organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1003-o1004

Crystal structure of 2-phenyl-2λ4,3-ditellura­tetra­cyclo­[5.5.2.04,13.010,14]tetra­deca-1(12),4,6,10,13-pentaen-2-ylium tri­fluoro­methane­sulfonate

aEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: jdw3@st-and.ac.uk

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 30 July 2014; accepted 7 August 2014; online 13 August 2014)

In the title compound, C18H13Te2+·CF3O3S, the TeII atom of the cation and one O atom of the tri­fluoro­methane­sulfonate counter-ion form a close-to-linear Te—Te—O system, with a Te—Te—O angle of 172.3 (1)° and a Te—O distance of 2.816 (5) Å, which may suggest the presence of a three-centre–four-electron (3c–4e) bond. Secondary Te⋯O inter­actions [3.003 (4) and 3.016 (4) Å], involving the second TeII atom of the binuclear mol­ecule, are also noted, resulting in a supra­molecular layer in the bc plane.

1. Related literature

For studies on related inter­actions with halogen counter-ions, see: Knight et al. (2010[Knight, F. R., Fuller, A. L., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). Inorg. Chem. 49, 7577-7596.], 2012[Knight, F. R., Arachchige, K. S. A., Randall, R. A. M., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). Dalton Trans. 41, 3154-3165.]). For discussions of 3c–4e bonding in this type of system, see: Aschenbach et al. (2012[Aschenbach, L. K., Knight, F. R., Randall, R. A. M., Cordes, D. B., Baggott, A., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). Dalton Trans. 41, 3141-3153.]). For a general review of peri-substituted naphthalenes and acenaphthenes, see: Kilian et al. (2011[Kilian, P., Knight, F. R. & Woollins, J. D. (2011). Chem. Eur. J. 17, 2302-2328.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H13Te2+·CF3O3S

  • Mr = 633.57

  • Monoclinic, P 21 /c

  • a = 10.687 (2) Å

  • b = 15.264 (3) Å

  • c = 12.242 (3) Å

  • β = 102.808 (6)°

  • V = 1947.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.15 mm−1

  • T = 93 K

  • 0.06 × 0.03 × 0.03 mm

2.1.2. Data collection

  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.619, Tmax = 0.910

  • 11783 measured reflections

  • 3407 independent reflections

  • 2926 reflections with F2 > 2σ(F2)

  • Rint = 0.053

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.07

  • 3407 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Selected bond lengths (Å)

Te1—Te2 2.7297 (6)
Te1—C1 2.104 (5)
Te1—C13 2.130 (6)
Te2—C9 2.131 (5)

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Experimental top

Synthesis and crystallization top

5,6-Bis(phenyl­telluro)acenaphthene (0.22 g, 0.39 mmol) was added to a solution of copper triflate (0.15 g, 0.40 mmol) in di­chloro­methane (20 ml) at 263 K. The resulting dark-purple solution was left to stir at this temperature for 3 h, then at room temperature for a further 12 h. The solution was filtered to give a grey solid and a dark-orange filtrate. The filtrate was evaporated under reduced pressure to yield an orange oil. The oil was redissolved in the minimum amount of di­chloro­methane, hexane was layered on top and the solution was left at 243 K. After 24 h the solution had yielded red needle-like crystals (0.03 g, 9%).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). The highest peak in the difference map is 1.06 Å from atom H7.

Results and discussion top

ENTER TEXT

Related literature top

For studies on related interactions with halogen counter-ions, see: Knight et al. (2010, 2012). For discussions of 3c–4e bonding in this type of system, see: Aschenbach et al. (2012) and for a general review of peri-substituted naphtalenes and acenaphthenes, see: Kilian et al. (2011).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with displacement ellipsoids drawn at the 50% probability level, hydrogen atoms omitted for clarity.
2-Phenyl-2λ4,3-ditelluratetracyclo[5.5.2.04,13.010,14]tetradeca-1(12),4,6,10,13-pentaen-2-ylium trifluoromethanesulfonate top
Crystal data top
C18H13Te2+·CF3O3SF(000) = 1192.00
Mr = 633.57Dx = 2.161 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 6711 reflections
a = 10.687 (2) Åθ = 2.2–25.4°
b = 15.264 (3) ŵ = 3.15 mm1
c = 12.242 (3) ÅT = 93 K
β = 102.808 (6)°Prism, red
V = 1947.4 (7) Å30.06 × 0.03 × 0.03 mm
Z = 4
Data collection top
Rigaku Mercury70
diffractometer
2926 reflections with F2 > 2σ(F2)
Detector resolution: 14.629 pixels mm-1Rint = 0.053
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 129
Tmin = 0.619, Tmax = 0.910k = 1816
11783 measured reflectionsl = 1314
3407 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2589P]
where P = (Fo2 + 2Fc2)/3
3407 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 1.03 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H13Te2+·CF3O3SV = 1947.4 (7) Å3
Mr = 633.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.687 (2) ŵ = 3.15 mm1
b = 15.264 (3) ÅT = 93 K
c = 12.242 (3) Å0.06 × 0.03 × 0.03 mm
β = 102.808 (6)°
Data collection top
Rigaku Mercury70
diffractometer
3407 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2926 reflections with F2 > 2σ(F2)
Tmin = 0.619, Tmax = 0.910Rint = 0.053
11783 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.07Δρmax = 1.19 e Å3
3407 reflectionsΔρmin = 1.03 e Å3
253 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.92263 (3)0.03268 (2)0.27873 (3)0.03050 (15)
Te21.06486 (3)0.15215 (2)0.19281 (3)0.03058 (15)
S11.22291 (14)0.36194 (10)0.05449 (12)0.0343 (3)
F11.3368 (4)0.2922 (3)0.0924 (3)0.0736 (12)
F21.4264 (3)0.4088 (3)0.0175 (3)0.0663 (11)
F31.4490 (3)0.2900 (3)0.0760 (3)0.0580 (10)
O11.1412 (4)0.4067 (3)0.0381 (3)0.0504 (11)
O21.1831 (5)0.2769 (3)0.0794 (4)0.0708 (15)
O31.2729 (4)0.4160 (3)0.1503 (3)0.0561 (12)
C10.8098 (5)0.0140 (3)0.1162 (4)0.0306 (12)
C20.7081 (5)0.0459 (4)0.0972 (4)0.0336 (13)
C30.6348 (5)0.0581 (4)0.0142 (5)0.0369 (13)
C40.6668 (5)0.0150 (3)0.1026 (5)0.0339 (13)
C50.7726 (5)0.0419 (3)0.0806 (4)0.0254 (12)
C60.7958 (5)0.0781 (3)0.1800 (4)0.0323 (12)
C70.8986 (6)0.1343 (4)0.1715 (5)0.0348 (13)
C80.9751 (6)0.1531 (3)0.0650 (5)0.0323 (13)
C90.9514 (5)0.1190 (3)0.0320 (4)0.0311 (12)
C100.8473 (5)0.0597 (3)0.0259 (4)0.0272 (11)
C110.6098 (6)0.0171 (4)0.2265 (5)0.0393 (14)
C120.6954 (6)0.0459 (4)0.2789 (5)0.0398 (14)
C130.8004 (5)0.1217 (3)0.3394 (5)0.0321 (12)
C140.8276 (6)0.1392 (4)0.4527 (5)0.0383 (14)
C150.7547 (5)0.1992 (4)0.4949 (5)0.0378 (13)
C160.6548 (5)0.2397 (4)0.4255 (5)0.0374 (13)
C170.6254 (5)0.2217 (4)0.3126 (5)0.0405 (14)
C180.6985 (5)0.1620 (3)0.2671 (5)0.0341 (13)
C191.3656 (6)0.3386 (4)0.0029 (5)0.0411 (15)
H20.688290.078080.157630.0403*
H30.562970.096490.027350.0443*
H70.917420.159970.236690.0417*
H81.046540.191140.060050.0387*
H11A0.519730.003460.242790.0472*
H11B0.612180.077210.256420.0472*
H12A0.735650.014440.332920.0478*
H12B0.644230.095380.317780.0478*
H140.896460.109940.501430.0460*
H150.774370.212280.572670.0453*
H160.604560.280890.455270.0449*
H170.554720.250150.265220.0486*
H180.679110.149350.189170.0409*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.0320 (2)0.0332 (3)0.0270 (2)0.00187 (14)0.00796 (17)0.00255 (15)
Te20.0295 (3)0.0324 (3)0.0307 (2)0.00155 (14)0.00854 (18)0.00344 (15)
S10.0339 (8)0.0419 (8)0.0283 (8)0.0023 (6)0.0093 (6)0.0031 (6)
F10.073 (3)0.106 (3)0.040 (2)0.035 (3)0.009 (2)0.018 (2)
F20.043 (2)0.092 (3)0.066 (3)0.004 (2)0.0170 (19)0.030 (2)
F30.055 (2)0.080 (3)0.038 (2)0.022 (2)0.0064 (17)0.0081 (19)
O10.033 (2)0.075 (3)0.043 (2)0.015 (2)0.0056 (19)0.005 (2)
O20.075 (3)0.069 (3)0.069 (3)0.039 (3)0.019 (3)0.007 (3)
O30.056 (3)0.068 (3)0.041 (2)0.011 (2)0.004 (2)0.026 (2)
C10.035 (3)0.033 (3)0.024 (3)0.006 (2)0.007 (2)0.001 (2)
C20.025 (3)0.049 (3)0.028 (3)0.003 (2)0.008 (2)0.015 (3)
C30.034 (3)0.038 (3)0.043 (3)0.009 (2)0.015 (3)0.008 (3)
C40.032 (3)0.040 (3)0.030 (3)0.001 (2)0.008 (3)0.008 (3)
C50.029 (3)0.022 (3)0.029 (3)0.004 (2)0.012 (2)0.002 (2)
C60.038 (3)0.031 (3)0.028 (3)0.003 (2)0.007 (2)0.003 (2)
C70.047 (4)0.032 (3)0.029 (3)0.005 (3)0.016 (3)0.006 (2)
C80.038 (3)0.025 (3)0.037 (3)0.002 (2)0.015 (3)0.002 (2)
C90.036 (3)0.029 (3)0.027 (3)0.005 (2)0.005 (2)0.002 (2)
C100.029 (3)0.028 (3)0.028 (3)0.003 (2)0.014 (2)0.003 (2)
C110.041 (3)0.044 (3)0.032 (3)0.008 (3)0.007 (3)0.006 (3)
C120.048 (4)0.039 (3)0.033 (3)0.001 (3)0.010 (3)0.001 (3)
C130.030 (3)0.035 (3)0.032 (3)0.004 (2)0.011 (2)0.006 (3)
C140.037 (3)0.043 (3)0.035 (3)0.003 (3)0.008 (3)0.002 (3)
C150.038 (3)0.043 (3)0.033 (3)0.006 (3)0.009 (3)0.003 (3)
C160.033 (3)0.038 (3)0.043 (3)0.003 (3)0.012 (3)0.004 (3)
C170.035 (3)0.039 (3)0.048 (4)0.008 (3)0.009 (3)0.011 (3)
C180.035 (3)0.038 (3)0.029 (3)0.001 (2)0.006 (3)0.004 (2)
C190.047 (4)0.053 (4)0.023 (3)0.010 (3)0.008 (3)0.008 (3)
Geometric parameters (Å, º) top
Te1—Te22.7297 (6)C8—C91.370 (8)
Te1—C12.104 (5)C9—C101.424 (7)
Te1—C132.130 (6)C11—C121.560 (9)
Te2—C92.131 (5)C13—C141.379 (8)
S1—O11.441 (4)C13—C181.385 (7)
S1—O21.420 (5)C14—C151.374 (8)
S1—O31.437 (4)C15—C161.357 (7)
S1—C191.810 (7)C16—C171.376 (8)
F1—C191.341 (7)C17—C181.394 (8)
F2—C191.307 (7)C2—H20.950
F3—C191.339 (6)C3—H30.950
C1—C21.401 (7)C7—H70.950
C1—C101.437 (8)C8—H80.950
C2—C31.426 (7)C11—H11A0.990
C3—C41.373 (8)C11—H11B0.990
C4—C51.403 (7)C12—H12A0.990
C4—C111.505 (7)C12—H12B0.990
C5—C61.408 (8)C14—H140.950
C5—C101.396 (7)C15—H150.950
C6—C71.379 (8)C16—H160.950
C6—C121.510 (7)C17—H170.950
C7—C81.407 (7)C18—H180.950
F1···O12.913 (6)F2···H11Axiv3.5516
F1···O22.951 (7)F2···H11Bvi2.7142
F2···O13.003 (5)F2···H12Avi2.7467
F2···O32.902 (6)F2···H12Bvi3.4740
F3···O22.859 (6)F2···H12Bxiv2.9799
F3···O32.972 (6)F2···H16iv3.5216
C1···C42.810 (7)F3···H3ix3.0105
C1···C183.302 (8)F3···H12Bxiv2.8107
C2···C52.770 (8)F3···H15iv3.4861
C3···C63.600 (8)F3···H16iv2.6844
C3···C102.853 (7)F3···H17vii2.4194
C5···C82.724 (7)F3···H18vii3.3265
C6···C92.825 (7)O1···H83.4347
C7···C102.832 (8)O1···H12Avi2.8026
C13···C162.739 (8)O1···H14viii3.1733
C14···C172.748 (7)O1···H14iii2.7746
C15···C182.778 (8)O2···H82.3778
Te1···O1i3.003 (4)O2···H14iii3.4610
Te1···O3ii3.016 (5)O3···H2viii2.2975
Te2···F1i3.563 (4)O3···H11Axiv2.9415
Te2···O1i3.336 (4)C2···H3x3.5714
Te2···O22.816 (5)C2···H8ix3.5384
F1···Te2iii3.563 (4)C2···H11Ax3.3843
F1···C16iv3.391 (7)C3···H3x3.2820
F1···C17iv3.536 (8)C5···H16iii3.3296
F2···F2v3.179 (6)C7···H15xv3.3385
F2···C11vi3.272 (7)C9···H15iii3.2977
F2···C12vi3.294 (7)C10···H16iii3.5217
F2···C16iv3.512 (7)C12···H15xv3.3381
F3···C16iv3.198 (7)C12···H17iii3.5496
F3···C17vii3.258 (6)C14···H8i3.5166
O1···Te1iii3.003 (4)C14···H12Axvi3.5530
O1···Te2iii3.336 (4)C15···H7xvi3.4127
O1···C14iii3.401 (7)C15···H12Axvi3.5535
O2···Te22.816 (5)C15···H12Bxvi3.2196
O2···C83.145 (7)C15···H18i3.5368
O2···C93.411 (7)C17···H11Bx3.3179
O3···Te1viii3.016 (5)C17···H12Bi3.2449
O3···C1viii3.509 (7)C18···H7i3.5931
O3···C2viii3.108 (7)C18···H11Ax3.4055
O3···C13viii3.245 (7)C18···H11Bx3.5389
C1···O3ii3.509 (7)C18···H15iii3.2957
C1···C8ix3.581 (8)C19···H11Bvi3.3364
C2···O3ii3.108 (7)C19···H12Avi3.4216
C3···C3x3.466 (8)C19···H12Bxiv3.4361
C5···C16iii3.571 (7)C19···H16iv3.2939
C6···C16iii3.542 (8)H2···S1ii3.5604
C6···C17iii3.549 (8)H2···F1ix3.3609
C8···O23.145 (7)H2···O3ii2.2975
C8···C1ix3.581 (8)H2···H11Ax2.8904
C8···C14iii3.568 (8)H3···F1ix3.3946
C8···C15iii3.455 (8)H3···F3ix3.0105
C9···O23.411 (7)H3···C2x3.5714
C9···C15iii3.450 (7)H3···C3x3.2820
C11···F2xi3.272 (7)H3···H3x3.3670
C12···F2xi3.294 (7)H3···H16xvii2.8615
C13···O3ii3.245 (7)H3···H18x2.9994
C14···O1i3.401 (7)H7···Te1ix3.4963
C14···C8i3.568 (8)H7···Te2iii3.4720
C15···C8i3.455 (8)H7···C15xv3.4127
C15···C9i3.450 (7)H7···C18iii3.5931
C16···F1xii3.391 (7)H7···H14xv3.2547
C16···F2xii3.512 (7)H7···H15xv2.6153
C16···F3xii3.198 (7)H8···S13.3383
C16···C5i3.571 (7)H8···F13.5644
C16···C6i3.542 (8)H8···O13.4347
C17···F1xii3.536 (8)H8···O22.3778
C17···F3xiii3.258 (6)H8···C2ix3.5384
C17···C6i3.549 (8)H8···C14iii3.5166
Te1···H23.1116H8···H14iii3.5907
Te1···H143.0397H11A···F2xi3.4316
Te1···H183.1435H11A···F2xviii3.5516
Te2···H83.1155H11A···O3xviii2.9415
C1···H33.2925H11A···C2x3.3843
C1···H182.7511H11A···C18x3.4055
C2···H183.2258H11A···H2x2.8904
C3···H11A2.9500H11A···H18x3.3175
C3···H11B2.9360H11B···Te2ix3.5548
C4···H23.2867H11B···F1xi2.8537
C4···H12A3.1007H11B···F2xi2.7142
C4···H12B3.0915H11B···C17x3.3179
C5···H33.2482H11B···C18x3.5389
C5···H73.2570H11B···C19xi3.3364
C5···H11A3.0345H11B···H17x3.1743
C5···H11B3.0394H11B···H18x3.5662
C5···H12A3.0546H12A···Te2ix3.5117
C5···H12B3.0352H12A···F1xi3.5539
C6···H83.2511H12A···F2xi2.7467
C6···H11A3.0967H12A···O1xi2.8026
C6···H11B3.0874H12A···C14xv3.5530
C7···H12A2.9595H12A···C15xv3.5535
C7···H12B2.9649H12A···C19xi3.4216
C9···H73.2884H12A···H14xv3.2766
C10···H23.3355H12A···H15xv3.2922
C10···H83.2652H12B···F2xi3.4740
C10···H183.2698H12B···F2xviii2.9799
C11···H32.8646H12B···F3xviii2.8107
C12···H72.8954H12B···C15xv3.2196
C13···H153.2397H12B···C17iii3.2449
C13···H173.2406H12B···C19xviii3.4361
C14···H163.2237H12B···H15xv2.7828
C14···H183.2682H12B···H17iii2.8174
C15···H173.2273H14···S1i3.4313
C16···H143.2238H14···O1ii3.1733
C16···H183.2674H14···O1i2.7746
C17···H153.2316H14···O2i3.4610
C18···H143.2628H14···H7xvi3.2547
C18···H163.2611H14···H8i3.5907
H2···H32.3783H14···H12Axvi3.2766
H2···H183.4967H15···F3xii3.4861
H3···H11A2.9928H15···C7xvi3.3385
H3···H11B2.9802H15···C9i3.2977
H7···H82.3418H15···C12xvi3.3381
H7···H12A3.0135H15···C18i3.2957
H7···H12B3.0326H15···H7xvi2.6153
H11A···H12A2.7748H15···H12Axvi3.2922
H11A···H12B2.2635H15···H12Bxvi2.7828
H11B···H12A2.2635H15···H18i2.8592
H11B···H12B2.7813H16···F1xii3.0054
H14···H152.3255H16···F2xii3.5216
H15···H162.3021H16···F3xii2.6844
H16···H172.3168H16···C5i3.3296
H17···H182.3559H16···C10i3.5217
Te1···H7ix3.4963H16···C19xii3.2939
Te2···H7i3.4720H16···H3xix2.8615
Te2···H11Bix3.5548H16···H18i2.9927
Te2···H12Aix3.5117H17···F1xii3.2678
S1···H2viii3.5604H17···F3xiii2.4194
S1···H83.3383H17···C12i3.5496
S1···H14iii3.4313H17···H11Bx3.1743
F1···H2ix3.3609H17···H12Bi2.8174
F1···H3ix3.3946H18···F3xiii3.3265
F1···H83.5644H18···C15iii3.5368
F1···H11Bvi2.8537H18···H3x2.9994
F1···H12Avi3.5539H18···H11Ax3.3175
F1···H16iv3.0054H18···H11Bx3.5662
F1···H17iv3.2678H18···H15iii2.8592
F2···H11Avi3.4316H18···H16iii2.9927
Te2—Te1—C188.70 (15)C14—C15—C16120.1 (5)
Te2—Te1—C1398.34 (15)C15—C16—C17120.7 (5)
C1—Te1—C1398.6 (2)C16—C17—C18120.6 (5)
Te1—Te2—C986.91 (15)C13—C18—C17117.7 (5)
O1—S1—O2116.3 (3)S1—C19—F1111.1 (4)
O1—S1—O3114.9 (3)S1—C19—F2113.5 (4)
O1—S1—C19103.3 (3)S1—C19—F3111.3 (4)
O2—S1—O3115.1 (3)F1—C19—F2107.1 (5)
O2—S1—C19102.2 (3)F1—C19—F3106.2 (5)
O3—S1—C19102.0 (3)F2—C19—F3107.2 (5)
Te1—C1—C2120.4 (4)C1—C2—H2120.450
Te1—C1—C10117.6 (3)C3—C2—H2120.449
C2—C1—C10121.8 (4)C2—C3—H3119.656
C1—C2—C3119.1 (5)C4—C3—H3119.651
C2—C3—C4120.7 (5)C6—C7—H7120.424
C3—C4—C5118.5 (5)C8—C7—H7120.429
C3—C4—C11131.9 (5)C7—C8—H8118.517
C5—C4—C11109.6 (5)C9—C8—H8118.501
C4—C5—C6111.5 (4)C4—C11—H11A110.757
C4—C5—C10124.7 (5)C4—C11—H11B110.756
C6—C5—C10123.8 (5)C12—C11—H11A110.759
C5—C6—C7118.0 (4)C12—C11—H11B110.756
C5—C6—C12109.5 (5)H11A—C11—H11B108.843
C7—C6—C12132.5 (5)C6—C12—H12A110.873
C6—C7—C8119.1 (5)C6—C12—H12B110.872
C7—C8—C9123.0 (5)C11—C12—H12A110.874
Te2—C9—C8122.3 (4)C11—C12—H12B110.871
Te2—C9—C10118.5 (4)H12A—C12—H12B108.910
C8—C9—C10119.2 (4)C13—C14—H14120.132
C1—C10—C5115.2 (4)C15—C14—H14120.134
C1—C10—C9128.0 (4)C14—C15—H15119.953
C5—C10—C9116.9 (5)C16—C15—H15119.953
C4—C11—C12104.9 (4)C15—C16—H16119.680
C6—C12—C11104.4 (4)C17—C16—H16119.670
Te1—C13—C14117.7 (4)C16—C17—H17119.695
Te1—C13—C18121.1 (4)C18—C17—H17119.691
C14—C13—C18121.2 (5)C13—C18—H18121.144
C13—C14—C15119.7 (5)C17—C18—H18121.146
Te2—Te1—C1—C2179.4 (3)C3—C4—C11—C12178.6 (5)
Te2—Te1—C1—C104.1 (3)C5—C4—C11—C120.4 (6)
C1—Te1—Te2—C94.04 (15)C11—C4—C5—C61.5 (6)
Te2—Te1—C13—C14101.8 (3)C11—C4—C5—C10179.5 (4)
Te2—Te1—C13—C1876.9 (4)C4—C5—C6—C7178.9 (4)
C13—Te1—Te2—C9102.50 (13)C4—C5—C6—C122.0 (6)
C1—Te1—C13—C14168.2 (3)C4—C5—C10—C10.7 (7)
C1—Te1—C13—C1813.0 (4)C4—C5—C10—C9179.7 (4)
C13—Te1—C1—C282.3 (4)C6—C5—C10—C1178.2 (4)
C13—Te1—C1—C10102.3 (3)C6—C5—C10—C90.8 (7)
Te1—Te2—C9—C8175.5 (4)C10—C5—C6—C70.1 (7)
Te1—Te2—C9—C104.7 (3)C10—C5—C6—C12179.0 (4)
O1—S1—C19—F156.7 (4)C5—C6—C7—C80.1 (8)
O1—S1—C19—F264.1 (4)C5—C6—C12—C111.6 (5)
O1—S1—C19—F3174.8 (3)C7—C6—C12—C11179.4 (5)
O2—S1—C19—F164.5 (4)C12—C6—C7—C8178.8 (5)
O2—S1—C19—F2174.8 (3)C6—C7—C8—C91.0 (8)
O2—S1—C19—F353.7 (4)C7—C8—C9—Te2177.8 (4)
O3—S1—C19—F1176.2 (3)C7—C8—C9—C102.0 (8)
O3—S1—C19—F255.4 (4)Te2—C9—C10—C13.2 (7)
O3—S1—C19—F365.7 (4)Te2—C9—C10—C5177.9 (3)
Te1—C1—C2—C3179.0 (3)C8—C9—C10—C1177.0 (4)
Te1—C1—C10—C5177.2 (3)C8—C9—C10—C51.8 (7)
Te1—C1—C10—C91.7 (7)C4—C11—C12—C60.7 (5)
C2—C1—C10—C52.0 (7)Te1—C13—C14—C15177.1 (3)
C2—C1—C10—C9176.9 (5)Te1—C13—C18—C17177.9 (3)
C10—C1—C2—C33.9 (8)C14—C13—C18—C170.8 (8)
C1—C2—C3—C43.1 (8)C18—C13—C14—C151.6 (8)
C2—C3—C4—C50.6 (8)C13—C14—C15—C161.3 (8)
C2—C3—C4—C11178.3 (5)C14—C15—C16—C170.3 (8)
C3—C4—C5—C6177.6 (4)C15—C16—C17—C180.5 (8)
C3—C4—C5—C101.4 (8)C16—C17—C18—C130.3 (8)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z1/2; (v) x+3, y+1, z; (vi) x+2, y+1/2, z1/2; (vii) x+1, y, z; (viii) x+2, y+1/2, z+1/2; (ix) x+2, y, z; (x) x+1, y, z; (xi) x+2, y1/2, z1/2; (xii) x1, y+1/2, z+1/2; (xiii) x1, y, z; (xiv) x+1, y+1/2, z+1/2; (xv) x, y, z1; (xvi) x, y, z+1; (xvii) x+1, y1/2, z+1/2; (xviii) x1, y+1/2, z1/2; (xix) x+1, y+1/2, z+1/2.
Selected bond lengths (Å) top
Te1—Te22.7297 (6)Te1—C132.130 (6)
Te1—C12.104 (5)Te2—C92.131 (5)
 

Acknowledgements

We are grateful to the University of St Andrews and the EPSRC for support.

References

First citationAschenbach, L. K., Knight, F. R., Randall, R. A. M., Cordes, D. B., Baggott, A., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). Dalton Trans. 41, 3141–3153.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKilian, P., Knight, F. R. & Woollins, J. D. (2011). Chem. Eur. J. 17, 2302–2328.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKnight, F. R., Arachchige, K. S. A., Randall, R. A. M., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). Dalton Trans. 41, 3154–3165.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKnight, F. R., Fuller, A. L., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). Inorg. Chem. 49, 7577–7596.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1003-o1004
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds