organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1041-o1042

Crystal structure of N-(1-allyl-3-chloro-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_chigr@yahoo.fr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 6 August 2014; accepted 7 August 2014; online 23 August 2014)

The 3-chloro-1H-indazole system in the title mol­ecule, C17H16ClN3O2S, is almost planar, with the largest deviation from the mean plane being 0.029 (2) Å for one of the N atoms. This system is nearly perpendicular to the allyl chain, as indicated by the C—C—N—N torsion angle of −90.1 (6)° between them. The allyl group is split into two fragments, the major component has a site occupancy of 0.579 (7). The indazole system makes a dihedral angle of 47.53 (10)° with the plane through the benzene ring. In the crystal, mol­ecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

1. Related literature

For the biological activity of sulfonamides, see: El-Sayed, et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Mustafa et al. (2012[Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]); Scozzafava et al. (2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]). For similar compounds, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2014[Chicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H16ClN3O2S

  • Mr = 361.84

  • Orthorhombic, P b c n

  • a = 8.1736 (12) Å

  • b = 22.504 (4) Å

  • c = 19.279 (3) Å

  • V = 3546.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.40 × 0.36 × 0.31 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.693, Tmax = 0.747

  • 18362 measured reflections

  • 3621 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.02

  • 3621 reflections

  • 225 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.81 2.39 3.140 (3) 155
C4—H4⋯O2ii 0.93 2.44 3.364 (3) 171
C5—H5⋯O1i 0.93 2.58 3.282 (3) 132
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Sulfonamides are an important class of compounds which are widely used in the design of diverse classes of drug candidates (El-Sayed et al., 2011; Mustafa et al., 2012; Scozzafava et al., 2003). Previously, we identified a series of indazoles bearing a sulfonamide moiety with good anti­proliferative activities (Abbassi et al., 2012; Abbassi, et al. 2013; Chicha et al., 2014).

The molecule of the title compound is built up from two fused five- and six-membered rings (N1 N2 C2 to C8) almost coplanar, with a maximum deviation of 0.029 (2) Å for N1 atom (Fig. 1). The dihedral angle between the indazol system and the plane through the benzene ring (C9 to C14) is of 47.53 (10)°. The allyl chain is perpendicular to the fused rings system as indicated by the C(16A)—C(15)—N(1)—N(2) torsion angle of -90.1 (6)°.

The cohesion of the crystal structure is ensured by N3–H3N···O1, C5–H5···O1 and C4–H4···O2 hydrogen bonds between molecules to form a three-dimensional network as shown in Fig. 2 and Table 1.

Synthesis and crystallization top

A mixture of 1-allyl-3-chloro-5-nitro­indazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methyl­benzene­sulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate:hexane 2:8). The title compound was recrystallized from its ethanol solution. Yield: 65%, M.pt: 394 K.

Refinement top

The reflections (002), (110), (021) and (020), probably affected by the beam stop, were removed from the final refinement. The refinement of the model, i.e. disordered allyl group, required constraints on the distance C15—C16—C17 and atomic displacements of allyl group. The H atoms were located in a difference map and treated as riding with C—H = 0.96 Å, C—H = 0.97 Å, C—H = 0.93 Å, and N—H = 0.81 Å for methyl, methyl­ene, aromatic CH and NH, respectively, and with Uiso(H) = 1.2 Ueq (methyl­ene, aromatic, NH) and Uiso(H) = 1.5 Ueq for methyl.

Related literature top

For the biological activity of sulfonamides, see: El-Sayed, et al. (2011); Mustafa et al. (2012); Scozzafava et al. (2003). For similar compounds, see: Abbassi et al. (2012, 2013); Chicha et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Crystal structure of the title compound, showing molecules linked by N3–H3N···O1, C5–H5···O1 and C4–H4···O2 hydrogen bonds between molecules.
N-(1-Allyl-3-chloro-1H-indazol-5-yl)-4-methylbenzenesulfonamide top
Crystal data top
C17H16ClN3O2SDx = 1.355 Mg m3
Mr = 361.84Melting point: 394 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3621 reflections
a = 8.1736 (12) Åθ = 2.8–26.4°
b = 22.504 (4) ŵ = 0.35 mm1
c = 19.279 (3) ÅT = 296 K
V = 3546.2 (10) Å3Block, colourless
Z = 80.40 × 0.36 × 0.31 mm
F(000) = 1504
Data collection top
Bruker X8 APEX
diffractometer
3621 independent reflections
Radiation source: fine-focus sealed tube2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 910
Tmin = 0.693, Tmax = 0.747k = 2826
18362 measured reflectionsl = 2224
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.7269P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3621 reflectionsΔρmax = 0.26 e Å3
225 parametersΔρmin = 0.26 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (4)
Crystal data top
C17H16ClN3O2SV = 3546.2 (10) Å3
Mr = 361.84Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 8.1736 (12) ŵ = 0.35 mm1
b = 22.504 (4) ÅT = 296 K
c = 19.279 (3) Å0.40 × 0.36 × 0.31 mm
Data collection top
Bruker X8 APEX
diffractometer
3621 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2327 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.051
18362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0434 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
3621 reflectionsΔρmin = 0.26 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8260 (3)0.03622 (11)0.08181 (12)0.0516 (6)
C20.8328 (3)0.02554 (10)0.06992 (11)0.0427 (5)
C30.9964 (3)0.04008 (11)0.08496 (12)0.0481 (6)
C41.0542 (3)0.09849 (12)0.07951 (13)0.0570 (7)
H41.16240.10810.08920.068*
C50.9446 (3)0.14053 (11)0.05939 (13)0.0532 (6)
H50.97930.17980.05580.064*
C60.7806 (3)0.12692 (10)0.04380 (11)0.0444 (5)
C70.7233 (3)0.06945 (10)0.04817 (11)0.0445 (6)
H70.61560.06020.03700.053*
C80.6222 (3)0.22836 (11)0.14802 (13)0.0503 (6)
C90.6865 (3)0.19241 (12)0.19974 (14)0.0628 (7)
H90.67950.15130.19610.075*
C100.7609 (4)0.21805 (15)0.25663 (15)0.0741 (8)
H100.80630.19390.29070.089*
C110.7691 (4)0.27915 (16)0.26378 (16)0.0756 (9)
C120.7046 (4)0.31338 (14)0.21193 (19)0.0830 (10)
H120.70970.35450.21620.100*
C130.6321 (3)0.28965 (12)0.15350 (16)0.0669 (8)
H130.59110.31410.11870.080*
C140.8448 (5)0.3061 (2)0.32849 (19)0.1179 (15)
H14A0.88180.27500.35860.177*
H14B0.76450.32980.35210.177*
H14C0.93580.33070.31560.177*
C151.2392 (3)0.01960 (14)0.12649 (15)0.0755 (9)
H15A1.31110.00810.10290.091*
H15B1.27670.05970.11720.091*
C16A1.2386 (8)0.0080 (6)0.2012 (2)0.0902 (19)0.579 (7)
H16A1.17390.03340.22760.108*0.579 (7)
C17A1.3154 (12)0.0324 (4)0.2354 (5)0.120 (2)0.579 (7)
H17A1.38230.05930.21220.144*0.579 (7)
H17B1.30390.03480.28330.144*0.579 (7)
C16B1.2961 (13)0.0101 (9)0.1975 (3)0.0902 (19)0.421 (7)
H16B1.39790.02380.21190.108*0.421 (7)
C17B1.2008 (15)0.0178 (6)0.2393 (6)0.120 (2)0.421 (7)
H17C1.09940.03120.22410.144*0.421 (7)
H17D1.23330.02460.28490.144*0.421 (7)
N11.0722 (2)0.01207 (10)0.10293 (11)0.0576 (6)
N20.9665 (3)0.05905 (9)0.10217 (11)0.0593 (6)
N30.6711 (2)0.17352 (9)0.02206 (10)0.0510 (5)
H3N0.71400.20270.00590.061*
O10.4373 (2)0.24036 (8)0.03876 (10)0.0743 (6)
O20.44423 (19)0.14312 (8)0.09892 (10)0.0613 (5)
S10.52632 (7)0.19552 (3)0.07563 (3)0.0508 (2)
Cl10.65782 (9)0.08137 (3)0.07145 (5)0.0776 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (14)0.0511 (15)0.0591 (16)0.0037 (11)0.0066 (12)0.0015 (11)
C20.0360 (12)0.0497 (14)0.0424 (12)0.0002 (10)0.0015 (10)0.0025 (10)
C30.0361 (13)0.0595 (15)0.0486 (14)0.0021 (11)0.0009 (10)0.0027 (11)
C40.0324 (13)0.0728 (18)0.0659 (17)0.0071 (12)0.0022 (12)0.0017 (13)
C50.0449 (14)0.0543 (15)0.0605 (15)0.0097 (12)0.0030 (12)0.0020 (11)
C60.0380 (13)0.0514 (14)0.0437 (13)0.0018 (11)0.0008 (10)0.0035 (10)
C70.0326 (12)0.0537 (15)0.0471 (13)0.0013 (10)0.0013 (10)0.0012 (10)
C80.0372 (13)0.0534 (16)0.0603 (16)0.0031 (11)0.0080 (11)0.0041 (11)
C90.0652 (18)0.0606 (17)0.0625 (17)0.0024 (14)0.0008 (14)0.0087 (13)
C100.0681 (19)0.099 (2)0.0556 (17)0.0019 (18)0.0005 (15)0.0061 (16)
C110.0620 (18)0.102 (3)0.0632 (19)0.0170 (18)0.0130 (16)0.0167 (17)
C120.094 (2)0.064 (2)0.090 (2)0.0176 (18)0.006 (2)0.0170 (17)
C130.0691 (18)0.0497 (16)0.082 (2)0.0021 (14)0.0029 (16)0.0027 (13)
C140.113 (3)0.162 (4)0.078 (2)0.028 (3)0.007 (2)0.041 (2)
C150.0471 (15)0.094 (2)0.086 (2)0.0195 (15)0.0203 (15)0.0028 (16)
C16A0.051 (5)0.108 (3)0.112 (3)0.026 (6)0.053 (3)0.003 (3)
C17A0.125 (7)0.150 (6)0.085 (4)0.008 (6)0.019 (5)0.002 (4)
C16B0.051 (5)0.108 (3)0.112 (3)0.026 (6)0.053 (3)0.003 (3)
C17B0.125 (7)0.150 (6)0.085 (4)0.008 (6)0.019 (5)0.002 (4)
N10.0400 (11)0.0674 (15)0.0655 (14)0.0090 (11)0.0081 (10)0.0028 (11)
N20.0556 (13)0.0575 (13)0.0649 (14)0.0090 (12)0.0079 (11)0.0014 (10)
N30.0487 (12)0.0504 (12)0.0540 (12)0.0004 (9)0.0008 (10)0.0125 (9)
O10.0602 (12)0.0682 (12)0.0945 (14)0.0180 (10)0.0207 (11)0.0137 (10)
O20.0408 (9)0.0583 (11)0.0848 (12)0.0107 (8)0.0069 (9)0.0003 (9)
S10.0372 (3)0.0478 (4)0.0673 (4)0.0015 (3)0.0050 (3)0.0078 (3)
Cl10.0639 (5)0.0553 (4)0.1137 (7)0.0094 (3)0.0186 (4)0.0066 (4)
Geometric parameters (Å, º) top
C1—N21.318 (3)C12—H120.9300
C1—C21.410 (3)C13—H130.9300
C1—Cl11.721 (3)C14—H14A0.9600
C2—C71.398 (3)C14—H14B0.9600
C2—C31.407 (3)C14—H14C0.9600
C3—N11.371 (3)C15—N11.448 (3)
C3—C41.400 (3)C15—C16B1.461 (2)
C4—C51.359 (3)C15—C16A1.464 (2)
C4—H40.9300C15—H15A0.9700
C5—C61.407 (3)C15—H15B0.9700
C5—H50.9300C16A—C17A1.286 (2)
C6—C71.378 (3)C16A—H16A0.9300
C6—N31.441 (3)C17A—H17A0.9300
C7—H70.9300C17A—H17B0.9300
C8—C131.386 (3)C16B—C17B1.286 (2)
C8—C91.387 (3)C16B—H16B0.9300
C8—S11.763 (3)C17B—H17C0.9300
C9—C101.381 (4)C17B—H17D0.9300
C9—H90.9300N1—N21.366 (3)
C10—C111.384 (4)N3—S11.647 (2)
C10—H100.9300N3—H3N0.8060
C11—C121.368 (5)O1—S11.4329 (18)
C11—C141.519 (4)O2—S11.4291 (17)
C12—C131.380 (4)
N2—C1—C2113.4 (2)C11—C14—H14B109.5
N2—C1—Cl1120.0 (2)H14A—C14—H14B109.5
C2—C1—Cl1126.52 (19)C11—C14—H14C109.5
C7—C2—C3120.4 (2)H14A—C14—H14C109.5
C7—C2—C1136.1 (2)H14B—C14—H14C109.5
C3—C2—C1103.5 (2)N1—C15—C16B125.2 (5)
N1—C3—C4132.1 (2)N1—C15—C16A106.5 (3)
N1—C3—C2106.4 (2)C16B—C15—C16A18.8 (5)
C4—C3—C2121.5 (2)N1—C15—H15A110.4
C5—C4—C3116.9 (2)C16B—C15—H15A98.8
C5—C4—H4121.5C16A—C15—H15A110.4
C3—C4—H4121.5N1—C15—H15B110.4
C4—C5—C6122.5 (2)C16B—C15—H15B102.0
C4—C5—H5118.8C16A—C15—H15B110.4
C6—C5—H5118.8H15A—C15—H15B108.6
C7—C6—C5121.0 (2)C17A—C16A—C15128.9 (8)
C7—C6—N3119.3 (2)C17A—C16A—H16A115.5
C5—C6—N3119.7 (2)C15—C16A—H16A115.5
C6—C7—C2117.6 (2)C16A—C17A—H17A120.0
C6—C7—H7121.2C16A—C17A—H17B120.0
C2—C7—H7121.2H17A—C17A—H17B120.0
C13—C8—C9120.2 (3)C17B—C16B—C15117.8 (10)
C13—C8—S1120.3 (2)C17B—C16B—H16B121.1
C9—C8—S1119.5 (2)C15—C16B—H16B121.1
C10—C9—C8119.6 (3)C16B—C17B—H17C120.0
C10—C9—H9120.2C16B—C17B—H17D120.0
C8—C9—H9120.2H17C—C17B—H17D120.0
C9—C10—C11121.1 (3)N2—N1—C3111.97 (18)
C9—C10—H10119.5N2—N1—C15120.6 (2)
C11—C10—H10119.5C3—N1—C15127.2 (2)
C12—C11—C10117.9 (3)C1—N2—N1104.6 (2)
C12—C11—C14122.2 (3)C6—N3—S1118.87 (15)
C10—C11—C14119.9 (3)C6—N3—H3N115.8
C11—C12—C13123.0 (3)S1—N3—H3N108.1
C11—C12—H12118.5O2—S1—O1119.90 (11)
C13—C12—H12118.5O2—S1—N3106.65 (10)
C12—C13—C8118.2 (3)O1—S1—N3105.41 (11)
C12—C13—H13120.9O2—S1—C8107.81 (11)
C8—C13—H13120.9O1—S1—C8108.85 (12)
C11—C14—H14A109.5N3—S1—C8107.64 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.812.393.140 (3)155
C4—H4···O2ii0.932.443.364 (3)171
C5—H5···O1i0.932.583.282 (3)132
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.812.393.140 (3)155.1
C4—H4···O2ii0.932.443.364 (3)171.1
C5—H5···O1i0.932.583.282 (3)132.3
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1041-o1042
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds