C100.48443 (16)0.10629 (10)0.13642 (18)0.0415 (3)
C120.1854 (2)0.01897 (14)0.4754 (2)0.0622 (5)
H1210.16460.03100.42690.075*
H1220.10780.05690.47450.075*
C70.5069 (2)0.14405 (18)0.3642 (2)0.0710 (6)
H710.52970.15660.47940.107*
H730.48020.08840.34780.107*
H720.42660.17690.30490.107*
C130.1921 (3)0.00503 (18)0.6446 (3)0.0811 (7)
H1310.09980.01610.70840.122*
H1320.26890.03270.64440.122*
H1330.21190.05480.69190.122*
H90.420 (2)0.0960 (13)0.077 (3)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0423 (3)0.0725 (3)0.0767 (3)0.0126 (2)0.0215 (2)0.0086 (2)
O10.0497 (7)0.0898 (10)0.0324 (5)0.0089 (7)0.0130 (5)0.0059 (6)
O40.0392 (6)0.0679 (8)0.0440 (6)0.0100 (5)0.0080 (5)0.0148 (5)
O30.0433 (6)0.0666 (8)0.0639 (7)0.0125 (6)0.0232 (6)0.0090 (6)
O20.0506 (7)0.1280 (14)0.0374 (6)0.0351 (8)0.0159 (5)0.0089 (7)
C90.0393 (8)0.0500 (9)0.0372 (7)0.0039 (6)0.0136 (6)0.0013 (6)
C110.0365 (7)0.0392 (7)0.0438 (7)0.0025 (6)0.0106 (6)0.0032 (6)
C40.0335 (7)0.0478 (8)0.0392 (7)0.0022 (6)0.0060 (5)0.0011 (6)
C80.0406 (8)0.0463 (8)0.0331 (7)0.0010 (6)0.0109 (6)0.0009 (6)
C20.0446 (8)0.0370 (7)0.0413 (7)0.0013 (6)0.0121 (6)0.0015 (6)
C10.0355 (7)0.0440 (8)0.0304 (6)0.0000 (6)0.0061 (5)0.0008 (5)
C30.0409 (8)0.0425 (8)0.0441 (8)0.0052 (6)0.0128 (6)0.0016 (6)
C50.0443 (8)0.0431 (8)0.0491 (8)0.0054 (7)0.0101 (7)0.0088 (7)
C60.0423 (8)0.0460 (9)0.0433 (8)0.0025 (6)0.0110 (6)0.0090 (6)
C100.0361 (7)0.0510 (9)0.0387 (7)0.0075 (6)0.0120 (6)0.0043 (6)
C120.0446 (9)0.0753 (13)0.0604 (11)0.0159 (9)0.0032 (8)0.0172 (9)
C70.0589 (12)0.120 (2)0.0396 (9)0.0031 (12)0.0235 (8)0.0041 (10)
C130.0690 (14)0.108 (2)0.0559 (11)0.0218 (13)0.0014 (10)0.0194 (12)
Geometric parameters (Å, º) top
Cl1—C41.7386 (16)C2—H20.9300
O1—C81.3434 (18)C1—C61.388 (2)
O1—C71.432 (2)C3—H30.9300
O4—C111.3156 (19)C5—C61.382 (2)
O4—C121.4669 (19)C5—H50.9300
O3—C111.198 (2)C6—H60.9300
O2—C101.2058 (19)C12—C131.463 (3)
C9—C81.352 (2)C12—H1210.9700
C9—C101.443 (2)C12—H1220.9700
C9—H90.99 (2)C7—H710.9600
C11—C101.551 (2)C7—H730.9600
C4—C51.376 (2)C7—H720.9600
C4—C31.379 (2)C13—H1310.9600
C8—C11.479 (2)C13—H1320.9600
C2—C31.382 (2)C13—H1330.9600
C2—C11.389 (2)
C8—O1—C7119.46 (14)C6—C5—H5120.4
C11—O4—C12114.34 (13)C5—C6—C1120.31 (15)
C8—C9—C10125.29 (14)C5—C6—H6119.8
C8—C9—H9120.5 (12)C1—C6—H6119.8
C10—C9—H9114.0 (12)O2—C10—C9128.48 (15)
O3—C11—O4125.25 (15)O2—C10—C11118.20 (14)
O3—C11—C10123.32 (14)C9—C10—C11113.28 (13)
O4—C11—C10111.42 (13)C13—C12—O4108.48 (17)
C5—C4—C3121.70 (15)C13—C12—H121110.0
C5—C4—Cl1119.01 (13)O4—C12—H121110.0
C3—C4—Cl1119.30 (13)C13—C12—H122110.0
O1—C8—C9122.91 (14)O4—C12—H122110.0
O1—C8—C1109.03 (12)H121—C12—H122108.4
C9—C8—C1128.07 (13)O1—C7—H71109.5
C3—C2—C1120.57 (14)O1—C7—H73109.5
C3—C2—H2119.7H71—C7—H73109.5
C1—C2—H2119.7O1—C7—H72109.5
C6—C1—C2119.42 (14)H71—C7—H72109.5
C6—C1—C8118.61 (14)H73—C7—H72109.5
C2—C1—C8121.87 (14)C12—C13—H131109.5
C4—C3—C2118.81 (14)C12—C13—H132109.5
C4—C3—H3120.6H131—C13—H132109.5
C2—C3—H3120.6C12—C13—H133109.5
C4—C5—C6119.16 (15)H131—C13—H133109.5
C4—C5—H5120.4H132—C13—H133109.5
C12—O4—C11—O30.5 (2)C1—C2—C3—C41.6 (2)
C12—O4—C11—C10178.46 (15)C3—C4—C5—C60.1 (3)
C7—O1—C8—C93.7 (3)Cl1—C4—C5—C6179.59 (13)
C7—O1—C8—C1175.94 (18)C4—C5—C6—C11.7 (3)
C10—C9—C8—O1172.10 (16)C2—C1—C6—C51.6 (2)
C10—C9—C8—C17.4 (3)C8—C1—C6—C5178.17 (15)
C3—C2—C1—C60.0 (2)C8—C9—C10—O20.6 (3)
C3—C2—C1—C8176.42 (13)C8—C9—C10—C11177.11 (15)
O1—C8—C1—C650.98 (19)O3—C11—C10—O2165.08 (18)
C9—C8—C1—C6128.62 (18)O4—C11—C10—O213.9 (2)
O1—C8—C1—C2125.51 (16)O3—C11—C10—C912.9 (2)
C9—C8—C1—C254.9 (2)O4—C11—C10—C9168.14 (14)
C5—C4—C3—C21.5 (2)C11—O4—C12—C13176.14 (19)
Cl1—C4—C3—C2178.80 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H71···O2i0.962.543.434 (2)155
C3—H3···O3ii0.932.603.479 (2)158
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H71···O2i0.962.543.434 (2)155
C3—H3···O3ii0.932.603.479 (2)158
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support and fellowships (PIBIC and PROBIC).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMachado, P., Rossato, M., Sant'Anna, G. S., Sauzem, P. D., Silva, R. M. S., Rubin, M. A., Ferreira, J., Bonacorso, H. G., Zanatta, N. & Martins, M. A. P. (2007). Arkivoc, 16, 281–297.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N.-J., Idrees, M., Khati, N. T. & Dhonde, M. G. (2013). S. Afr. J. Chem. 66, 248–253.  CAS Google Scholar
First citationThakur, T. S., Azim, Y., Srinu, T. & Desiraju, G. R. (2010). Curr. Sci. 98, 793–802.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds