organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (3,5-di­bromo-2-hy­droxyphenyl){1-[(naphthalen-1-yl)carbonyl]-1H-pyrazol-4-yl}methanone

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 , Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 14 August 2014; accepted 15 August 2014; online 20 August 2014)

In the title compound, C21H12Br2N2O3, a 1,4-diaroyl pyrazole derivative, the dihedral angles between the naphthalene ring system and the pyrazole ring, the pyrazole and benzene rings, and the naphthalene ring system and benzene ring are 50.0 (2), 51.1 (2) and 1.34 (16)°, respectively. The phenolic proton forms an intra­molecular O—H⋯O hydrogen bond with the adjacent carbonyl O atom. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming inversion dimers. The dimers are linked by C—H⋯Br hydrogen bonds, forming double stranded chains along [01-1]. The chains are linked by ππ inter­actions between the pyrazole rings and between the naphthalene and benzene rings [centroid–centroid distances = 3.592 (4) and 3.632 (4) Å, respectively].

1. Related literature

For the biological activity of related compounds, see: Khan et al. (2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.]); Tu et al. (2013[Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.]). For related structures, see: Ishikawa (2014[Ishikawa, Y. (2014). Acta Cryst. E70, o439.]); Ishikawa & Watanabe (2014a[Ishikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o472.],b[Ishikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o565.],c[Ishikawa, Y. & Watanabe, K. (2014c). Acta Cryst. E70, o784.],d[Ishikawa, Y. & Watanabe, K. (2014d). Acta Cryst. E70, o832.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H12Br2N2O3

  • Mr = 500.15

  • Triclinic, [P \overline 1]

  • a = 7.390 (5) Å

  • b = 8.919 (4) Å

  • c = 14.955 (9) Å

  • α = 74.61 (4)°

  • β = 76.71 (5)°

  • γ = 71.03 (4)°

  • V = 887.5 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.61 mm−1

  • T = 100 K

  • 0.40 × 0.18 × 0.08 mm

2.2. Data collection

  • Rigaku AFC7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.448, Tmax = 0.692

  • 5003 measured reflections

  • 4088 independent reflections

  • 3359 reflections with F2 > 2.0σ(F2)

  • Rint = 0.062

  • 3 standard reflections every 150 reflections intensity decay: −0.6%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.204

  • S = 1.07

  • 4088 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 2.15 e Å−3

  • Δρmin = −2.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H3⋯O2 0.84 1.85 2.565 (7) 142
C9—H4⋯O3i 0.95 2.30 3.227 (8) 165
C16—H9⋯Br2ii 0.95 2.88 3.613 (7) 135
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y-1, z-1.

Data collection: WinAFC (Rigaku, 1999[Rigaku (1999). WinAFC. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC; data reduction: WinAFC; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

Schiff base derivatives of 3-formyl­chromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan et al. 2009; Tu et al. 2013). We have recently reported the crystal structures of such compounds (Ishikawa & Watanabe, 2014a,b,c,d), which were prepared from condensation reaction of 3-formyl­chromones with aryl­hydrazides.

The reaction of 6,8-di­bromo-3-formyl­chromone (Ishikawa, 2014) with 1-naphtho­ylhydrazide in ethanol gave white solids, and orange crystals were obtained from an aceto­nitrile/ethanol solution of the white solids (Fig. 1). The crystallographic analysis revealed that the structure of the orange crystals is a 1,4-diaroyl pyrazole, as shown in Fig. 2, which should be thermodynamically more stable than that of the white solids. The dihedral angles between the naphthalene and pyrazole rings, the pyrazole and benzene rings and the naphthalene and benzene rings are 50.0 (2), 51.1 (2) and 1.34 (16)°, respectively. The phenolic proton forms an intra­molecular O—H···O hydrogen bond with the adjacent carbonyl O2 atom. In the crystal, the molecules are linked through stacking inter­actions between the pyrazole rings and the naphthalene and benzene rings [centroid–centroid distances = 3.553 (4) and 3.632 (4) Å, respectively, i: –x + 2, –y, –z + 1], and are further connected through inter­molecular C–H···O hydrogen bonds, as shown in Fig. 3. A significant short contact around the bromine atoms is not observed.

The driving force of the intra­molecular cyclization (Fig. 1) should be a resonance energy gain, resulting from the extension of the conjugated system across the entire molecule. The intra­molecular cyclization is not observed for the chromone derivatives with electron-donating substituents (Ishikawa & Watanabe, 2014a,b,c,d), and thus the activation energy for the chromone derivative with the electron-withdrawing substituents should be lower than that for ones with electron-donating substituents.

Synthesis and crystallization top

Preparation of the white precursor, (E)-N'-((6,8-di­bromo-4-oxo-4H-chromen-3-yl)methyl­ene)-1-naphtho­hydrazide, is as follows: 1-naphtho­hydrazide (1.1 mmol) and 6,8-di­bromo-3-formyl­chromone (1.1 mmol) were dissolved in 50 ml of ethanol, and the mixture was refluxed with Dean-Stark apparatus for 15 min with stirring. After cooling, the white precipitates were collected, washed with n-hexane and dried in vacuo (yield 25%). 1H NMR (400 MHz, DMSO-d6): δ = 7.60–7.64 (m, 4H), 7.77 (d, 1H, J = 6.8 Hz), 8.02–8.05 (m, 1H), 8.11 (d, 1H, J = 8.3 Hz), 8.17 (d, 1H, J = 2.4 Hz), 8.21–8.23 (m, 1H), 8.45 (d, 1H, J = 1.9 Hz), 8.47 (s, 1H), 12.16 (s, 1H). DART-MS (negative mode) calcd for [C21H12Br2N2O3]: 499.919, found 498.920. The orange crystals suitable for X-ray diffraction were obtained by slow evaporation of an aceto­nitrile/ethanol solution of the white precursor at room temperature.

Refinement top

The O- and C(sp2)-bound hydrogen atoms were placed in their geometric positions [O—H = 0.84 Å and C—H 0.95 Å, Uiso(H) = 1.2Ueq(O,C)], and refined using a riding model. Three reflections, i.e. (4 6 7), (4 6 3) and (4 6 5) were omitted owing to poor agreement. The maximum and minimum residual electron density peaks of 2.15 and 2.52 eÅ-3, respectively, were located 0.88 and 1.05 Å from the Br1 and Br2 atoms, respectively.

Related literature top

For the biological activity of related compounds, see: Khan et al. (2009); Tu et al. (2013). For related structures, see: Ishikawa (2014); Ishikawa & Watanabe (2014a,b,c,d).

Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC (Rigaku, 1999); data reduction: WinAFC (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Reaction scheme for the title compound.
[Figure 2] Fig. 2. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A crystal packing view of the title compound. Intramolecular O—H···O and intermolecular C–H···O hydrogen bonds are represented by dashed lines.
(3,5-Dibromo-2-hydroxyphenyl){1-[(naphthalen-1-yl)carbonyl]-1H-pyrazol-4-yl}methanone top
Crystal data top
C21H12Br2N2O3Z = 2
Mr = 500.15F(000) = 492.00
Triclinic, P1Dx = 1.871 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.390 (5) ÅCell parameters from 25 reflections
b = 8.919 (4) Åθ = 15.1–17.5°
c = 14.955 (9) ŵ = 4.61 mm1
α = 74.61 (4)°T = 100 K
β = 76.71 (5)°Plate, orange
γ = 71.03 (4)°0.40 × 0.18 × 0.08 mm
V = 887.5 (9) Å3
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.062
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 59
Tmin = 0.448, Tmax = 0.692k = 1011
5003 measured reflectionsl = 1819
4088 independent reflections3 standard reflections every 150 reflections
3359 reflections with F2 > 2.0σ(F2) intensity decay: 0.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1444P)2 + 3.2256P]
where P = (Fo2 + 2Fc2)/3
4088 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 2.15 e Å3
0 restraintsΔρmin = 2.52 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H12Br2N2O3γ = 71.03 (4)°
Mr = 500.15V = 887.5 (9) Å3
Triclinic, P1Z = 2
a = 7.390 (5) ÅMo Kα radiation
b = 8.919 (4) ŵ = 4.61 mm1
c = 14.955 (9) ÅT = 100 K
α = 74.61 (4)°0.40 × 0.18 × 0.08 mm
β = 76.71 (5)°
Data collection top
Rigaku AFC7R
diffractometer
3359 reflections with F2 > 2.0σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.062
Tmin = 0.448, Tmax = 0.6923 standard reflections every 150 reflections
5003 measured reflections intensity decay: 0.6%
4088 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.07Δρmax = 2.15 e Å3
4088 reflectionsΔρmin = 2.52 e Å3
254 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.50138 (8)0.13169 (6)0.83532 (4)0.0176 (2)
Br20.31452 (8)0.48290 (7)0.92499 (4)0.0201 (2)
O10.4963 (6)0.5714 (5)0.7244 (4)0.0187 (9)
O20.7063 (7)0.5130 (5)0.5684 (3)0.0202 (9)
O30.6724 (7)0.0505 (6)0.4014 (4)0.0240 (10)
N10.9928 (7)0.1676 (6)0.3998 (4)0.0160 (10)
N20.8285 (7)0.1192 (6)0.4157 (4)0.0139 (9)
C10.5910 (8)0.3094 (6)0.6818 (4)0.0127 (10)
C20.5037 (8)0.4138 (7)0.7463 (5)0.0145 (11)
C30.4201 (8)0.3493 (7)0.8375 (4)0.0139 (11)
C40.4218 (8)0.1885 (7)0.8626 (4)0.0146 (11)
C50.5058 (8)0.0873 (7)0.7989 (5)0.0142 (11)
C60.5922 (8)0.1444 (7)0.7097 (4)0.0132 (10)
C70.6900 (8)0.3729 (7)0.5888 (4)0.0139 (10)
C80.7757 (8)0.2698 (7)0.5188 (4)0.0134 (10)
C90.6977 (8)0.1766 (7)0.4881 (4)0.0147 (11)
C100.9595 (8)0.2605 (7)0.4605 (5)0.0160 (11)
C110.7991 (8)0.0156 (7)0.3655 (4)0.0152 (11)
C120.9184 (8)0.0025 (7)0.2726 (4)0.0132 (10)
C130.9601 (8)0.1394 (7)0.2138 (5)0.0157 (11)
C141.0545 (8)0.1378 (7)0.1201 (5)0.0165 (11)
C151.1092 (8)0.0030 (7)0.0873 (4)0.0135 (10)
C161.1317 (8)0.2919 (8)0.1108 (5)0.0186 (12)
C171.0949 (9)0.4298 (7)0.1657 (5)0.0187 (12)
C180.9958 (9)0.4307 (7)0.2580 (5)0.0202 (12)
C190.9346 (8)0.2926 (7)0.2944 (5)0.0161 (11)
C201.0704 (8)0.1464 (7)0.1456 (4)0.0130 (10)
C210.9702 (8)0.1460 (7)0.2399 (4)0.0135 (10)
H10.36500.14660.92410.0175*
H20.65210.07330.66720.0158*
H30.57690.58900.67600.0225*
H40.57560.15580.51250.0176*
H51.04740.31480.46490.0192*
H60.92500.23640.23670.0189*
H71.07970.23360.08010.0198*
H81.17390.00430.02470.0162*
H91.19880.29240.04850.0223*
H101.13630.52610.14180.0224*
H110.97070.52790.29580.0243*
H120.86760.29590.35700.0193*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0169 (4)0.0074 (3)0.0300 (4)0.0043 (2)0.0080 (3)0.0017 (3)
Br20.0234 (4)0.0131 (4)0.0230 (4)0.0001 (3)0.0030 (3)0.0092 (3)
O10.022 (2)0.0063 (18)0.031 (3)0.0053 (15)0.0045 (17)0.0060 (16)
O20.025 (3)0.0088 (19)0.027 (3)0.0068 (16)0.0039 (18)0.0027 (17)
O30.020 (2)0.030 (3)0.029 (3)0.0151 (19)0.0060 (18)0.016 (2)
N10.013 (3)0.016 (3)0.022 (3)0.0056 (18)0.0070 (18)0.0047 (19)
N20.012 (2)0.013 (3)0.019 (3)0.0031 (17)0.0018 (18)0.0072 (18)
C10.010 (3)0.007 (3)0.023 (3)0.0008 (18)0.007 (2)0.006 (2)
C20.013 (3)0.007 (3)0.028 (3)0.0048 (19)0.008 (2)0.004 (2)
C30.010 (3)0.011 (3)0.023 (3)0.0010 (19)0.004 (2)0.010 (2)
C40.010 (3)0.012 (3)0.022 (3)0.000 (2)0.003 (2)0.008 (2)
C50.013 (3)0.006 (3)0.025 (3)0.0006 (18)0.011 (2)0.002 (2)
C60.012 (3)0.007 (3)0.021 (3)0.0001 (18)0.007 (2)0.004 (2)
C70.013 (3)0.010 (3)0.018 (3)0.0016 (19)0.004 (2)0.004 (2)
C80.015 (3)0.010 (3)0.016 (3)0.0046 (19)0.004 (2)0.002 (2)
C90.017 (3)0.010 (3)0.019 (3)0.005 (2)0.004 (2)0.005 (2)
C100.017 (3)0.009 (3)0.023 (3)0.007 (2)0.006 (3)0.000 (2)
C110.014 (3)0.015 (3)0.019 (3)0.003 (2)0.002 (2)0.009 (2)
C120.009 (3)0.015 (3)0.019 (3)0.0044 (19)0.0037 (19)0.005 (2)
C130.012 (3)0.008 (3)0.032 (4)0.0010 (19)0.012 (3)0.006 (3)
C140.016 (3)0.011 (3)0.023 (3)0.003 (2)0.009 (3)0.001 (2)
C150.010 (3)0.015 (3)0.017 (3)0.007 (2)0.0023 (19)0.002 (2)
C160.014 (3)0.017 (3)0.025 (3)0.003 (2)0.005 (3)0.014 (3)
C170.019 (3)0.009 (3)0.031 (4)0.001 (2)0.012 (3)0.008 (3)
C180.025 (3)0.011 (3)0.030 (4)0.008 (3)0.014 (3)0.001 (3)
C190.017 (3)0.013 (3)0.020 (3)0.005 (2)0.008 (2)0.001 (2)
C200.011 (3)0.011 (3)0.018 (3)0.0032 (19)0.004 (2)0.004 (2)
C210.012 (3)0.011 (3)0.021 (3)0.0029 (19)0.008 (2)0.005 (2)
Geometric parameters (Å, º) top
Br1—C51.893 (6)C13—C141.417 (9)
Br2—C31.870 (7)C14—C151.373 (9)
O1—C21.341 (7)C15—C201.417 (8)
O2—C71.243 (8)C16—C171.356 (9)
O3—C111.213 (8)C16—C201.425 (10)
N1—N21.368 (8)C17—C181.404 (9)
N1—C101.317 (9)C18—C191.378 (10)
N2—C91.364 (7)C19—C211.416 (8)
N2—C111.427 (10)C20—C211.434 (8)
C1—C21.419 (9)O1—H30.840
C1—C61.417 (8)C4—H10.950
C1—C71.475 (8)C6—H20.950
C2—C31.415 (8)C9—H40.950
C3—C41.379 (8)C10—H50.950
C4—C51.389 (9)C13—H60.950
C5—C61.380 (8)C14—H70.950
C7—C81.473 (9)C15—H80.950
C8—C91.367 (11)C16—H90.950
C8—C101.426 (8)C17—H100.950
C11—C121.476 (8)C18—H110.950
C12—C131.382 (8)C19—H120.950
C12—C211.438 (9)
Br2···O13.001 (5)H11···H122.3146
O1···O22.565 (7)Br1···H7iii3.3724
O1···C72.867 (8)Br1···H8viii3.4550
O2···C22.807 (7)Br1···H10ix3.3397
O2···C93.538 (9)Br2···H6v3.3350
O2···C102.996 (8)Br2···H7viii3.3550
O3···N13.512 (9)Br2···H7v3.1777
O3···C92.751 (10)Br2···H9x2.8779
O3···C133.512 (8)Br2···H9iii3.5074
O3···C192.944 (8)Br2···H10x3.1965
O3···C212.972 (7)Br2···H10ii3.5687
N1···C122.930 (10)O1···H6v3.0327
N1···C132.928 (10)O1···H10iii3.5909
N2···C132.926 (8)O2···H4v3.1289
C1···C42.795 (8)O2···H5vi2.6299
C1···C93.252 (9)O2···H11iii3.5241
C2···C52.803 (8)O2···H12iv3.3240
C3···C62.800 (9)O2···H12iii3.3782
C6···C82.958 (8)O3···H2ii2.8993
C6···C93.181 (9)O3···H4ii2.3008
C8···C113.570 (10)O3···H5iii3.1732
C10···C113.507 (11)N1···H2iii2.9620
C11···C192.994 (9)N1···H11iv2.7216
C12···C152.810 (8)N2···H3v3.5425
C13···C202.802 (9)N2···H11iv3.5371
C14···C212.848 (8)C2···H11ii3.4752
C16···C192.797 (9)C3···H9iii3.4520
C17···C212.827 (10)C3···H11ii3.5806
C18···C202.789 (9)C4···H8viii3.1593
Br1···O1i3.492 (6)C4···H8iii3.4809
Br1···C12ii3.542 (7)C6···H12ii3.4958
Br1···C14iii3.477 (7)C7···H12iii3.3582
O1···Br1iv3.492 (6)C8···H11iv3.5695
O1···N2v3.564 (7)C9···H3v3.3636
O1···C17iii3.481 (9)C10···H11iv2.6785
O1···C18iii3.598 (8)C10···H12iii3.3923
O2···C9v3.440 (7)C11···H4ii3.5045
O2···C10vi3.558 (9)C11···H5iii3.4029
O2···C18iii3.563 (10)C12···H2iii3.3072
O2···C19iii3.476 (8)C13···H2iii3.4633
O3···O3ii3.530 (7)C13···H10iv3.4537
O3···C6ii3.253 (10)C13···H11iv3.5269
O3···C9ii3.227 (8)C14···H1xi3.2807
O3···C10iii3.520 (8)C14···H9vii3.2254
N1···N2iii3.411 (7)C14···H10iv3.3528
N1···C9iii3.455 (7)C15···H1xi3.0172
N2···O1v3.564 (7)C15···H8vii2.9417
N2···N1iii3.411 (7)C15···H9vii3.4108
N2···C10iii3.451 (7)C16···H1ii3.5849
C1···C19iii3.556 (9)C16···H7vii3.4040
C1···C21iii3.432 (8)C16···H8vii3.4014
C2···C16iii3.539 (10)C17···H3iii3.4810
C2···C17iii3.566 (11)C17···H6i3.4220
C3···C16iii3.421 (9)C18···H3iii3.2763
C3···C18ii3.468 (10)C18···H5i3.3353
C4···C15iii3.481 (8)C18···H6i3.2839
C5···C14iii3.513 (8)C19···H5iii3.5826
C5···C15iii3.422 (9)C20···H8vii3.2058
C5···C19ii3.570 (9)H1···C14viii3.2807
C5···C21ii3.544 (9)H1···C15viii3.0172
C6···O3ii3.253 (10)H1···C16ii3.5849
C6···C12iii3.470 (8)H1···H1xii3.3932
C6···C21iii3.491 (10)H1···H7viii2.8501
C7···C19iii3.395 (10)H1···H8viii2.2922
C9···O2v3.440 (7)H1···H8iii3.4174
C9···O3ii3.227 (8)H2···O3ii2.8993
C9···N1iii3.455 (7)H2···N1iii2.9620
C10···O2vi3.558 (9)H2···C12iii3.3072
C10···O3iii3.520 (8)H2···C13iii3.4633
C10···N2iii3.451 (7)H3···N2v3.5425
C10···C11iii3.448 (8)H3···C9v3.3636
C10···C18iv3.537 (8)H3···C17iii3.4810
C11···C10iii3.448 (8)H3···C18iii3.2763
C12···Br1ii3.542 (7)H3···H4v3.2835
C12···C6iii3.470 (8)H3···H5vi3.2838
C14···Br1iii3.477 (7)H3···H11iii3.3159
C14···C5iii3.513 (8)H4···O2v3.1289
C15···C4iii3.481 (8)H4···O3ii2.3008
C15···C5iii3.422 (9)H4···C11ii3.5045
C15···C15vii3.352 (10)H4···H3v3.2835
C16···C2iii3.539 (10)H4···H4ii3.4472
C16···C3iii3.421 (9)H4···H12ii3.4341
C17···O1iii3.481 (9)H5···O2vi2.6299
C17···C2iii3.566 (11)H5···O3iii3.1732
C18···O1iii3.598 (8)H5···C11iii3.4029
C18···O2iii3.563 (10)H5···C18iv3.3353
C18···C3ii3.468 (10)H5···C19iii3.5826
C18···C10i3.537 (8)H5···H3vi3.2838
C19···O2iii3.476 (8)H5···H5vi3.5363
C19···C1iii3.556 (9)H5···H11iv2.6349
C19···C5ii3.570 (9)H5···H12iv3.3818
C19···C7iii3.395 (10)H5···H12iii2.8249
C21···C1iii3.432 (8)H6···Br2v3.3350
C21···C5ii3.544 (9)H6···O1v3.0327
C21···C6iii3.491 (10)H6···C17iv3.4220
Br1···H12.9064H6···C18iv3.2839
Br1···H22.9157H6···H10iv2.9117
Br2···H12.9029H6···H11iv2.6271
O2···H31.8478H7···Br1iii3.3724
O2···H52.9382H7···Br2xi3.3550
O3···H42.6228H7···Br2v3.1777
O3···H122.3649H7···C16vii3.4040
N1···H43.1758H7···H1xi2.8501
N1···H62.4781H7···H9vii2.9645
N2···H53.0438H7···H10iv2.7262
N2···H62.6233H8···Br1xi3.4550
C1···H32.4414H8···C4xi3.1593
C1···H43.2200H8···C4iii3.4809
C2···H13.2819H8···C15vii2.9417
C2···H23.3118H8···C16vii3.4014
C3···H33.0549H8···C20vii3.2058
C4···H23.2658H8···H1xi2.2922
C6···H13.2617H8···H1iii3.4174
C6···H42.9521H8···H8vii2.8061
C7···H22.6957H8···H9vii3.3014
C7···H32.4287H9···Br2xiii2.8779
C7···H42.9062H9···Br2iii3.5074
C7···H52.8364H9···C3iii3.4520
C8···H22.6214H9···C14vii3.2254
C9···H22.5715H9···C15vii3.4108
C9···H53.1225H9···H7vii2.9645
C10···H43.1375H9···H8vii3.3014
C10···H63.4812H10···Br1ix3.3397
C11···H42.7515H10···Br2xiii3.1965
C11···H62.6092H10···Br2ii3.5687
C11···H122.6897H10···O1iii3.5909
C12···H73.2902H10···C13i3.4537
C12···H122.7322H10···C14i3.3528
C13···H83.2701H10···H6i2.9117
C15···H63.2629H10···H7i2.7262
C15···H92.6357H11···O2iii3.5241
C16···H82.6301H11···N1i2.7216
C16···H113.2439H11···N2i3.5371
C17···H123.2752H11···C2ii3.4752
C18···H93.2522H11···C3ii3.5806
C19···H103.2731H11···C8i3.5695
C20···H73.2871H11···C10i2.6785
C20···H103.2758H11···C13i3.5269
C20···H123.3011H11···H3iii3.3159
C21···H63.3053H11···H5i2.6349
C21···H83.3269H11···H6i2.6271
C21···H93.3286H12···O2i3.3240
C21···H113.2836H12···O2iii3.3782
H2···H42.3745H12···C6ii3.4958
H6···H72.3618H12···C7iii3.3582
H7···H82.3192H12···C10iii3.3923
H8···H92.4494H12···H4ii3.4341
H9···H102.3002H12···H5i3.3818
H10···H112.3456H12···H5iii2.8249
N2—N1—C10104.6 (5)C14—C15—C20121.0 (5)
N1—N2—C9111.9 (6)C17—C16—C20120.6 (6)
N1—N2—C11124.5 (5)C16—C17—C18120.2 (6)
C9—N2—C11123.5 (6)C17—C18—C19121.0 (6)
C2—C1—C6119.7 (5)C18—C19—C21120.8 (6)
C2—C1—C7118.9 (5)C15—C20—C16120.0 (5)
C6—C1—C7121.2 (5)C15—C20—C21120.3 (6)
O1—C2—C1122.9 (5)C16—C20—C21119.7 (5)
O1—C2—C3118.5 (6)C12—C21—C19125.0 (5)
C1—C2—C3118.6 (5)C12—C21—C20117.3 (5)
Br2—C3—C2119.1 (5)C19—C21—C20117.7 (6)
Br2—C3—C4120.3 (5)C2—O1—H3109.471
C2—C3—C4120.5 (6)C3—C4—H1119.719
C3—C4—C5120.6 (5)C5—C4—H1119.718
Br1—C5—C4119.3 (4)C1—C6—H2120.184
Br1—C5—C6119.8 (5)C5—C6—H2120.182
C4—C5—C6120.9 (6)N2—C9—H4126.528
C1—C6—C5119.6 (6)C8—C9—H4126.542
O2—C7—C1121.0 (6)N1—C10—H5124.031
O2—C7—C8118.7 (5)C8—C10—H5124.022
C1—C7—C8120.4 (5)C12—C13—H6119.423
C7—C8—C9130.1 (5)C14—C13—H6119.416
C7—C8—C10125.1 (7)C13—C14—H7120.217
C9—C8—C10104.6 (6)C15—C14—H7120.214
N2—C9—C8106.9 (6)C14—C15—H8119.513
N1—C10—C8111.9 (6)C20—C15—H8119.515
O3—C11—N2117.1 (6)C17—C16—H9119.699
O3—C11—C12125.0 (7)C20—C16—H9119.707
N2—C11—C12117.8 (6)C16—C17—H10119.889
C11—C12—C13119.0 (6)C18—C17—H10119.880
C11—C12—C21120.0 (5)C17—C18—H11119.506
C13—C12—C21120.6 (5)C19—C18—H11119.498
C12—C13—C14121.2 (6)C18—C19—H12119.584
C13—C14—C15119.6 (6)C21—C19—H12119.586
H3—O1—C2—C117.0C9—C8—C10—H5179.2
H3—O1—C2—C3163.3C10—C8—C9—N20.7 (5)
N2—N1—C10—C81.9 (6)C10—C8—C9—H4179.3
N2—N1—C10—H5178.1O3—C11—C12—C13139.0 (6)
C10—N1—N2—C92.4 (5)O3—C11—C12—C2133.7 (8)
C10—N1—N2—C11179.9 (4)N2—C11—C12—C1338.1 (7)
N1—N2—C9—C81.9 (6)N2—C11—C12—C21149.2 (5)
N1—N2—C9—H4178.1C11—C12—C13—C14172.6 (5)
N1—N2—C11—O3161.6 (5)C11—C12—C13—H67.4
N1—N2—C11—C1221.1 (7)C11—C12—C21—C197.7 (9)
C9—N2—C11—O315.7 (7)C11—C12—C21—C20174.2 (5)
C9—N2—C11—C12161.7 (4)C13—C12—C21—C19179.8 (5)
C11—N2—C9—C8179.5 (4)C13—C12—C21—C201.7 (8)
C11—N2—C9—H40.5C21—C12—C13—C140.1 (9)
C2—C1—C6—C51.0 (9)C21—C12—C13—H6179.9
C2—C1—C6—H2179.0C12—C13—C14—C151.4 (9)
C6—C1—C2—O1179.6 (5)C12—C13—C14—H7178.6
C6—C1—C2—C30.1 (9)H6—C13—C14—C15178.6
C2—C1—C7—O23.7 (9)H6—C13—C14—H71.4
C2—C1—C7—C8177.7 (5)C13—C14—C15—C200.8 (9)
C7—C1—C2—O14.4 (9)C13—C14—C15—H8179.2
C7—C1—C2—C3175.9 (5)H7—C14—C15—C20179.2
C6—C1—C7—O2172.3 (5)H7—C14—C15—H80.8
C6—C1—C7—C86.4 (9)C14—C15—C20—C16178.9 (5)
C7—C1—C6—C5176.9 (5)C14—C15—C20—C211.0 (9)
C7—C1—C6—H23.1H8—C15—C20—C161.1
O1—C2—C3—Br23.0 (8)H8—C15—C20—C21179.0
O1—C2—C3—C4179.0 (5)C17—C16—C20—C15179.8 (6)
C1—C2—C3—Br2177.3 (5)C17—C16—C20—C210.4 (9)
C1—C2—C3—C40.7 (9)C20—C16—C17—C180.0 (10)
Br2—C3—C4—C5177.8 (4)C20—C16—C17—H10180.0
Br2—C3—C4—H12.2H9—C16—C17—C18180.0
C2—C3—C4—C50.1 (9)H9—C16—C17—H100.0
C2—C3—C4—H1179.9H9—C16—C20—C150.2
C3—C4—C5—Br1178.9 (5)H9—C16—C20—C21179.6
C3—C4—C5—C61.1 (9)C16—C17—C18—C190.1 (10)
H1—C4—C5—Br11.1C16—C17—C18—H11179.9
H1—C4—C5—C6178.9H10—C17—C18—C19179.9
Br1—C5—C6—C1178.4 (4)H10—C17—C18—H110.1
Br1—C5—C6—H21.6C17—C18—C19—C210.1 (10)
C4—C5—C6—C11.6 (9)C17—C18—C19—H12179.9
C4—C5—C6—H2178.4H11—C18—C19—C21179.9
O2—C7—C8—C9132.1 (6)H11—C18—C19—H120.1
O2—C7—C8—C1041.0 (8)C18—C19—C21—C12177.6 (6)
C1—C7—C8—C949.2 (8)C18—C19—C21—C200.5 (9)
C1—C7—C8—C10137.7 (5)H12—C19—C21—C122.4
C7—C8—C9—N2173.5 (5)H12—C19—C21—C20179.5
C7—C8—C9—H46.5C15—C20—C21—C122.2 (8)
C7—C8—C10—N1175.3 (5)C15—C20—C21—C19179.6 (5)
C7—C8—C10—H54.7C16—C20—C21—C12177.6 (5)
C9—C8—C10—N10.8 (6)C16—C20—C21—C190.6 (8)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x+2, y, z; (viii) x1, y, z+1; (ix) x+2, y1, z+1; (x) x1, y+1, z+1; (xi) x+1, y, z1; (xii) x+1, y, z+2; (xiii) x+1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O20.841.852.565 (7)142
C9—H4···O3ii0.952.303.227 (8)165
C16—H9···Br2xiii0.952.883.613 (7)135
Symmetry codes: (ii) x+1, y, z+1; (xiii) x+1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O20.841.8482.565 (7)142
C9—H4···O3i0.952.3013.227 (8)165
C16—H9···Br2ii0.952.883.613 (7)135
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z1.
 

Acknowledgements

We acknowledge the University of Shizuoka for instrumental support and Professor Kei Manabe (University of Shizuoka) for helpful discussions.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationIshikawa, Y. (2014). Acta Cryst. E70, o439.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o472.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o565.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014c). Acta Cryst. E70, o784.  CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014d). Acta Cryst. E70, o832.  CSD CrossRef IUCr Journals Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826–2831.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds