metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m333-m334

Crystal structure of tetra­kis­(μ-N-phenyl­acetamidato)-κ4N:O;κ4O:N-bis­­[(2-methyl­benzo­nitrile-κN)rhodium(II)](RhRh)

aDepartment of Chemistry, East Tennessee State University, PO Box 70695, Johnson City, TN 37614, USA
*Correspondence e-mail: eaglec@etsu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 July 2014; accepted 4 August 2014; online 20 August 2014)

The complex molecule of the title compound, [Rh2{N(C6H5)COCH3}4(C8H7N)2], exhibits inversion symmetry. The four acetamidate ligands bridging the dirhodium core are arranged in a 2,2-trans manner with two N atoms and two O atoms coordinating to each RhII atom trans to one another. The Neq—Rh—Rh—Oeq torsion angles on the acetamidate bridge vary between −4.07 (5) and −6.78 (7)°. The axial nitrile ligands complete the distorted octa­hedral coordination sphere of each RhII atom and show a nonlinear coordination with Rh—N—C bond angles of 151.6 (3) and 152.5 (3)°. The bond lengths of the two nitrile triple bonds are 1.133 (5) and 1.137 (5) Å.

1. Related literature

For the synthesis and structures of four related compounds, see: Lifsey et al. (1987[Lifsey, R. S., Lin, X. Q., Chavan, M. Y., Ahsan, M. Q., Kadish, K. M. & Bear, J. L. (1987). Inorg. Chem. 26, 830-836.]); Eagle et al. (2000[Eagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90-94.], 2012[Eagle, C. T., Kpogo, K. K., Zink, L. C. & Smith, A. E. (2012). Acta Cryst. E68, m877.], 2013a[Eagle, C. T., Quarshie, F., Ketron, M. E. & Atem-Tambe, N. (2013a). Acta Cryst. E69, m329.],b[Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. & Quarshie, F. (2013b). Acta Cryst. E69, m639.], 2014[Eagle, C. T., Quarshie, F. & Cook, K. M. (2014). Acta Cryst. E70, m304.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Rh2(C8H8NO)4(C8H7N)2]

  • Mr = 976.74

  • Triclinic, [P \overline 1]

  • a = 9.7912 (7) Å

  • b = 14.7873 (10) Å

  • c = 16.3592 (11) Å

  • α = 103.837 (7)°

  • β = 99.173 (7)°

  • γ = 99.772 (7)°

  • V = 2216.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 223 K

  • 0.33 × 0.12 × 0.12 mm

2.2. Data collection

  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.720, Tmax = 0.909

  • 23557 measured reflections

  • 10137 independent reflections

  • 7966 reflections with F2 > 2σ(F2)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.079

  • S = 1.04

  • 10137 reflections

  • 547 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Rh1—Rh2 2.4241 (4)
Rh1—O1 2.034 (2)
Rh1—O2 2.028 (3)
Rh1—N1 2.061 (2)
Rh1—N2 2.071 (2)
Rh1—N3 2.236 (3)
Rh2—O3 2.0358 (17)
Rh2—O4 2.0279 (17)
Rh2—N4 2.048 (3)
Rh2—N5 2.067 (3)
Rh2—N6 2.254 (3)
Rh2—Rh1—N3 172.79 (7)
Rh1—Rh2—N6 174.59 (6)

Data collection: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear and CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare, et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2011[Rigaku (2011). CrystalClear and CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Synthesis and crystallization top

Approximately 20 mg of trans-tetra­kis[µ-N-(phenyl)­acetamidato]-κ4N:O;κ4O:N rhodium(II) was dissolved in 5 ml di­chloro­methane. 6.4 µl of 2-methyl benzo­nitrile was then added to this solution, via a gas tight syringe, turning the solution from a green to a dark blue color. The blue solution then turned red over time. Crystals grew over a two week period via vapor diffusion. From the structure determination, the title compound is an adduct of trans-tetra­kis[µ-N-(phenyl)­acetamidato]-κ4N:O;κ4O:N rhodium(II) with 2-methyl benzo­nitrile in each axial site of the Rh—Rh dumbbell.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.93 (aromatic) and Uiso(H) = 1.2Ueq(C), and with 0.98 Å (methyl) and Uiso(H)= 1.5Ueq(C).

Thirteen reflections were omitted from the refinement due to strong differences between observed and calculated intensities. They may have been low-angle reflections obscured from the beamstop, or the relections may have overloaded in the detector (even in the overload-correction mode).

Related literature top

For the synthesis and structures of four related compounds, see: Lifsey et al. (1987); Eagle et al. (2000, 2012, 2013a,b, 2014).

Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SIR92 (Altomare, et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2011); software used to prepare material for publication: CrystalStructure (Rigaku, 2011).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. Hydrogen atoms are drawn as small spheres. The numbering scheme of the title compound is adopted from a related compound (Eagle et al., 2000).
[Figure 2] Fig. 2. The packing diagram for the title compound.
Tetrakis(µ-N-phenylacetamidato)-κ4N:O;κ4O:N-bis[(2-methylbenzonitrile-κN)rhodium(II)](RhRh) top
Crystal data top
[Rh2(C8H8NO)4(C8H7N)2]Z = 2
Mr = 976.74F(000) = 996.00
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 9.7912 (7) ÅCell parameters from 19839 reflections
b = 14.7873 (10) Åθ = 3.0–27.6°
c = 16.3592 (11) ŵ = 0.79 mm1
α = 103.837 (7)°T = 223 K
β = 99.173 (7)°Block, red
γ = 99.772 (7)°0.33 × 0.12 × 0.12 mm
V = 2216.4 (3) Å3
Data collection top
Rigaku XtaLAB mini
diffractometer
10137 independent reflections
Radiation source: fine-focus sealed X-ray tube7966 reflections with F2 > 2σ(F2)
Graphite Monochromator monochromatorRint = 0.039
Detector resolution: 6.827 pixels mm-1θmax = 27.5°
ω scansh = 1212
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1919
Tmin = 0.720, Tmax = 0.909l = 2121
23557 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0257P)2 + 1.5457P]
where P = (Fo2 + 2Fc2)/3
10137 reflections(Δ/σ)max = 0.002
547 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.51 e Å3
0 constraints
Crystal data top
[Rh2(C8H8NO)4(C8H7N)2]γ = 99.772 (7)°
Mr = 976.74V = 2216.4 (3) Å3
Triclinic, P1Z = 2
a = 9.7912 (7) ÅMo Kα radiation
b = 14.7873 (10) ŵ = 0.79 mm1
c = 16.3592 (11) ÅT = 223 K
α = 103.837 (7)°0.33 × 0.12 × 0.12 mm
β = 99.173 (7)°
Data collection top
Rigaku XtaLAB mini
diffractometer
10137 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
7966 reflections with F2 > 2σ(F2)
Tmin = 0.720, Tmax = 0.909Rint = 0.039
23557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
10137 reflectionsΔρmin = 0.51 e Å3
547 parameters
Special details top

Experimental. The infrared absorption spectum of the title compound showed a band at 2320 cm-1 attributable to C—N bond stretching modes. The corresponding band for uncomplexed 2-methyl benzonitrile appears at 2224 cm-1. This indicates that there is a shortening of the C—N bond and a stronger σ-interaction to the rhodium metal compared to the π-back bonding which occurs upon complexation with trans-tetrakis[µ-N-(phenyl)acetamidato]-κ4N:O;κ4O:N rhodium(II). The predominance of σ-bonding in the Rh—N—C bond system is consistent with the lack of the linear bond angles that would be expected if π-back bonding was more prevalent.

Geometry. Compound 1 has the methyl group of the 2-methyl benzonitrile ligand pointing into empty space because the methyl group is more bulky than the hydrogen atoms and will overlap with the phenyl rings on the phenylacetamide bridge. From the packing diagram (see Fig 2), it can be seen that both nitrile groups on the 2-methyl benzonitrile ligands are bent in the same direction. The predominance of σ-bonding in the rhodium-nitrogen-carbon bond system (and lower affect of π-back bonding) is the likely cause of this deviation from linearity, though an argument can be be made for packing forces to account for the severity of this deviation. For example, in compound 2 (Eagle et al., 2000) there are no methyl groups on the benzonitrile ligand nor on the phenyl rings of the phenyl acetamide bridge and the rhodium-nitrogen-carbon bond angles are closer to linear. The packing diagram shows that an acetamide phenyl ring and the tolunitrile ligand on the same rhodium are stacked upon each other.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh11.01287 (2)0.209087 (15)0.807834 (13)0.02313 (6)
Rh20.99761 (2)0.274621 (15)0.685109 (13)0.02373 (6)
O11.1252 (2)0.11655 (13)0.75245 (12)0.0292 (5)
O20.9034 (3)0.30262 (14)0.86384 (13)0.0351 (5)
O31.1707 (2)0.37983 (13)0.74879 (13)0.0314 (5)
O40.8259 (2)0.16918 (14)0.62181 (12)0.0320 (5)
N11.2007 (3)0.30885 (16)0.85771 (15)0.0281 (5)
N20.8227 (3)0.11663 (16)0.74200 (15)0.0276 (5)
N31.0082 (3)0.16001 (17)0.92666 (15)0.0317 (6)
N41.1241 (3)0.18475 (16)0.64161 (15)0.0273 (5)
N50.8720 (3)0.35709 (17)0.74472 (16)0.0318 (6)
N60.9624 (3)0.32712 (17)0.56656 (16)0.0340 (6)
C11.2406 (3)0.3749 (2)0.82002 (19)0.0304 (7)
C21.3725 (4)0.4523 (3)0.8583 (3)0.0488 (9)
C30.7702 (3)0.1132 (2)0.66219 (19)0.0305 (7)
C40.6393 (4)0.0417 (3)0.6085 (2)0.0442 (8)
C51.1626 (3)0.1240 (2)0.68232 (18)0.0280 (6)
C61.2568 (4)0.0586 (3)0.6509 (2)0.0408 (8)
C70.8534 (4)0.3571 (2)0.8218 (2)0.0350 (7)
C80.7708 (5)0.4210 (3)0.8705 (3)0.0575 (11)
C91.2896 (3)0.30217 (19)0.93267 (18)0.0300 (7)
C101.4003 (4)0.2568 (3)0.9263 (3)0.0471 (9)
C111.4856 (5)0.2479 (3)0.9991 (3)0.0612 (11)
C121.4571 (5)0.2835 (3)1.0785 (3)0.0595 (11)
C131.3473 (5)0.3290 (3)1.0857 (3)0.0528 (10)
C141.2626 (4)0.3381 (3)1.0133 (2)0.0411 (8)
C150.7454 (3)0.0593 (2)0.78493 (18)0.0306 (7)
C160.7892 (4)0.0200 (2)0.8014 (2)0.0371 (7)
C170.7152 (4)0.0741 (3)0.8457 (3)0.0509 (9)
C180.5991 (5)0.0483 (3)0.8741 (3)0.0610 (11)
C190.5560 (4)0.0306 (3)0.8590 (3)0.0625 (12)
C200.6296 (4)0.0852 (3)0.8156 (3)0.0453 (9)
C210.9643 (3)0.1564 (2)0.98608 (19)0.0320 (7)
C220.9072 (4)0.1529 (3)1.06197 (19)0.0344 (7)
C230.8885 (4)0.0686 (3)1.0857 (3)0.0456 (9)
C240.8369 (4)0.0646 (3)1.1588 (3)0.0556 (10)
C250.8049 (5)0.1447 (4)1.2067 (3)0.0617 (11)
C260.8222 (4)0.2281 (3)1.1829 (3)0.0548 (10)
C270.8739 (4)0.2347 (3)1.1099 (2)0.0422 (8)
C281.1614 (3)0.1857 (2)0.56093 (18)0.0296 (7)
C291.0725 (4)0.1283 (3)0.4856 (2)0.0465 (9)
C301.1042 (5)0.1310 (3)0.4068 (3)0.0600 (11)
C311.2234 (5)0.1921 (3)0.4025 (3)0.0569 (11)
C321.3119 (5)0.2491 (3)0.4771 (3)0.0540 (10)
C331.2809 (4)0.2465 (3)0.5562 (2)0.0417 (8)
C340.8123 (4)0.4202 (2)0.7027 (2)0.0350 (7)
C350.6725 (4)0.3946 (3)0.6589 (3)0.0496 (9)
C360.6154 (5)0.4555 (3)0.6174 (3)0.0661 (12)
C370.6983 (5)0.5406 (3)0.6186 (3)0.0676 (12)
C380.8372 (5)0.5652 (3)0.6605 (3)0.0633 (12)
C390.8955 (4)0.5051 (3)0.7022 (3)0.0457 (9)
C400.8918 (4)0.3379 (2)0.5090 (2)0.0332 (7)
C410.7953 (3)0.3515 (2)0.43923 (18)0.0318 (7)
C420.6750 (3)0.2806 (2)0.39791 (19)0.0335 (7)
C430.5801 (4)0.2994 (3)0.3338 (2)0.0423 (8)
C440.6058 (4)0.3844 (3)0.3127 (2)0.0438 (8)
C450.7254 (4)0.4533 (3)0.3527 (2)0.0440 (8)
C460.8207 (4)0.4368 (3)0.4165 (2)0.0438 (8)
C470.8930 (5)0.3266 (3)1.0843 (3)0.0604 (11)
C480.6476 (4)0.1880 (3)0.4222 (3)0.0549 (10)
H2A1.34680.51300.87420.0586*
H2B1.43140.45290.81670.0586*
H2C1.42350.44030.90840.0586*
H4A0.66370.00060.56060.0530*
H4B0.57070.07460.58770.0530*
H4C0.60000.00420.64310.0530*
H6A1.22810.00170.66240.0489*
H6B1.35330.08670.68020.0489*
H6C1.24920.04900.59010.0489*
H8A0.82440.45140.92800.0691*
H8B0.68200.38350.87270.0691*
H8C0.75380.46880.84170.0691*
H101.41850.23150.87240.0565*
H111.56140.21820.99410.0734*
H121.51250.27671.12750.0714*
H131.32960.35411.13980.0634*
H141.18740.36841.01880.0493*
H160.86840.03730.78280.0445*
H170.74450.12770.85610.0611*
H180.54970.08450.90370.0732*
H190.47690.04770.87800.0750*
H200.60110.13970.80680.0543*
H230.91070.01481.05250.0547*
H240.82410.00831.17530.0668*
H250.77080.14251.25620.0740*
H260.79880.28121.21640.0658*
H290.99060.08750.48790.0558*
H301.04440.09120.35650.0720*
H311.24380.19470.34940.0683*
H321.39370.28990.47460.0648*
H331.34110.28620.60640.0500*
H350.61660.33650.65730.0595*
H360.52090.43860.58880.0793*
H370.66000.58150.59100.0811*
H380.89320.62300.66110.0759*
H390.99060.52190.72970.0548*
H430.49820.25370.30500.0508*
H440.54030.39530.27030.0526*
H450.74220.51010.33720.0528*
H460.90240.48300.44440.0525*
H47A0.98980.36081.10500.0725*
H47B0.83190.36481.10880.0725*
H47C0.86950.31271.02270.0725*
H48A0.61390.19810.47490.0659*
H48B0.73400.16560.42970.0659*
H48C0.57760.14140.37730.0659*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02388 (12)0.02470 (11)0.02260 (12)0.00461 (9)0.00514 (9)0.01014 (9)
Rh20.02280 (12)0.02642 (12)0.02466 (12)0.00586 (9)0.00424 (9)0.01214 (9)
O10.0338 (11)0.0324 (11)0.0281 (11)0.0117 (9)0.0094 (9)0.0157 (9)
O20.0430 (13)0.0389 (12)0.0316 (12)0.0171 (10)0.0148 (10)0.0147 (10)
O30.0305 (11)0.0296 (11)0.0330 (12)0.0005 (9)0.0001 (9)0.0156 (9)
O40.0288 (11)0.0375 (11)0.0283 (11)0.0006 (9)0.0017 (9)0.0147 (9)
N10.0261 (13)0.0286 (13)0.0290 (13)0.0050 (11)0.0022 (10)0.0097 (10)
N20.0226 (12)0.0287 (12)0.0306 (13)0.0003 (10)0.0042 (10)0.0110 (10)
N30.0394 (15)0.0315 (13)0.0251 (13)0.0047 (12)0.0067 (12)0.0113 (11)
N40.0265 (12)0.0296 (13)0.0296 (13)0.0077 (10)0.0081 (10)0.0126 (10)
N50.0296 (13)0.0344 (14)0.0362 (14)0.0134 (11)0.0086 (11)0.0132 (11)
N60.0348 (14)0.0359 (14)0.0331 (14)0.0079 (12)0.0031 (12)0.0152 (12)
C10.0272 (15)0.0302 (15)0.0329 (16)0.0033 (13)0.0034 (13)0.0112 (13)
C20.0391 (19)0.045 (2)0.056 (3)0.0092 (16)0.0074 (17)0.0249 (17)
C30.0265 (15)0.0308 (15)0.0343 (17)0.0057 (13)0.0058 (13)0.0098 (13)
C40.0360 (18)0.048 (2)0.0395 (19)0.0055 (16)0.0019 (15)0.0109 (16)
C50.0257 (15)0.0302 (15)0.0287 (15)0.0045 (12)0.0042 (12)0.0111 (12)
C60.0447 (19)0.0475 (19)0.0424 (19)0.0237 (16)0.0186 (16)0.0196 (16)
C70.0357 (17)0.0343 (16)0.0383 (18)0.0125 (14)0.0106 (14)0.0106 (14)
C80.073 (3)0.062 (3)0.057 (3)0.040 (3)0.034 (2)0.021 (2)
C90.0297 (16)0.0262 (14)0.0303 (16)0.0015 (12)0.0026 (13)0.0096 (12)
C100.045 (2)0.055 (3)0.0395 (19)0.0221 (18)0.0025 (16)0.0090 (16)
C110.061 (3)0.059 (3)0.056 (3)0.031 (2)0.017 (2)0.008 (2)
C120.073 (3)0.044 (2)0.044 (3)0.003 (2)0.026 (2)0.0112 (17)
C130.067 (3)0.052 (3)0.0276 (18)0.001 (2)0.0017 (17)0.0054 (16)
C140.0404 (19)0.0425 (18)0.0333 (18)0.0035 (15)0.0006 (15)0.0053 (14)
C150.0297 (16)0.0293 (15)0.0289 (16)0.0021 (13)0.0052 (13)0.0072 (12)
C160.0390 (18)0.0354 (17)0.0372 (18)0.0053 (14)0.0096 (15)0.0114 (14)
C170.063 (3)0.0389 (19)0.050 (3)0.0017 (18)0.0063 (19)0.0211 (17)
C180.069 (3)0.057 (3)0.057 (3)0.011 (2)0.027 (3)0.024 (2)
C190.054 (3)0.061 (3)0.079 (3)0.002 (2)0.041 (3)0.020 (3)
C200.0396 (19)0.0415 (19)0.061 (3)0.0080 (16)0.0222 (17)0.0181 (17)
C210.0369 (17)0.0289 (15)0.0302 (16)0.0079 (13)0.0031 (14)0.0103 (13)
C220.0363 (17)0.0421 (18)0.0296 (16)0.0099 (14)0.0099 (14)0.0158 (14)
C230.051 (2)0.053 (2)0.049 (2)0.0242 (18)0.0218 (17)0.0284 (17)
C240.060 (3)0.074 (3)0.058 (3)0.026 (3)0.030 (2)0.045 (3)
C250.070 (3)0.090 (3)0.049 (3)0.031 (3)0.036 (2)0.039 (3)
C260.064 (3)0.068 (3)0.043 (2)0.027 (2)0.0275 (19)0.0148 (19)
C270.0416 (19)0.052 (2)0.0359 (18)0.0110 (16)0.0101 (15)0.0145 (16)
C280.0348 (16)0.0298 (15)0.0312 (16)0.0132 (13)0.0128 (13)0.0133 (13)
C290.044 (2)0.059 (3)0.0343 (18)0.0005 (17)0.0124 (16)0.0123 (16)
C300.067 (3)0.078 (3)0.0289 (19)0.005 (3)0.0104 (18)0.0109 (18)
C310.083 (3)0.063 (3)0.040 (2)0.022 (3)0.035 (3)0.0233 (19)
C320.068 (3)0.044 (2)0.057 (3)0.0045 (19)0.035 (2)0.0187 (18)
C330.0440 (19)0.0408 (18)0.0388 (19)0.0018 (15)0.0141 (16)0.0098 (15)
C340.0386 (18)0.0362 (17)0.0367 (17)0.0155 (14)0.0115 (14)0.0149 (14)
C350.040 (2)0.044 (2)0.065 (3)0.0120 (16)0.0015 (18)0.0208 (18)
C360.057 (3)0.068 (3)0.077 (3)0.032 (3)0.004 (3)0.025 (3)
C370.079 (3)0.068 (3)0.078 (3)0.046 (3)0.018 (3)0.039 (3)
C380.070 (3)0.044 (3)0.094 (4)0.023 (2)0.029 (3)0.037 (3)
C390.043 (2)0.0364 (18)0.061 (3)0.0104 (16)0.0105 (17)0.0180 (17)
C400.0339 (17)0.0320 (16)0.0371 (17)0.0059 (13)0.0077 (14)0.0164 (14)
C410.0354 (17)0.0362 (16)0.0269 (15)0.0103 (14)0.0038 (13)0.0144 (13)
C420.0350 (17)0.0349 (16)0.0315 (16)0.0075 (14)0.0085 (14)0.0094 (13)
C430.0298 (17)0.054 (2)0.0344 (18)0.0025 (16)0.0016 (14)0.0052 (16)
C440.044 (2)0.060 (3)0.0316 (18)0.0197 (18)0.0023 (15)0.0190 (16)
C450.049 (2)0.0455 (19)0.042 (2)0.0106 (17)0.0011 (16)0.0253 (16)
C460.0404 (19)0.0428 (19)0.043 (2)0.0043 (16)0.0069 (16)0.0217 (16)
C470.085 (3)0.046 (3)0.059 (3)0.019 (3)0.033 (3)0.0163 (19)
C480.060 (3)0.0374 (19)0.064 (3)0.0005 (18)0.008 (2)0.0190 (18)
Geometric parameters (Å, º) top
Rh1—Rh22.4241 (4)C36—C371.370 (7)
Rh1—O12.034 (2)C37—C381.367 (6)
Rh1—O22.028 (3)C38—C391.386 (7)
Rh1—N12.061 (2)C40—C411.437 (5)
Rh1—N22.071 (2)C41—C421.390 (4)
Rh1—N32.236 (3)C41—C461.393 (5)
Rh2—O32.0358 (17)C42—C431.399 (5)
Rh2—O42.0279 (17)C42—C481.507 (5)
Rh2—N42.048 (3)C43—C441.375 (6)
Rh2—N52.067 (3)C44—C451.367 (5)
Rh2—N62.254 (3)C45—C461.381 (5)
O1—C51.282 (4)C2—H2A0.960
O2—C71.285 (5)C2—H2B0.960
O3—C11.278 (4)C2—H2C0.960
O4—C31.281 (4)C4—H4A0.960
N1—C11.313 (5)C4—H4B0.960
N1—C91.421 (4)C4—H4C0.960
N2—C31.311 (4)C6—H6A0.960
N2—C151.422 (4)C6—H6B0.960
N3—C211.133 (5)C6—H6C0.960
N4—C51.309 (5)C8—H8A0.960
N4—C281.427 (4)C8—H8B0.960
N5—C71.302 (5)C8—H8C0.960
N5—C341.431 (5)C10—H100.930
N6—C401.137 (5)C11—H110.930
C1—C21.506 (4)C12—H120.930
C3—C41.506 (4)C13—H130.930
C5—C61.506 (5)C14—H140.930
C7—C81.512 (6)C16—H160.930
C9—C101.374 (5)C17—H170.930
C9—C141.384 (5)C18—H180.930
C10—C111.388 (6)C19—H190.930
C11—C121.372 (6)C20—H200.930
C12—C131.368 (7)C23—H230.930
C13—C141.382 (5)C24—H240.930
C15—C161.385 (5)C25—H250.930
C15—C201.386 (5)C26—H260.930
C16—C171.391 (6)C29—H290.930
C17—C181.372 (7)C30—H300.930
C18—C191.370 (7)C31—H310.930
C19—C201.385 (6)C32—H320.930
C21—C221.449 (5)C33—H330.930
C22—C231.383 (6)C35—H350.930
C22—C271.395 (5)C36—H360.930
C23—C241.381 (6)C37—H370.930
C24—C251.369 (6)C38—H380.930
C25—C261.371 (7)C39—H390.930
C26—C271.388 (6)C43—H430.930
C27—C471.506 (6)C44—H440.930
C28—C291.380 (4)C45—H450.930
C28—C331.375 (5)C46—H460.930
C29—C301.380 (6)C47—H47A)0.960
C30—C311.372 (6)C47—H47B)0.960
C31—C321.369 (5)C47—H47C)0.960
C32—C331.383 (6)C48—H48A)0.960
C34—C351.382 (5)C48—H48B)0.960
C34—C391.378 (5)C48—H48C)0.960
C35—C361.388 (7)
Rh2—Rh1—O190.04 (7)N6—C40—C41176.2 (4)
Rh2—Rh1—O289.97 (7)C40—C41—C42119.2 (3)
Rh2—Rh1—N185.65 (8)C40—C41—C46119.6 (3)
Rh2—Rh1—N285.90 (8)C42—C41—C46121.1 (3)
Rh2—Rh1—N3172.79 (7)C41—C42—C43117.1 (3)
O1—Rh1—O2179.24 (7)C41—C42—C48121.2 (3)
O1—Rh1—N188.29 (9)C43—C42—C48121.7 (3)
O1—Rh1—N291.45 (9)C42—C43—C44121.1 (3)
O1—Rh1—N397.10 (10)C43—C44—C45121.5 (4)
O2—Rh1—N190.95 (9)C44—C45—C46118.6 (4)
O2—Rh1—N289.31 (9)C41—C46—C45120.5 (3)
O2—Rh1—N382.90 (10)C1—C2—H2A109.467
N1—Rh1—N2171.55 (11)C1—C2—H2B109.466
N1—Rh1—N395.47 (10)C1—C2—H2C109.467
N2—Rh1—N392.95 (10)H2A—C2—H2B109.477
Rh1—Rh2—O389.96 (7)H2A—C2—H2C109.476
Rh1—Rh2—O489.82 (7)H2B—C2—H2C109.474
Rh1—Rh2—N485.66 (8)C3—C4—H4A109.475
Rh1—Rh2—N585.77 (8)C3—C4—H4B109.474
Rh1—Rh2—N6174.59 (6)C3—C4—H4C109.471
O3—Rh2—O4179.63 (9)H4A—C4—H4B109.473
O3—Rh2—N490.99 (8)H4A—C4—H4C109.465
O3—Rh2—N588.95 (9)H4B—C4—H4C109.470
O3—Rh2—N695.24 (9)C5—C6—H6A109.474
O4—Rh2—N488.69 (8)C5—C6—H6B109.472
O4—Rh2—N591.33 (9)C5—C6—H6C109.483
O4—Rh2—N684.98 (9)H6A—C6—H6B109.460
N4—Rh2—N5171.43 (11)H6A—C6—H6C109.466
N4—Rh2—N695.71 (10)H6B—C6—H6C109.473
N5—Rh2—N692.83 (11)C7—C8—H8A109.470
Rh1—O1—C5118.8 (2)C7—C8—H8B109.460
Rh1—O2—C7119.3 (2)C7—C8—H8C109.470
Rh2—O3—C1118.88 (19)H8A—C8—H8B109.476
Rh2—O4—C3119.30 (16)H8A—C8—H8C109.473
Rh1—N1—C1121.43 (19)H8B—C8—H8C109.479
Rh1—N1—C9118.18 (19)C9—C10—H10119.463
C1—N1—C9120.3 (3)C11—C10—H10119.453
Rh1—N2—C3120.6 (2)C10—C11—H11120.269
Rh1—N2—C15119.70 (17)C12—C11—H11120.282
C3—N2—C15119.6 (3)C11—C12—H12119.998
Rh1—N3—C21151.6 (3)C13—C12—H12119.996
Rh2—N4—C5122.2 (2)C12—C13—H13119.700
Rh2—N4—C28117.2 (2)C14—C13—H13119.711
C5—N4—C28120.4 (3)C9—C14—H14119.968
Rh2—N5—C7121.3 (3)C13—C14—H14119.967
Rh2—N5—C34119.1 (2)C15—C16—H16119.844
C7—N5—C34119.4 (3)C17—C16—H16119.849
Rh2—N6—C40152.5 (3)C16—C17—H17119.958
O3—C1—N1123.2 (3)C18—C17—H17119.962
O3—C1—C2114.5 (3)C17—C18—H18119.987
N1—C1—C2122.3 (3)C19—C18—H18119.982
O4—C3—N2123.5 (3)C18—C19—H19119.851
O4—C3—C4113.5 (3)C20—C19—H19119.860
N2—C3—C4123.0 (3)C15—C20—H20119.771
O1—C5—N4122.9 (3)C19—C20—H20119.778
O1—C5—C6114.8 (3)C22—C23—H23120.097
N4—C5—C6122.3 (3)C24—C23—H23120.111
O2—C7—N5123.3 (3)C23—C24—H24120.451
O2—C7—C8113.5 (3)C25—C24—H24120.448
N5—C7—C8123.3 (4)C24—C25—H25119.408
N1—C9—C10120.7 (3)C26—C25—H25119.392
N1—C9—C14120.4 (3)C25—C26—H26119.366
C10—C9—C14118.8 (3)C27—C26—H26119.365
C9—C10—C11121.1 (4)C28—C29—H29119.723
C10—C11—C12119.4 (4)C30—C29—H29119.726
C11—C12—C13120.0 (4)C29—C30—H30119.850
C12—C13—C14120.6 (4)C31—C30—H30119.847
C9—C14—C13120.1 (4)C30—C31—H31120.316
N2—C15—C16120.8 (3)C32—C31—H31120.323
N2—C15—C20120.3 (3)C31—C32—H32119.731
C16—C15—C20118.8 (4)C33—C32—H32119.732
C15—C16—C17120.3 (4)C28—C33—H33119.815
C16—C17—C18120.1 (4)C32—C33—H33119.812
C17—C18—C19120.0 (5)C34—C35—H35119.887
C18—C19—C20120.3 (4)C36—C35—H35119.885
C15—C20—C19120.5 (4)C35—C36—H36120.023
N3—C21—C22179.3 (4)C37—C36—H36120.014
C21—C22—C23119.1 (3)C36—C37—H37120.040
C21—C22—C27119.3 (4)C38—C37—H37120.045
C23—C22—C27121.6 (4)C37—C38—H38119.666
C22—C23—C24119.8 (4)C39—C38—H38119.677
C23—C24—C25119.1 (5)C34—C39—H39120.079
C24—C25—C26121.2 (4)C38—C39—H39120.074
C25—C26—C27121.3 (4)C42—C43—H43119.449
C22—C27—C26117.0 (4)C44—C43—H43119.445
C22—C27—C47122.0 (4)C43—C44—H44119.247
C26—C27—C47121.0 (4)C45—C44—H44119.248
N4—C28—C29119.8 (3)C44—C45—H45120.673
N4—C28—C33121.3 (3)C46—C45—H45120.682
C29—C28—C33118.9 (3)C41—C46—H46119.747
C28—C29—C30120.6 (4)C45—C46—H46119.754
C29—C30—C31120.3 (3)C27—C47—H47A109.471
C30—C31—C32119.4 (4)C27—C47—H47B109.475
C31—C32—C33120.5 (4)C27—C47—H47C109.464
C28—C33—C32120.4 (3)H47A—C47—H47B109.476
N5—C34—C35120.4 (3)H47A—C47—H47C109.473
N5—C34—C39120.2 (3)H47B—C47—H47C109.468
C35—C34—C39119.4 (4)C42—C48—H48A109.478
C34—C35—C36120.2 (4)C42—C48—H48B109.469
C35—C36—C37120.0 (4)C42—C48—H48C109.476
C36—C37—C38119.9 (5)H48A—C48—H48B109.465
C37—C38—C39120.7 (4)H48A—C48—H48C109.473
C34—C39—C38119.8 (4)H48B—C48—H48C109.466
Rh2—Rh1—O1—C55.81 (11)Rh1—N1—C9—C1481.3 (3)
O1—Rh1—Rh2—O395.07 (5)C1—N1—C9—C1081.4 (4)
O1—Rh1—Rh2—O484.63 (5)C1—N1—C9—C14101.2 (4)
O1—Rh1—Rh2—N44.07 (5)C9—N1—C1—O3174.2 (3)
O1—Rh1—Rh2—N5175.98 (5)C9—N1—C1—C26.6 (5)
Rh2—Rh1—O2—C75.09 (13)Rh1—N2—C3—O44.4 (4)
O2—Rh1—Rh2—O384.17 (6)Rh1—N2—C3—C4174.48 (17)
O2—Rh1—Rh2—O496.13 (6)Rh1—N2—C15—C1675.3 (3)
O2—Rh1—Rh2—N4175.16 (5)Rh1—N2—C15—C20100.8 (3)
O2—Rh1—Rh2—N54.79 (5)C3—N2—C15—C16107.4 (3)
Rh2—Rh1—N1—C17.59 (17)C3—N2—C15—C2076.5 (4)
Rh2—Rh1—N1—C9169.94 (16)C15—N2—C3—O4172.9 (3)
N1—Rh1—Rh2—O36.78 (7)C15—N2—C3—C48.3 (5)
N1—Rh1—Rh2—O4172.92 (7)Rh2—N4—C5—O10.5 (3)
N1—Rh1—Rh2—N484.21 (7)Rh2—N4—C5—C6179.35 (13)
N1—Rh1—Rh2—N595.74 (7)Rh2—N4—C28—C2986.7 (3)
Rh2—Rh1—N2—C38.12 (16)Rh2—N4—C28—C3389.7 (3)
Rh2—Rh1—N2—C15169.14 (16)C5—N4—C28—C2989.0 (3)
N2—Rh1—Rh2—O3173.48 (7)C5—N4—C28—C3394.6 (3)
N2—Rh1—Rh2—O46.82 (7)C28—N4—C5—O1176.0 (2)
N2—Rh1—Rh2—N495.53 (7)C28—N4—C5—C65.2 (4)
N2—Rh1—Rh2—N584.53 (7)Rh2—N5—C7—O24.3 (4)
O1—Rh1—N1—C197.76 (18)Rh2—N5—C7—C8175.70 (15)
O1—Rh1—N1—C979.77 (16)Rh2—N5—C34—C35100.6 (3)
N1—Rh1—O1—C579.84 (13)Rh2—N5—C34—C3976.5 (3)
O1—Rh1—N2—C381.82 (18)C7—N5—C34—C3583.6 (3)
O1—Rh1—N2—C15100.92 (17)C7—N5—C34—C3999.3 (4)
N2—Rh1—O1—C591.71 (13)C34—N5—C7—O2180.0 (3)
O1—Rh1—N3—C21164.3 (4)C34—N5—C7—C80.0 (4)
N3—Rh1—O1—C5175.14 (12)N1—C9—C10—C11178.4 (3)
O2—Rh1—N1—C182.30 (18)N1—C9—C14—C13178.3 (3)
O2—Rh1—N1—C9100.16 (17)C10—C9—C14—C130.8 (5)
N1—Rh1—O2—C790.74 (15)C14—C9—C10—C111.0 (5)
O2—Rh1—N2—C398.14 (18)C9—C10—C11—C121.3 (6)
O2—Rh1—N2—C1579.12 (17)C10—C11—C12—C131.4 (6)
N2—Rh1—O2—C780.81 (15)C11—C12—C13—C141.2 (6)
O2—Rh1—N3—C2116.4 (4)C12—C13—C14—C90.9 (5)
N3—Rh1—O2—C7173.86 (14)N2—C15—C16—C17178.1 (2)
N1—Rh1—N3—C21106.7 (4)N2—C15—C20—C19178.6 (2)
N3—Rh1—N1—C1165.26 (18)C16—C15—C20—C192.4 (4)
N3—Rh1—N1—C917.21 (17)C20—C15—C16—C171.9 (4)
N2—Rh1—N3—C2172.5 (4)C15—C16—C17—C180.7 (4)
N3—Rh1—N2—C3179.01 (18)C16—C17—C18—C190.1 (5)
N3—Rh1—N2—C153.73 (17)C17—C18—C19—C200.4 (5)
Rh1—Rh2—O3—C18.56 (14)C18—C19—C20—C151.7 (5)
Rh1—Rh2—O4—C38.06 (15)C21—C22—C23—C24178.7 (3)
Rh1—Rh2—N4—C53.89 (13)C21—C22—C27—C26178.8 (3)
Rh1—Rh2—N4—C28179.46 (12)C21—C22—C27—C471.1 (4)
Rh1—Rh2—N5—C76.31 (14)C23—C22—C27—C260.5 (5)
Rh1—Rh2—N5—C34177.96 (13)C23—C22—C27—C47179.6 (3)
O3—Rh2—N4—C593.78 (15)C27—C22—C23—C240.6 (5)
O3—Rh2—N4—C2890.65 (13)C22—C23—C24—C250.1 (5)
N4—Rh2—O3—C177.10 (16)C23—C24—C25—C260.5 (6)
O3—Rh2—N5—C783.72 (16)C24—C25—C26—C270.6 (6)
O3—Rh2—N5—C3492.01 (15)C25—C26—C27—C220.0 (5)
N5—Rh2—O3—C194.32 (16)C25—C26—C27—C47179.8 (3)
O3—Rh2—N6—C40147.8 (4)N4—C28—C29—C30177.5 (3)
N6—Rh2—O3—C1172.93 (15)N4—C28—C33—C32177.3 (3)
O4—Rh2—N4—C586.03 (15)C29—C28—C33—C320.8 (5)
O4—Rh2—N4—C2889.54 (13)C33—C28—C29—C300.9 (6)
N4—Rh2—O4—C393.73 (17)C28—C29—C30—C311.1 (7)
O4—Rh2—N5—C796.04 (16)C29—C30—C31—C321.1 (7)
O4—Rh2—N5—C3488.24 (15)C30—C31—C32—C331.0 (7)
N5—Rh2—O4—C377.70 (17)C31—C32—C33—C280.8 (6)
O4—Rh2—N6—C4032.5 (4)N5—C34—C35—C36179.3 (3)
N6—Rh2—O4—C3170.42 (17)N5—C34—C39—C38179.3 (3)
N4—Rh2—N6—C40120.7 (4)C35—C34—C39—C382.3 (5)
N6—Rh2—N4—C5170.86 (14)C39—C34—C35—C362.2 (5)
N6—Rh2—N4—C284.72 (13)C34—C35—C36—C371.0 (6)
N5—Rh2—N6—C4058.6 (4)C35—C36—C37—C380.2 (7)
N6—Rh2—N5—C7178.92 (15)C36—C37—C38—C390.1 (7)
N6—Rh2—N5—C343.19 (14)C37—C38—C39—C341.1 (7)
Rh1—O1—C5—N44.5 (3)C40—C41—C42—C43176.4 (3)
Rh1—O1—C5—C6174.46 (11)C40—C41—C42—C482.9 (5)
Rh1—O2—C7—N51.6 (4)C40—C41—C46—C45176.6 (3)
Rh1—O2—C7—C8178.38 (12)C42—C41—C46—C450.8 (5)
Rh2—O3—C1—N15.1 (4)C46—C41—C42—C431.1 (5)
Rh2—O3—C1—C2175.66 (14)C46—C41—C42—C48179.7 (3)
Rh2—O4—C3—N24.0 (4)C41—C42—C43—C440.3 (5)
Rh2—O4—C3—C4177.07 (14)C48—C42—C43—C44179.6 (3)
Rh1—N1—C1—O33.2 (4)C42—C43—C44—C450.7 (6)
Rh1—N1—C1—C2175.97 (17)C43—C44—C45—C461.0 (6)
Rh1—N1—C9—C1096.2 (3)C44—C45—C46—C410.2 (6)
Selected geometric parameters (Å, º) top
Rh1—Rh22.4241 (4)Rh2—O32.0358 (17)
Rh1—O12.034 (2)Rh2—O42.0279 (17)
Rh1—O22.028 (3)Rh2—N42.048 (3)
Rh1—N12.061 (2)Rh2—N52.067 (3)
Rh1—N22.071 (2)Rh2—N62.254 (3)
Rh1—N32.236 (3)
Rh2—Rh1—N3172.79 (7)Rh1—Rh2—N6174.59 (6)
 

Acknowledgements

We thank Dr Lee Daniels of Rigaku Americas for his training on the Rigaku XtalLAB diffractometer and his extended help in the completion of the structural determination. Support was provided by a Start Up Grant from ETSU. We thank Johnson Matthey for their generous loan of rhodium trichloride. We also thank Dr Scott J. Kirkby for useful conversations during the writing of this manuscript.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. & Quarshie, F. (2013b). Acta Cryst. E69, m639.  CSD CrossRef IUCr Journals Google Scholar
First citationEagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90–94.  Web of Science CrossRef CAS Google Scholar
First citationEagle, C. T., Kpogo, K. K., Zink, L. C. & Smith, A. E. (2012). Acta Cryst. E68, m877.  CSD CrossRef IUCr Journals Google Scholar
First citationEagle, C. T., Quarshie, F. & Cook, K. M. (2014). Acta Cryst. E70, m304.  CSD CrossRef IUCr Journals Google Scholar
First citationEagle, C. T., Quarshie, F., Ketron, M. E. & Atem-Tambe, N. (2013a). Acta Cryst. E69, m329.  CSD CrossRef IUCr Journals Google Scholar
First citationLifsey, R. S., Lin, X. Q., Chavan, M. Y., Ahsan, M. Q., Kadish, K. M. & Bear, J. L. (1987). Inorg. Chem. 26, 830–836.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear and CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m333-m334
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds