organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o976-o977

Crystal structure of 3-({[(thio­phen-2-yl)methyl­­idene]hydrazin­yl}carbon­yl)pyridinium chloride dihydrate

aPG & Research Department of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli-20, India, bDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, cDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, and dDepartment of Chemistry, Govt. Arts College (Autonomous), Thanthonimalai, Karur-5, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 July 2014; accepted 30 July 2014; online 6 August 2014)

In the title compound, C11H10N3OS+·Cl·2H2O, the organic cation exhibits a dihedral angle of 21.26 (8)° between the mean planes of the pyridine and thio­phene rings, and dihedral angles of 15.11 (9) and 6.49 (9)° between the mean planes of the hydrazide moiety and the pyridine and thio­phene rings, respectively. In the crystal, the organic cation, the chloride counter-anion and the two water mol­ecules of crystallization are linked through an intricate hydrogen-bonding network consisting of O—H⋯O, O—H⋯N, N—H⋯Cl, C—H⋯Cl, C—H⋯O, N—H⋯O, O—H⋯Cl and C—H⋯S inter­actions that consolidate a three-dimensional network.

1. Related literature

For structures of related hydrazone derivatives, see: Cheng et al. (2008[Cheng, H., Djukic, B., Harrington, L. E., Britten, J. F. & Lemaire, M. T. (2008). Acta Cryst. E64, o719.]); Jing et al. (2007[Jing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4029.]); Novina et al. (2013[Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2013). Acta Cryst. E69, o1177-o1178.], 2014[Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2014). Acta Cryst. E70, o793-o794.]). For the biological activity of hydrazones, see: Babahan et al. (2013[Babahan, I., Coban, E. P. & Biyik, H. (2013). Maejo Int. J. Sci. Technol. 7, 26-41.]); Kaplancikli et al. (2012[Kaplancikli, Z. A., Altintop, M. D., Özdemir, A., Turan-Zitouni, G., Khan, S. I. & Tabanca, N. (2012). Lett. Drug Des. Discov. 9, 310-315.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H10N3OS+·Cl·2H2O

  • Mr = 303.76

  • Triclinic, [P \overline 1]

  • a = 7.8781 (7) Å

  • b = 8.6928 (7) Å

  • c = 11.0999 (10) Å

  • α = 67.361 (4)°

  • β = 78.210 (4)°

  • γ = 77.119 (4)°

  • V = 677.97 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.30 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.860, Tmax = 0.879

  • 5444 measured reflections

  • 3222 independent reflections

  • 2761 reflections with I > 2σ(I)

  • Rint = 0.016

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.119

  • S = 1.05

  • 3222 reflections

  • 192 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1Wi 0.86 1.80 2.659 (2) 176
N2—H2N2⋯Cl 0.84 (2) 2.59 (2) 3.4011 (14) 163 (2)
O1W—H1O1⋯O1 0.87 (2) 2.11 (2) 2.8465 (18) 142 (2)
O1W—H1O1⋯N3 0.87 (2) 2.50 (2) 3.2648 (19) 148 (2)
O2W—H2O2⋯Clii 0.83 (3) 2.41 (3) 3.2305 (18) 171 (3)
O2W—H1O2⋯Cliii 0.85 (2) 2.37 (2) 3.2102 (16) 171 (2)
O1W—H2O1⋯O2W 0.86 (2) 1.91 (2) 2.764 (2) 170 (3)
C2—H2⋯S1iv 0.93 2.71 3.6359 (19) 179
C3—H3⋯Cl 0.93 2.72 3.629 (2) 166
C5—H5⋯O1i 0.93 2.41 3.207 (2) 143
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+1, -z+2; (iii) x, y+1, z-1; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For structures of related hydrazone derivatives, see: Cheng et al. (2008); Jing et al. (2007); Novina et al. (2013, 2014). For the biological activity of hydrazones, see: Babahan et al. (2013); Kaplancikli et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Thiophene-2-carboxaldehyde (1.2 ml, 0.01 mol) was added to an ethanolic solution of nicotinicacid hydrazide (1.37 g, 0.01 mol). After the addition was complete, the reaction mixture was stirred thoroughly at 273 K. To this mixture concentrated hydrochloric acid (five drops) was added and stirred. The reaction mixture was kept at this temperature for 30 min. On completion of the reaction, the resulting solid mass was seperated, filtered, dried and washed with diethylether. A pale yellow solid was obtained that was recrystallized from ethanol [yield: 82%].

Refinement top

The H atoms of the solvent water molecules and of the hydrazide moiety were located in a difference map and were refined freely. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å, N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines. R44(10), R22(10), R21(6), R21(7), R32(8) R33(7) and R33(10) ring motifs (Bernstein et al., 1995) are observed in the packing.
3-({[(Thiophen-2-yl)methylidene]hydrazinyl}carbonyl)pyridinium chloride dihydrate top
Crystal data top
C11H10N3OS+·Cl·2H2OZ = 2
Mr = 303.76F(000) = 316
Triclinic, P1Dx = 1.488 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8781 (7) ÅCell parameters from 3509 reflections
b = 8.6928 (7) Åθ = 2.6–28.0°
c = 11.0999 (10) ŵ = 0.44 mm1
α = 67.361 (4)°T = 296 K
β = 78.210 (4)°Block, pale yellow
γ = 77.119 (4)°0.35 × 0.30 × 0.30 mm
V = 677.97 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3222 independent reflections
Radiation source: fine-focus sealed tube2761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω and ϕ scanθmax = 28.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 910
Tmin = 0.860, Tmax = 0.879k = 711
5444 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.076P)2 + 0.1235P]
where P = (Fo2 + 2Fc2)/3
3222 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.32 e Å3
6 restraintsΔρmin = 0.40 e Å3
Crystal data top
C11H10N3OS+·Cl·2H2Oγ = 77.119 (4)°
Mr = 303.76V = 677.97 (10) Å3
Triclinic, P1Z = 2
a = 7.8781 (7) ÅMo Kα radiation
b = 8.6928 (7) ŵ = 0.44 mm1
c = 11.0999 (10) ÅT = 296 K
α = 67.361 (4)°0.35 × 0.30 × 0.30 mm
β = 78.210 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3222 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2761 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.879Rint = 0.016
5444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
3222 reflectionsΔρmin = 0.40 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17836 (6)0.47295 (5)0.80609 (4)0.04223 (14)
Cl0.17151 (7)0.25503 (5)1.42848 (4)0.05065 (16)
O10.38027 (16)0.80909 (14)1.00852 (10)0.0399 (3)
O1W0.3488 (2)0.82526 (19)0.75281 (13)0.0514 (3)
N20.31200 (17)0.55367 (15)1.14192 (12)0.0315 (3)
N30.27791 (16)0.52406 (15)1.03627 (12)0.0306 (3)
O2W0.0187 (2)0.9549 (2)0.67510 (14)0.0640 (4)
N10.47813 (17)0.91856 (17)1.31029 (13)0.0367 (3)
H1N10.52981.00371.29220.044*
C90.1401 (2)0.18261 (19)0.98202 (16)0.0367 (3)
H90.13350.09251.06180.044*
C40.37426 (18)0.74005 (17)1.23659 (14)0.0287 (3)
C60.35574 (18)0.70370 (17)1.11885 (13)0.0284 (3)
C50.4561 (2)0.87569 (19)1.21193 (15)0.0329 (3)
H50.49640.93811.12570.040*
C70.23292 (19)0.38064 (18)1.06447 (14)0.0318 (3)
H70.23000.30411.15060.038*
C80.18671 (19)0.33584 (18)0.96480 (14)0.0306 (3)
C110.1187 (2)0.3284 (3)0.76111 (18)0.0471 (4)
H110.09860.34810.67630.057*
C100.1041 (2)0.1815 (2)0.86327 (19)0.0466 (4)
H100.07320.08860.85580.056*
C30.3133 (3)0.6516 (2)1.36593 (16)0.0471 (4)
H30.25650.56001.38600.056*
C20.3378 (3)0.7008 (3)1.46513 (17)0.0610 (6)
H20.29620.64291.55220.073*
C10.4229 (3)0.8340 (2)1.43523 (17)0.0481 (4)
H10.44210.86551.50190.058*
H2N20.298 (3)0.482 (3)1.218 (2)0.057 (6)*
H1O10.337 (4)0.778 (3)0.8380 (17)0.086 (9)*
H2O20.019 (4)0.898 (3)0.644 (3)0.093 (10)*
H1O20.047 (3)1.041 (3)0.610 (2)0.078 (8)*
H2O10.243 (2)0.854 (3)0.734 (3)0.079 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0576 (3)0.0397 (2)0.0315 (2)0.01844 (18)0.00473 (17)0.00956 (16)
Cl0.0716 (3)0.0443 (3)0.0392 (2)0.0295 (2)0.0095 (2)0.00611 (18)
O10.0609 (7)0.0349 (5)0.0264 (5)0.0208 (5)0.0068 (5)0.0060 (4)
O1W0.0708 (9)0.0549 (8)0.0352 (7)0.0351 (7)0.0011 (6)0.0127 (6)
N20.0442 (7)0.0286 (6)0.0247 (6)0.0124 (5)0.0048 (5)0.0091 (5)
N30.0361 (6)0.0319 (6)0.0282 (6)0.0097 (5)0.0034 (5)0.0135 (5)
O2W0.0985 (12)0.0610 (9)0.0386 (7)0.0414 (8)0.0182 (7)0.0039 (6)
N10.0451 (7)0.0370 (7)0.0360 (7)0.0189 (6)0.0028 (5)0.0161 (5)
C90.0448 (8)0.0295 (7)0.0375 (8)0.0108 (6)0.0059 (6)0.0108 (6)
C40.0331 (7)0.0275 (6)0.0272 (7)0.0086 (5)0.0032 (5)0.0099 (5)
C60.0307 (7)0.0284 (6)0.0276 (7)0.0080 (5)0.0033 (5)0.0099 (5)
C50.0384 (7)0.0332 (7)0.0294 (7)0.0140 (6)0.0017 (5)0.0104 (6)
C70.0377 (7)0.0298 (7)0.0293 (7)0.0087 (5)0.0032 (5)0.0107 (5)
C80.0342 (7)0.0297 (7)0.0306 (7)0.0096 (5)0.0021 (5)0.0125 (5)
C110.0487 (9)0.0635 (11)0.0410 (9)0.0144 (8)0.0078 (7)0.0276 (8)
C100.0490 (9)0.0458 (9)0.0606 (11)0.0173 (7)0.0065 (8)0.0307 (8)
C30.0756 (13)0.0421 (9)0.0295 (8)0.0334 (9)0.0031 (7)0.0111 (7)
C20.1039 (17)0.0616 (12)0.0248 (8)0.0459 (12)0.0060 (9)0.0126 (8)
C10.0703 (12)0.0516 (10)0.0336 (8)0.0218 (9)0.0054 (8)0.0214 (7)
Geometric parameters (Å, º) top
S1—C111.6999 (18)C9—C101.408 (2)
S1—C81.7101 (15)C9—H90.9300
Cl—Cl0.0000 (12)C4—C51.3780 (19)
O1—C61.2226 (17)C4—C31.384 (2)
O1W—H1O10.868 (17)C4—C61.4985 (19)
O1W—H2O10.857 (16)C5—H50.9300
N2—C61.3389 (18)C7—C81.438 (2)
N2—N31.3804 (17)C7—H70.9300
N2—H2N20.83 (2)C11—C101.352 (3)
N3—C71.2764 (18)C11—H110.9300
O2W—H2O20.837 (17)C10—H100.9300
O2W—H1O20.851 (16)C3—C21.386 (2)
N1—C11.328 (2)C3—H30.9300
N1—C51.3344 (19)C2—C11.364 (3)
N1—H1N10.8600C2—H20.9300
C9—C81.393 (2)C1—H10.9300
C11—S1—C892.07 (8)N3—C7—C8120.85 (13)
H1O1—O1W—H2O1104 (2)N3—C7—H7119.6
C6—N2—N3117.65 (12)C8—C7—H7119.6
C6—N2—H2N2122.4 (16)C9—C8—C7126.41 (14)
N3—N2—H2N2119.8 (16)C9—C8—S1111.11 (11)
C7—N3—N2114.96 (12)C7—C8—S1122.47 (11)
H2O2—O2W—H1O2106 (2)C10—C11—S1111.95 (13)
C1—N1—C5122.12 (13)C10—C11—H11124.0
C1—N1—H1N1118.9S1—C11—H11124.0
C5—N1—H1N1118.9C11—C10—C9113.50 (15)
C8—C9—C10111.34 (14)C11—C10—H10123.2
C8—C9—H9124.3C9—C10—H10123.2
C10—C9—H9124.3C4—C3—C2119.31 (15)
C5—C4—C3118.07 (14)C4—C3—H3120.3
C5—C4—C6116.35 (12)C2—C3—H3120.3
C3—C4—C6125.57 (13)C1—C2—C3120.10 (16)
O1—C6—N2123.36 (13)C1—C2—H2120.0
O1—C6—C4119.87 (12)C3—C2—H2120.0
N2—C6—C4116.77 (12)N1—C1—C2119.56 (15)
N1—C5—C4120.82 (13)N1—C1—H1120.2
N1—C5—H5119.6C2—C1—H1120.2
C4—C5—H5119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1Wi0.861.802.659 (2)176
N2—H2N2···Cl0.84 (2)2.59 (2)3.4011 (14)163 (2)
O1W—H1O1···O10.87 (2)2.11 (2)2.8465 (18)142 (2)
O1W—H1O1···N30.87 (2)2.50 (2)3.2648 (19)148 (2)
O2W—H2O2···Clii0.83 (3)2.41 (3)3.2305 (18)171 (3)
O2W—H1O2···Cliii0.85 (2)2.37 (2)3.2102 (16)171 (2)
O1W—H2O1···O2W0.86 (2)1.91 (2)2.764 (2)170 (3)
C2—H2···S1iv0.932.713.6359 (19)179
C3—H3···Cl0.932.723.629 (2)166
C5—H5···O1i0.932.413.207 (2)143
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+2; (iii) x, y+1, z1; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1Wi0.861.802.659 (2)176
N2—H2N2···Cl0.84 (2)2.59 (2)3.4011 (14)163 (2)
O1W—H1O1···O10.868 (17)2.11 (2)2.8465 (18)142 (2)
O1W—H1O1···N30.868 (17)2.50 (2)3.2648 (19)148 (2)
O2W—H2O2···Clii0.83 (3)2.41 (3)3.2305 (18)171 (3)
O2W—H1O2···Cliii0.85 (2)2.37 (2)3.2102 (16)171 (2)
O1W—H2O1···O2W0.860 (19)1.91 (2)2.764 (2)170 (3)
C2—H2···S1iv0.932.713.6359 (19)179
C3—H3···Cl0.932.723.629 (2)166
C5—H5···O1i0.932.413.207 (2)143
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+2; (iii) x, y+1, z1; (iv) x, y, z+1.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, STIC, Cochin University of Science & Technology, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabahan, I., Coban, E. P. & Biyik, H. (2013). Maejo Int. J. Sci. Technol. 7, 26–41.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, H., Djukic, B., Harrington, L. E., Britten, J. F. & Lemaire, M. T. (2008). Acta Cryst. E64, o719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4029.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaplancikli, Z. A., Altintop, M. D., Özdemir, A., Turan-Zitouni, G., Khan, S. I. & Tabanca, N. (2012). Lett. Drug Des. Discov. 9, 310–315.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNovina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2013). Acta Cryst. E69, o1177–o1178.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNovina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2014). Acta Cryst. E70, o793–o794.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o976-o977
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds