organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1001-o1002

Crystal structure of 7-bromo-2-(3-fluoro­phen­yl)-1-(methyl­sulfin­yl)naphtho[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 6 August 2014; accepted 7 August 2014; online 13 August 2014)

In the title compound, C19H11BrFO2S, the dihedral angle between the plane of the naphtho­furan ring system [r.m.s. deviation = 0.043 (2) Å] and that of the 3-fluoro­benzene ring is 39.32 (8)°. In the crystal, mol­ecules are linked by C—H⋯O and C—Br⋯π [3.835 (1) Å] inter­actions into stacks along the c axis, forming a three-dimensional network. The F atom is disordered over two positions, with site-occupancy factors of 0.851 (3) and 0.149 (3).

1. Related literature

For the pharmacological activities of compounds containing a naphtho­furan ring, see: Debnath et al. (1993[Debnath, A. K., Hansch, C., Kim, K. H. & Martin, Y. C. (1993). J. Med. Chem. 36, 1007-1016.]); Einhorn et al. (1984[Einhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405-410.]); Hranjec et al. (2003[Hranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Il Farmaco, 58, 1319-1324.]); Mahadevan & Vaidya (2003[Mahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128-134.]). For the fluorescence properties of compounds having a naphtho­furan skeleton, see: Piloto et al. (2005[Piloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757-4760.]). For the synthesis of the starting material 7-bromo-2-(3-fluoro­phen­yl)-1-(methyl­sulf­an­yl)naphtho­[2,1-b]furan, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]). For a related structure, see: Choi et al. (2013[Choi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o1148.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H12BrFO2S

  • Mr = 403.26

  • Monoclinic, P 21 /c

  • a = 6.1340 (1) Å

  • b = 23.0602 (5) Å

  • c = 10.8806 (2) Å

  • β = 91.166 (1)°

  • V = 1538.76 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 173 K

  • 0.74 × 0.45 × 0.38 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.229, Tmax = 0.413

  • 14935 measured reflections

  • 3834 independent reflections

  • 3033 reflections with I > 2σ(I)

  • Rint = 0.047

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.04

  • 3834 reflections

  • 228 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.95 2.48 3.260 (3) 139
C19—H19B⋯O2i 0.98 2.56 3.387 (3) 142
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Structural commentary top

Many compounds involving a naphtho­furan moiety show potent biological activities such as anti­bacterial, anti­tumor, anthelmintic and mutagenic properties (Debnath et al., 1993, Einhorn et al., 1984, Hranjec et al., 2003, Mahadevan et al., 2003). These naphtho­furan derivatives are known about their fluorescence properties and potential utility as suitable fluorescent makers (Piloto et al., 2005). As a part of our ongoing project of 7-bromo-2-aryl-1-(methyl­sulfinyl)­naphtho­[2,1-b]furan derivatives containing 4-methyl­phenyl substituent in 2-position (Choi et al., 2013), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphtho­[2,1-b]furan unit is essentially planar, with a mean deviation of 0.043 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The 3-fluoro­phenyl ring is essentially planar, with a mean deviation of 0.008 (2) Å from the least-squares plane defined by the six constituent atoms. In the 3-fluoro­phenyl ring, the F atom is disordered over two positions with site-occupancy factors, from refinement, of 0.851 (3) (part A) and 0.149 (3) (part B). The dihedral angle formed by the naphtho­[2,1-bb]furan ring system and the 3-fluoro­phenyl ring is 39.32 (8)°. In the crystal structure (Fig. 2), molecules are linked by C—H···O hydrogen bonds (Table 1) and C6—Br1···π inter­actions between the bromine atom and the central benzene ring of a neighbouring molecule with a Br1···Cg1ii being 3.835 (1) Å (Cg1 is the centroid of the C2/C3/C8/C9/C10/C11 benzene ring), into stacks along the c-axis direction, forming a three-dimensional network.

Synthesis and crystallization top

The starting material 7-bromo-2-(3-fluoro­phenyl)-1-(methyl­sulfanyl)naphtho­[2,1-b]furan was prepared by literature method (Choi et al., 1999). 3-Chloro­per­oxy­benzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of the starting material (355 mg, 0.9 mmol) in di­chloro­methane (30 mL) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution (2 x 20 mL) and the organic layer was separated, dried over Mg2SO4, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 71% (258 mg); M.pt: 483–484 K; Rf = 0.48 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an acetone solution (15 mL) of the title compound (23 mg) held at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, and with Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97 command AFIX 137 (Sheldrick, 2008). The F1 atom of the 3-fluoro­benzene ring is disordered over two positions with site occupancy factors, from refinement, of 0.851 (3) (part A) and 0.149 (3) (part B). For the proper treatment of H-atoms, carbon atoms C15 and C17 were divided with equalized coordinates and displacement parameters. The distance of equivalent C—F pairs were restrained to 1.330 (5) Å using command DFIX, and displacement ellipsoids of F1 set were restrained to be approximately spherical using the ISOR command (parameter = 0.01).

Related literature top

For the pharmacological activities of compounds containing a naphthofuran ring, see: Debnath et al. (1993); Einhorn et al. (1984); Hranjec et al. (2003); Mahadevan & Vaidya (2003). For the fluorescence properties of compounds having a naphthofuran skeleton, see: Piloto et al. (2005). For the synthesis of the starting material 7-bromo-2-(3-fluorophenyl)-1-(methylsulfanyl)naphtho[2,1-b]furan, see: Choi et al. (1999). For a related structure, see: Choi et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The F atom of the 3-fluorobenzene ring is disordered over two positions with site occupancy factors, from refinement of 0.851 (3) (part A) and 0.149 (3) (part B).
[Figure 2] Fig. 2. A view of the C—H···O and C—Br···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding are omitted for clarity [Symmetry codes: (i) x, - y + 1/2, z + 1/2; (ii) x - 1, y, z; (iii) x, - y + 1/2, z - 1/2].
7-bromo-2-(3-fluorophenyl)-1-(methylsulfinyl) naphtho[2,1-b]furan top
Crystal data top
C19H12BrFO2SF(000) = 808
Mr = 403.26Dx = 1.741 Mg m3
Monoclinic, P21/cMelting point = 484 K–483 K K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.1340 (1) ÅCell parameters from 5530 reflections
b = 23.0602 (5) Åθ = 2.6–28.3°
c = 10.8806 (2) ŵ = 2.83 mm1
β = 91.166 (1)°T = 173 K
V = 1538.76 (5) Å3Block, colourless
Z = 40.74 × 0.45 × 0.38 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3834 independent reflections
Radiation source: rotating anode3033 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.047
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.8°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 3019
Tmin = 0.229, Tmax = 0.413l = 1411
14935 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.2694P]
where P = (Fo2 + 2Fc2)/3
3834 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.47 e Å3
14 restraintsΔρmin = 0.91 e Å3
Crystal data top
C19H12BrFO2SV = 1538.76 (5) Å3
Mr = 403.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1340 (1) ŵ = 2.83 mm1
b = 23.0602 (5) ÅT = 173 K
c = 10.8806 (2) Å0.74 × 0.45 × 0.38 mm
β = 91.166 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3834 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3033 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.413Rint = 0.047
14935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03714 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
3834 reflectionsΔρmin = 0.91 e Å3
228 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 8.08-8.13 (m, 1H), 7.67-7.87 (m, 5H), 7.48-7.55 (m, 2H), 7.19-7.24 (m, 1H), 3.07 (s, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.54910 (4)0.387149 (11)0.05723 (2)0.03031 (11)
S10.42612 (9)0.27925 (2)0.34599 (5)0.01784 (14)
O10.5270 (3)0.44696 (6)0.37648 (14)0.0183 (3)
O20.3848 (3)0.25673 (7)0.21917 (14)0.0241 (4)
C10.4108 (4)0.35599 (9)0.34160 (19)0.0149 (4)
C20.2686 (4)0.39476 (9)0.2724 (2)0.0146 (5)
C30.0780 (4)0.38989 (9)0.1956 (2)0.0153 (5)
C40.0172 (4)0.33718 (9)0.1568 (2)0.0184 (5)
H40.04790.30160.18210.022*
C50.2012 (4)0.33605 (10)0.0835 (2)0.0213 (5)
H50.26270.30020.05740.026*
C60.2975 (4)0.38870 (9)0.0474 (2)0.0204 (5)
C70.2122 (4)0.44064 (10)0.0813 (2)0.0202 (5)
H70.28040.47560.05480.024*
C80.0216 (4)0.44276 (9)0.1562 (2)0.0173 (5)
C90.0723 (4)0.49734 (10)0.1878 (2)0.0208 (5)
H90.00300.53180.15950.025*
C100.2587 (4)0.50152 (10)0.2573 (2)0.0206 (5)
H100.32330.53790.27670.025*
C110.3494 (4)0.44945 (9)0.2984 (2)0.0169 (5)
C120.5593 (4)0.38974 (9)0.4033 (2)0.0166 (5)
C130.7303 (4)0.37854 (9)0.4959 (2)0.0170 (5)
C140.9160 (4)0.41338 (10)0.4996 (2)0.0187 (5)
H140.93540.44340.44100.022*
C15A1.0699 (4)0.40315 (11)0.5903 (2)0.0253 (6)0.851 (3)
F1A1.2485 (3)0.43617 (7)0.59705 (16)0.0334 (5)0.851 (3)
C15B1.0699 (4)0.40315 (11)0.5903 (2)0.0253 (6)0.15
H15B1.19710.42670.59270.030*0.149 (3)
C161.0499 (4)0.36077 (11)0.6776 (2)0.0278 (6)
H161.16070.35440.73840.033*
C17A0.8625 (4)0.32773 (11)0.6738 (2)0.0273 (6)0.851 (3)
H17A0.84330.29840.73400.033*0.851 (3)
C17B0.8625 (4)0.32773 (11)0.6738 (2)0.0273 (6)0.15
F1B0.8601 (17)0.2943 (4)0.7701 (6)0.034 (3)0.149 (3)
C180.7026 (4)0.33614 (10)0.5852 (2)0.0204 (5)
H180.57410.31310.58500.025*
C190.1839 (4)0.26492 (10)0.4306 (2)0.0236 (5)
H19A0.06150.28660.39410.035*
H19B0.20650.27700.51630.035*
H19C0.15140.22330.42760.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02564 (16)0.03656 (18)0.02825 (17)0.00225 (11)0.01109 (11)0.00308 (11)
S10.0209 (3)0.0138 (3)0.0187 (3)0.0028 (2)0.0025 (2)0.0023 (2)
O10.0201 (8)0.0164 (8)0.0184 (8)0.0024 (6)0.0026 (7)0.0005 (6)
O20.0306 (10)0.0204 (8)0.0213 (9)0.0033 (7)0.0002 (7)0.0066 (7)
C10.0173 (11)0.0149 (10)0.0127 (11)0.0003 (9)0.0011 (8)0.0005 (8)
C20.0183 (12)0.0142 (10)0.0114 (11)0.0001 (8)0.0016 (9)0.0015 (8)
C30.0174 (11)0.0181 (11)0.0105 (10)0.0019 (8)0.0015 (9)0.0012 (8)
C40.0219 (12)0.0151 (11)0.0183 (11)0.0002 (9)0.0008 (9)0.0002 (9)
C50.0219 (13)0.0218 (12)0.0202 (12)0.0023 (10)0.0017 (9)0.0018 (10)
C60.0180 (12)0.0287 (13)0.0144 (11)0.0000 (10)0.0023 (9)0.0002 (9)
C70.0220 (12)0.0228 (12)0.0156 (11)0.0043 (10)0.0017 (9)0.0031 (9)
C80.0211 (12)0.0186 (11)0.0123 (11)0.0025 (9)0.0003 (8)0.0006 (9)
C90.0307 (14)0.0140 (11)0.0175 (11)0.0038 (9)0.0011 (10)0.0011 (9)
C100.0290 (13)0.0138 (11)0.0191 (12)0.0013 (9)0.0025 (10)0.0003 (9)
C110.0171 (11)0.0195 (11)0.0141 (11)0.0009 (9)0.0004 (9)0.0009 (9)
C120.0189 (12)0.0157 (11)0.0151 (11)0.0012 (9)0.0025 (9)0.0014 (8)
C130.0172 (12)0.0191 (11)0.0149 (11)0.0017 (9)0.0002 (9)0.0045 (9)
C140.0202 (12)0.0184 (11)0.0175 (12)0.0003 (9)0.0015 (9)0.0047 (9)
C15A0.0181 (13)0.0272 (13)0.0304 (14)0.0002 (10)0.0025 (10)0.0156 (11)
F1A0.0217 (10)0.0360 (10)0.0424 (11)0.0107 (8)0.0036 (8)0.0071 (8)
C15B0.0181 (13)0.0272 (13)0.0304 (14)0.0002 (10)0.0025 (10)0.0156 (11)
C160.0300 (15)0.0291 (14)0.0240 (13)0.0119 (11)0.0108 (11)0.0091 (11)
C17A0.0320 (15)0.0277 (13)0.0219 (13)0.0057 (11)0.0043 (11)0.0012 (11)
C17B0.0320 (15)0.0277 (13)0.0219 (13)0.0057 (11)0.0043 (11)0.0012 (11)
F1B0.040 (6)0.037 (5)0.024 (5)0.005 (4)0.017 (4)0.000 (4)
C180.0218 (13)0.0219 (12)0.0176 (12)0.0013 (10)0.0001 (9)0.0003 (9)
C190.0306 (14)0.0180 (11)0.0222 (13)0.0029 (10)0.0011 (10)0.0005 (10)
Geometric parameters (Å, º) top
Br1—C61.899 (2)C9—C101.361 (3)
S1—O21.4912 (16)C9—H90.9500
S1—C11.773 (2)C10—C111.393 (3)
S1—C191.795 (2)C10—H100.9500
O1—C121.365 (2)C12—C131.463 (3)
O1—C111.369 (3)C13—C181.391 (3)
C1—C121.364 (3)C13—C141.393 (3)
C1—C21.449 (3)C14—C15A1.373 (3)
C2—C111.382 (3)C14—H140.9500
C2—C31.428 (3)C15A—F1A1.335 (3)
C3—C41.409 (3)C15A—C161.370 (4)
C3—C81.426 (3)C16—C17A1.379 (4)
C4—C51.369 (3)C16—H160.9500
C4—H40.9500C17A—C181.375 (3)
C5—C61.403 (3)C17A—H17A0.9500
C5—H50.9500C18—H180.9500
C6—C71.355 (3)C19—H19A0.9800
C7—C81.412 (3)C19—H19B0.9800
C7—H70.9500C19—H19C0.9800
C8—C91.424 (3)
O2—S1—C1108.36 (10)C9—C10—H10121.9
O2—S1—C19106.48 (11)C11—C10—H10121.9
C1—S1—C1998.85 (11)O1—C11—C2111.47 (19)
C12—O1—C11106.47 (17)O1—C11—C10122.9 (2)
C12—C1—C2107.00 (18)C2—C11—C10125.6 (2)
C12—C1—S1121.46 (17)C1—C12—O1110.71 (19)
C2—C1—S1131.36 (16)C1—C12—C13134.5 (2)
C11—C2—C3118.51 (19)O1—C12—C13114.64 (18)
C11—C2—C1104.32 (19)C18—C13—C14119.8 (2)
C3—C2—C1137.10 (19)C18—C13—C12120.6 (2)
C4—C3—C8118.3 (2)C14—C13—C12119.5 (2)
C4—C3—C2124.92 (19)C15A—C14—C13118.1 (2)
C8—C3—C2116.73 (19)C15A—C14—H14120.9
C5—C4—C3121.5 (2)C13—C14—H14120.9
C5—C4—H4119.3F1A—C15A—C16117.0 (2)
C3—C4—H4119.3F1A—C15A—C14119.6 (2)
C4—C5—C6119.0 (2)C16—C15A—C14123.4 (2)
C4—C5—H5120.5C15A—C16—C17A117.4 (2)
C6—C5—H5120.5C15A—C16—H16121.3
C7—C6—C5122.0 (2)C17A—C16—H16121.3
C7—C6—Br1118.98 (17)C18—C17A—C16121.7 (2)
C5—C6—Br1118.93 (17)C18—C17A—H17A119.2
C6—C7—C8119.9 (2)C16—C17A—H17A119.2
C6—C7—H7120.1C17A—C18—C13119.6 (2)
C8—C7—H7120.1C17A—C18—H18120.2
C7—C8—C9119.8 (2)C13—C18—H18120.2
C7—C8—C3119.3 (2)S1—C19—H19A109.5
C9—C8—C3121.0 (2)S1—C19—H19B109.5
C10—C9—C8121.9 (2)H19A—C19—H19B109.5
C10—C9—H9119.1S1—C19—H19C109.5
C8—C9—H9119.1H19A—C19—H19C109.5
C9—C10—C11116.3 (2)H19B—C19—H19C109.5
O2—S1—C1—C12136.65 (19)C12—O1—C11—C21.1 (3)
C19—S1—C1—C12112.6 (2)C12—O1—C11—C10175.8 (2)
O2—S1—C1—C237.8 (2)C3—C2—C11—O1177.72 (19)
C19—S1—C1—C273.0 (2)C1—C2—C11—O10.1 (2)
C12—C1—C2—C110.9 (2)C3—C2—C11—C101.0 (4)
S1—C1—C2—C11174.17 (18)C1—C2—C11—C10176.6 (2)
C12—C1—C2—C3176.0 (3)C9—C10—C11—O1175.0 (2)
S1—C1—C2—C39.0 (4)C9—C10—C11—C21.4 (4)
C11—C2—C3—C4177.0 (2)C2—C1—C12—O11.6 (3)
C1—C2—C3—C46.4 (4)S1—C1—C12—O1174.03 (15)
C11—C2—C3—C83.0 (3)C2—C1—C12—C13173.1 (2)
C1—C2—C3—C8173.5 (2)S1—C1—C12—C1311.2 (4)
C8—C3—C4—C50.3 (3)C11—O1—C12—C11.7 (3)
C2—C3—C4—C5179.7 (2)C11—O1—C12—C13174.20 (19)
C3—C4—C5—C60.6 (4)C1—C12—C13—C1834.8 (4)
C4—C5—C6—C71.0 (4)O1—C12—C13—C18139.7 (2)
C4—C5—C6—Br1178.65 (18)C1—C12—C13—C14149.5 (3)
C5—C6—C7—C80.6 (4)O1—C12—C13—C1435.9 (3)
Br1—C6—C7—C8178.20 (17)C18—C13—C14—C15A2.0 (3)
C6—C7—C8—C9177.6 (2)C12—C13—C14—C15A177.7 (2)
C6—C7—C8—C30.3 (4)C13—C14—C15A—F1A179.3 (2)
C4—C3—C8—C70.7 (3)C13—C14—C15A—C160.4 (4)
C2—C3—C8—C7179.2 (2)F1A—C15A—C16—C17A177.9 (2)
C4—C3—C8—C9177.1 (2)C14—C15A—C16—C17A1.1 (4)
C2—C3—C8—C92.9 (3)C15A—C16—C17A—C180.9 (4)
C7—C8—C9—C10178.4 (2)C16—C17A—C18—C130.7 (4)
C3—C8—C9—C100.6 (4)C14—C13—C18—C17A2.2 (3)
C8—C9—C10—C111.6 (3)C12—C13—C18—C17A177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.952.483.260 (3)139
C19—H19B···O2i0.982.563.387 (3)142
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.952.483.260 (3)139.4
C19—H19B···O2i0.982.563.387 (3)141.5
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o1148.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationDebnath, A. K., Hansch, C., Kim, K. H. & Martin, Y. C. (1993). J. Med. Chem. 36, 1007–1016.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEinhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405–410.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Il Farmaco, 58, 1319–1324.  CrossRef PubMed CAS Google Scholar
First citationMahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128–134.  CAS Google Scholar
First citationPiloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757–4760.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1001-o1002
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds