metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m305-m306

Crystal structure of tetra­guanidinium [hexa­hydrogen hexa­arsenato(V)tetra­vanadate(V)] tetra­hydrate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 April 2014; accepted 16 May 2014; online 1 August 2014)

The complete polyoxidometallate anion in the title compound, (CH6N3)4[H6V4As6O30]·4H2O, is generated by crystallographic inversion symmetry. The polyhedral building units are distorted VO6 octa­hedra and AsO3OH tetra­hedra. The VO6 units feature a short formal V=O double bond and are linked by a common edge. Two such V2O6 double octahedral units are linked by four isolated AsO3OH tetra­hedra to complete the anion, which features two inter­nal O—H⋯O hydrogen bonds. In the crystal, O—H⋯O hydrogen bonds between the polyoxidometallate anions generate (01-1) sheets. The sheets are connected by cation-to-cluster N—H⋯O hydrogen bonds, and cation-to-water N—H⋯O links also occur. The O atom of one of the water mol­ecules is disordered over two sites in a 0.703 (17):0.297 (17) ratio.

1. Related literature

For crystal structures containing the same type of anion accompanied by different counter-cations, see: Durif & Averbuch-Pouchot (1979[Durif, A. & Averbuch-Pouchot, M. T. (1979). Acta Cryst. B35, 1441-1444.]); Nenoff et al. (1994[Nenoff, T. M., Stucky, G. D. & Harrison, W. T. A. (1994). Z. Kristallogr. 209, 892-898.]); Bremner & Harrison (2002[Bremner, C. A. & Harrison, W. T. A. (2002). Acta Cryst. E58, m254-m256.]). The site symmetries of these anions include [\overline{1}] (as seen for the title compound) as well as 2/m and mmm.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (CH6N3)4[H6V4As6O30]·4H2O

  • Mr = 1447.71

  • Triclinic, [P \overline 1]

  • a = 10.0403 (5) Å

  • b = 11.0199 (6) Å

  • c = 11.9806 (6) Å

  • α = 114.892 (1)°

  • β = 94.696 (1)°

  • γ = 111.751 (1)°

  • V = 1071.39 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.56 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.287, Tmax = 0.403

  • 8711 measured reflections

  • 4909 independent reflections

  • 3655 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 0.99

  • 4909 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 1.79 e Å−3

  • Δρmin = −1.25 e Å−3

Table 1
Selected bond lengths (Å)

V1—O1 1.591 (4)
V1—O2 1.723 (4)
V1—O5 1.963 (4)
V1—O4 1.992 (4)
V1—O6 2.029 (4)
V1—O3 2.376 (4)
V2—O8 1.603 (5)
V2—O2 1.934 (4)
V2—O9 2.006 (4)
V2—O7 2.015 (4)
V2—O10 2.027 (4)
V2—O3 2.260 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O4i 0.98 1.72 2.678 (5) 165
O14—H14⋯O13ii 0.96 1.66 2.579 (6) 158
O15—H15⋯O13iii 0.96 1.67 2.619 (6) 170
N1—H1B⋯O13iv 0.86 2.26 3.056 (8) 154
N1—H1A⋯O6iv 0.86 2.18 3.007 (7) 160
N2—H2A⋯O15v 0.86 2.20 3.042 (8) 167
N2—H2B⋯O11iv 0.86 2.44 3.210 (8) 150
N2—H2B⋯O1vi 0.86 2.47 3.040 (8) 125
N3—H3A⋯O9v 0.86 2.05 2.895 (7) 169
N3—H3B⋯O1W 0.86 2.20 2.984 (10) 152
N4—H4A⋯O12vi 0.86 2.30 3.089 (9) 152
N4—H4B⋯O10vii 0.86 2.48 3.230 (9) 146
N5—H5A⋯O2WAv 0.86 2.14 2.959 (13) 160
N5—H5B⋯O7vii 0.86 2.19 2.963 (8) 150
N6—H6B⋯O12vi 0.86 2.37 3.140 (9) 150
N6—H6B⋯O5vi 0.86 2.45 3.022 (7) 125
N6—H6A⋯O2WBv 0.86 2.01 2.78 (5) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) -x, -y+1, -z+1; (iv) x, y-1, z; (v) x+1, y, z; (vi) -x+1, -y, -z+1; (vii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and ATOMS (Dowty, 1999[Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Synthesis and crystallization top

0.91 g of V2O5 and 0.90 g of (CN3H6)2CO3 were added to 10 ml of a 0.1 M H3AsO4 solution and placed in a Teflon-lined hydro­thermal vessel, which was heated to 423 K for 24 hours. After cooling to room temperature over several hours, solids were recovered by vacuum filtration to yield a few orange blocks of the title compound accompanied by an unidentified brown powder.

Refinement top

The H atoms were located in different maps (O—H) or geometrically placed (N—H) and refined as riding atoms with Uiso(H) = 1.2Ueq(carrier). The water-molecule H atoms could not be located in the present experiment. One of the water molecule O atoms is disordered over two adjacent sites in a 0.703 (17):0.297 (17) ratio.

Related literature top

For crystal structures containing the same type of anion accompanied by different counter-cations, see: Durif & Averbuch-Pouchot (1979); Nenoff et al. (1994); Bremner & Harrison (2002). The site symmetries of these anions include 1 (as seen for the title compound) as well as 2/m and mmm.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the (V4As6O30H6)4- anion in the title compound showing 50% displacement ellipsoids. [Symmetry code: (i) –x, 1–y, 1–z.]
[Figure 2] Fig. 2. The packing of the title compound viewed down [100] with the anion shown in polyhedral representation (VO6 octahedra orange, AsO4 tetrahedra green). O—H···O hydrogen bonds within and between the anions are shown as yellow lines.
Tetraguanidinium [hexahydrogen hexaarsenato(V)tetravanadate(V)] tetrahydrate top
Crystal data top
(CH6N3)4[H6V4As6O30]·4H2OZ = 1
Mr = 1447.71F(000) = 704
Triclinic, P1Dx = 2.244 Mg m3
a = 10.0403 (5) ÅMo Kα radiation, λ = 0.70173 Å
b = 11.0199 (6) ÅCell parameters from 3266 reflections
c = 11.9806 (6) Åθ = 2.3–27.5°
α = 114.892 (1)°µ = 5.56 mm1
β = 94.696 (1)°T = 293 K
γ = 111.751 (1)°Block, orange
V = 1071.39 (10) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
4909 independent reflections
Radiation source: fine-focus sealed tube3655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1313
Tmin = 0.287, Tmax = 0.403k = 1412
8711 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.129H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0766P)2]
where P = (Fo2 + 2Fc2)/3
4909 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 1.79 e Å3
0 restraintsΔρmin = 1.25 e Å3
Crystal data top
(CH6N3)4[H6V4As6O30]·4H2Oγ = 111.751 (1)°
Mr = 1447.71V = 1071.39 (10) Å3
Triclinic, P1Z = 1
a = 10.0403 (5) ÅMo Kα radiation
b = 11.0199 (6) ŵ = 5.56 mm1
c = 11.9806 (6) ÅT = 293 K
α = 114.892 (1)°0.30 × 0.20 × 0.20 mm
β = 94.696 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4909 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3655 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.403Rint = 0.035
8711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.99Δρmax = 1.79 e Å3
4909 reflectionsΔρmin = 1.25 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.26837 (10)0.46285 (10)0.57607 (9)0.0176 (2)
V20.05032 (10)0.50770 (11)0.74922 (9)0.0193 (2)
As10.26156 (6)0.46227 (6)0.30244 (6)0.02044 (15)
As20.08161 (6)0.30204 (6)0.44111 (5)0.01626 (14)
As30.39072 (6)0.77706 (6)0.84192 (5)0.01955 (15)
O10.3661 (5)0.3738 (5)0.5506 (4)0.0282 (10)
O20.1882 (4)0.4284 (4)0.6880 (4)0.0192 (8)
O30.1265 (4)0.6002 (4)0.6171 (4)0.0194 (8)
O40.4243 (4)0.6617 (4)0.7138 (4)0.0202 (8)
O50.0880 (4)0.3108 (4)0.4329 (4)0.0198 (8)
O60.3215 (4)0.5543 (4)0.4605 (4)0.0211 (8)
O70.0827 (4)0.6107 (5)0.7760 (4)0.0254 (9)
O80.0098 (5)0.4435 (5)0.8461 (4)0.0328 (10)
O90.1059 (4)0.3374 (4)0.5863 (4)0.0216 (8)
O100.2301 (4)0.7032 (4)0.8748 (4)0.0253 (9)
O110.3741 (5)0.5860 (6)0.2582 (5)0.0389 (12)
O120.2976 (5)0.3108 (5)0.2403 (4)0.0299 (10)
H120.40430.33890.26430.036*
O130.4138 (4)0.9295 (4)0.8315 (4)0.0260 (9)
O140.5335 (5)0.8266 (5)0.9655 (4)0.0319 (10)
H140.55600.90491.05180.038*
O150.2016 (5)0.1152 (4)0.3450 (4)0.0290 (10)
H150.27100.10310.27660.035*
C10.6359 (8)0.0343 (7)0.5654 (7)0.0336 (15)
N10.5480 (7)0.1219 (6)0.6055 (6)0.0441 (16)
H1A0.50020.21690.55510.053*
H1B0.53890.08340.68180.053*
N20.6494 (8)0.0929 (7)0.4497 (7)0.0530 (19)
H2A0.70440.03630.42290.064*
H2B0.60330.18820.40010.064*
N30.7054 (8)0.1105 (7)0.6418 (7)0.0510 (18)
H3A0.76070.16800.61590.061*
H3B0.69590.14820.71800.061*
C20.9422 (9)0.0768 (8)0.8896 (7)0.0406 (17)
N40.8450 (8)0.0292 (9)0.9471 (8)0.069 (2)
H4A0.78540.06460.91310.082*
H4B0.84110.09191.01860.082*
N51.0309 (9)0.2208 (7)0.9432 (7)0.061 (2)
H5A1.09450.25400.90670.073*
H5B1.02540.28181.01470.073*
N60.9483 (9)0.0180 (8)0.7813 (7)0.064 (2)
H6A1.01120.01340.74350.076*
H6B0.88940.11200.74750.076*
O1W0.7341 (7)0.3408 (9)0.9023 (6)0.074 (2)
O2WA0.2417 (12)0.2587 (12)0.7880 (10)0.082 (4)*0.703 (17)
O2WB0.063 (5)0.108 (5)0.631 (5)0.18 (2)*0.297 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0164 (4)0.0168 (5)0.0200 (5)0.0099 (3)0.0038 (4)0.0073 (4)
V20.0180 (4)0.0218 (5)0.0200 (5)0.0095 (4)0.0055 (4)0.0113 (4)
As10.0179 (3)0.0225 (3)0.0212 (3)0.0109 (2)0.0055 (2)0.0093 (2)
As20.0159 (3)0.0134 (3)0.0203 (3)0.0069 (2)0.0036 (2)0.0089 (2)
As30.0180 (3)0.0178 (3)0.0190 (3)0.0090 (2)0.0025 (2)0.0055 (2)
O10.026 (2)0.029 (2)0.034 (2)0.0197 (18)0.0072 (18)0.0131 (19)
O20.0200 (18)0.0169 (19)0.022 (2)0.0090 (15)0.0038 (15)0.0109 (16)
O30.0208 (18)0.0184 (19)0.025 (2)0.0113 (15)0.0075 (16)0.0136 (17)
O40.0168 (18)0.0189 (19)0.0205 (19)0.0072 (15)0.0075 (15)0.0062 (16)
O50.0183 (18)0.0166 (19)0.022 (2)0.0088 (15)0.0058 (15)0.0067 (16)
O60.0197 (18)0.0189 (19)0.020 (2)0.0072 (15)0.0042 (15)0.0069 (16)
O70.0196 (19)0.027 (2)0.027 (2)0.0131 (16)0.0031 (17)0.0086 (18)
O80.032 (2)0.044 (3)0.033 (2)0.018 (2)0.013 (2)0.027 (2)
O90.0207 (19)0.023 (2)0.022 (2)0.0098 (16)0.0057 (16)0.0120 (17)
O100.022 (2)0.025 (2)0.024 (2)0.0098 (16)0.0073 (17)0.0076 (18)
O110.027 (2)0.046 (3)0.052 (3)0.010 (2)0.014 (2)0.035 (3)
O120.022 (2)0.026 (2)0.037 (2)0.0171 (17)0.0060 (18)0.0053 (19)
O130.027 (2)0.019 (2)0.027 (2)0.0086 (16)0.0018 (17)0.0084 (17)
O140.030 (2)0.031 (2)0.023 (2)0.0181 (19)0.0040 (18)0.0021 (19)
O150.029 (2)0.0147 (19)0.034 (2)0.0065 (16)0.0027 (18)0.0091 (18)
C10.039 (4)0.026 (3)0.049 (4)0.018 (3)0.018 (3)0.026 (3)
N10.059 (4)0.024 (3)0.050 (4)0.012 (3)0.024 (3)0.024 (3)
N20.082 (5)0.036 (4)0.052 (4)0.026 (3)0.042 (4)0.028 (3)
N30.066 (4)0.032 (3)0.049 (4)0.011 (3)0.027 (3)0.023 (3)
C20.048 (4)0.030 (4)0.037 (4)0.019 (3)0.007 (3)0.011 (3)
N40.057 (5)0.051 (5)0.078 (6)0.017 (4)0.028 (4)0.018 (4)
N50.090 (6)0.031 (4)0.045 (4)0.016 (4)0.032 (4)0.012 (3)
N60.096 (6)0.036 (4)0.050 (4)0.030 (4)0.031 (4)0.012 (3)
O1W0.062 (4)0.101 (5)0.049 (4)0.019 (4)0.003 (3)0.047 (4)
Geometric parameters (Å, º) top
V1—O11.591 (4)O3—As2i1.671 (4)
V1—O21.723 (4)O7—As1i1.665 (4)
V1—O51.963 (4)O12—H120.9769
V1—O41.992 (4)O14—H140.9637
V1—O62.029 (4)O15—H150.9600
V1—O32.376 (4)C1—N21.304 (9)
V2—O81.603 (5)C1—N31.309 (9)
V2—O21.934 (4)C1—N11.330 (8)
V2—O92.006 (4)N1—H1A0.8600
V2—O72.015 (4)N1—H1B0.8600
V2—O102.027 (4)N2—H2A0.8600
V2—O32.260 (4)N2—H2B0.8600
As1—O61.649 (4)N3—H3A0.8600
As1—O7i1.665 (4)N3—H3B0.8600
As1—O121.708 (4)C2—N61.304 (9)
As1—O111.726 (5)C2—N51.313 (9)
As2—O3i1.671 (4)C2—N41.318 (10)
As2—O91.675 (4)N4—H4A0.8600
As2—O51.683 (4)N4—H4B0.8600
As2—O151.719 (4)N5—H5A0.8600
As3—O131.669 (4)N5—H5B0.8600
As3—O101.679 (4)N6—H6A0.8600
As3—O41.687 (4)N6—H6B0.8600
As3—O141.714 (4)
O1—V1—O2102.7 (2)O13—As3—O4109.0 (2)
O1—V1—O599.0 (2)O10—As3—O4117.33 (19)
O2—V1—O593.43 (17)O13—As3—O14108.5 (2)
O1—V1—O498.6 (2)O10—As3—O14107.1 (2)
O2—V1—O490.70 (17)O4—As3—O14101.8 (2)
O5—V1—O4160.49 (18)V1—O2—V2119.8 (2)
O1—V1—O699.5 (2)As2i—O3—V2136.2 (2)
O2—V1—O6157.65 (18)As2i—O3—V1137.1 (2)
O5—V1—O684.99 (16)V2—O3—V186.10 (14)
O4—V1—O683.98 (16)As3—O4—V1124.0 (2)
O1—V1—O3178.9 (2)As2—O5—V1121.6 (2)
O2—V1—O377.34 (16)As1—O6—V1125.2 (2)
O5—V1—O382.06 (15)As1i—O7—V2127.5 (2)
O4—V1—O380.26 (15)As2—O9—V2122.6 (2)
O6—V1—O380.37 (15)As3—O10—V2124.8 (2)
O8—V2—O299.5 (2)As1—O12—H12112.3
O8—V2—O9100.3 (2)As3—O14—H14122.9
O2—V2—O987.28 (16)As2—O15—H15109.3
O8—V2—O796.9 (2)N2—C1—N3120.6 (6)
O2—V2—O7163.55 (18)N2—C1—N1119.8 (6)
O9—V2—O788.82 (16)N3—C1—N1119.5 (7)
O8—V2—O1097.8 (2)C1—N1—H1A120.0
O2—V2—O1087.81 (16)C1—N1—H1B120.0
O9—V2—O10161.83 (17)H1A—N1—H1B120.0
O7—V2—O1090.97 (17)C1—N2—H2A120.0
O8—V2—O3175.3 (2)C1—N2—H2B120.0
O2—V2—O376.60 (15)H2A—N2—H2B120.0
O9—V2—O382.29 (15)C1—N3—H3A120.0
O7—V2—O387.04 (16)C1—N3—H3B120.0
O10—V2—O379.55 (16)H3A—N3—H3B120.0
O6—As1—O7i122.0 (2)N6—C2—N5121.2 (8)
O6—As1—O12111.2 (2)N6—C2—N4120.1 (7)
O7i—As1—O12102.3 (2)N5—C2—N4118.7 (7)
O6—As1—O11103.8 (2)C2—N4—H4A120.0
O7i—As1—O11110.7 (2)C2—N4—H4B120.0
O12—As1—O11106.1 (2)H4A—N4—H4B120.0
O3i—As2—O9114.15 (19)C2—N5—H5A120.0
O3i—As2—O5112.86 (19)C2—N5—H5B120.0
O9—As2—O5112.62 (19)H5A—N5—H5B120.0
O3i—As2—O15108.9 (2)C2—N6—H6A120.0
O9—As2—O15103.6 (2)C2—N6—H6B120.0
O5—As2—O15103.63 (19)H6A—N6—H6B120.0
O13—As3—O10112.3 (2)
O1—V1—O2—V2178.0 (2)O3i—As2—O5—V192.3 (3)
O5—V1—O2—V277.9 (2)O9—As2—O5—V138.8 (3)
O4—V1—O2—V283.0 (2)O15—As2—O5—V1150.1 (3)
O6—V1—O2—V27.3 (6)O1—V1—O5—As2152.3 (3)
O3—V1—O2—V23.14 (19)O2—V1—O5—As248.8 (3)
O8—V2—O2—V1179.4 (2)O4—V1—O5—As253.1 (6)
O9—V2—O2—V179.4 (2)O6—V1—O5—As2108.9 (3)
O7—V2—O2—V12.9 (7)O3—V1—O5—As227.9 (2)
O10—V2—O2—V183.1 (2)O7i—As1—O6—V167.3 (3)
O3—V2—O2—V13.3 (2)O12—As1—O6—V153.5 (3)
O8—V2—O3—As2i152 (2)O11—As1—O6—V1167.1 (3)
O2—V2—O3—As2i173.8 (3)O1—V1—O6—As173.3 (3)
O9—V2—O3—As2i84.8 (3)O2—V1—O6—As1111.9 (4)
O7—V2—O3—As2i4.4 (3)O5—V1—O6—As125.0 (3)
O10—V2—O3—As2i95.9 (3)O4—V1—O6—As1171.1 (3)
O8—V2—O3—V137 (3)O3—V1—O6—As1107.8 (3)
O2—V2—O3—V12.09 (13)O8—V2—O7—As1i88.3 (3)
O9—V2—O3—V186.94 (14)O2—V2—O7—As1i88.2 (6)
O7—V2—O3—V1176.15 (14)O9—V2—O7—As1i12.0 (3)
O10—V2—O3—V192.32 (15)O10—V2—O7—As1i173.8 (3)
O1—V1—O3—As2i91 (11)O3—V2—O7—As1i94.3 (3)
O2—V1—O3—As2i174.0 (3)O3i—As2—O9—V285.4 (3)
O5—V1—O3—As2i78.6 (3)O5—As2—O9—V245.0 (3)
O4—V1—O3—As2i93.1 (3)O15—As2—O9—V2156.3 (2)
O6—V1—O3—As2i7.6 (3)O8—V2—O9—As2153.2 (3)
O1—V1—O3—V297 (10)O2—V2—O9—As254.0 (3)
O2—V1—O3—V22.33 (14)O7—V2—O9—As2110.0 (3)
O5—V1—O3—V293.02 (15)O10—V2—O9—As220.5 (7)
O4—V1—O3—V295.27 (15)O3—V2—O9—As222.8 (2)
O6—V1—O3—V2179.25 (15)O13—As3—O10—V2109.2 (3)
O13—As3—O4—V1112.7 (3)O4—As3—O10—V218.1 (4)
O10—As3—O4—V116.3 (4)O14—As3—O10—V2131.8 (3)
O14—As3—O4—V1132.8 (3)O8—V2—O10—As3137.6 (3)
O1—V1—O4—As3142.3 (3)O2—V2—O10—As338.3 (3)
O2—V1—O4—As339.3 (3)O9—V2—O10—As336.1 (7)
O5—V1—O4—As363.0 (6)O7—V2—O10—As3125.3 (3)
O6—V1—O4—As3118.9 (3)O3—V2—O10—As338.5 (3)
O3—V1—O4—As337.7 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O4ii0.981.722.678 (5)165
O14—H14···O13iii0.961.662.579 (6)158
O15—H15···O13i0.961.672.619 (6)170
N1—H1B···O13iv0.862.263.056 (8)154
N1—H1A···O6iv0.862.183.007 (7)160
N2—H2A···O15v0.862.203.042 (8)167
N2—H2B···O11iv0.862.443.210 (8)150
N2—H2B···O1vi0.862.473.040 (8)125
N3—H3A···O9v0.862.052.895 (7)169
N3—H3B···O1W0.862.202.984 (10)152
N4—H4A···O12vi0.862.303.089 (9)152
N4—H4B···O10vii0.862.483.230 (9)146
N5—H5A···O2WAv0.862.142.959 (13)160
N5—H5B···O7vii0.862.192.963 (8)150
N6—H6B···O12vi0.862.373.140 (9)150
N6—H6B···O5vi0.862.453.022 (7)125
N6—H6A···O2WBv0.862.012.78 (5)148
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+2; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z+2.
Selected bond lengths (Å) top
V1—O11.591 (4)V2—O81.603 (5)
V1—O21.723 (4)V2—O21.934 (4)
V1—O51.963 (4)V2—O92.006 (4)
V1—O41.992 (4)V2—O72.015 (4)
V1—O62.029 (4)V2—O102.027 (4)
V1—O32.376 (4)V2—O32.260 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O4i0.981.722.678 (5)165
O14—H14···O13ii0.961.662.579 (6)158
O15—H15···O13iii0.961.672.619 (6)170
N1—H1B···O13iv0.862.263.056 (8)154
N1—H1A···O6iv0.862.183.007 (7)160
N2—H2A···O15v0.862.203.042 (8)167
N2—H2B···O11iv0.862.443.210 (8)150
N2—H2B···O1vi0.862.473.040 (8)125
N3—H3A···O9v0.862.052.895 (7)169
N3—H3B···O1W0.862.202.984 (10)152
N4—H4A···O12vi0.862.303.089 (9)152
N4—H4B···O10vii0.862.483.230 (9)146
N5—H5A···O2WAv0.862.142.959 (13)160
N5—H5B···O7vii0.862.192.963 (8)150
N6—H6B···O12vi0.862.373.140 (9)150
N6—H6B···O5vi0.862.453.022 (7)125
N6—H6A···O2WBv0.862.012.78 (5)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z+2.
 

References

First citationBremner, C. A. & Harrison, W. T. A. (2002). Acta Cryst. E58, m254–m256.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationDurif, A. & Averbuch-Pouchot, M. T. (1979). Acta Cryst. B35, 1441–1444.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNenoff, T. M., Stucky, G. D. & Harrison, W. T. A. (1994). Z. Kristallogr. 209, 892–898.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m305-m306
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds