metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m312-m313

Crystal structure of bis­­(4-nitro­aniline-κN1)(5,10,15,20-tetra­phenyl­por­phy­rin­ato-κ4N)cobalt(III) chloride di­chloro­methane monosolvate

aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, University of Monastir, Tunisia, and bUniversity of Dammam, PO Box 1982, Dammam, Kingdom of Saudi Arabia
*Correspondence e-mail: yassinbelghith@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 10 July 2014; accepted 13 July 2014; online 1 August 2014)

The reaction of [CoIII(TPP)Cl] (TPP is the dianion of 5,10,15,20-tetra­phenyl­porphyrin) with an excess of 4-nitro­aniline in di­chloro­methane leads to the title compound, [CoIII(C44H28N4)(C6H6N2O2)2]Cl·CH2Cl2. The CoIII ion lies on an inversion centre and is octa­hedrally coordinated by two N atoms of the NH2 groups of the two 4-nitro­aniline trans-axial ligands and four pyrrole N atoms of the porphyrin. The asymmetric unit contains one half of the [CoIII(TPP)(4-nitro­aniline)2]+ ion complex, one chloride counter-ion (lying on a twofold rotation axis) and one half di­chloro­methane solvent mol­ecule, where the C atom lies on a twofold rotation axis. The average equatorial Co—N(pyrrole) distance (Co—Np) is 1.982 (2) Å and the axial Co—N(4-nitro­aniline) bond length is 2.006 (2) Å. The crystal packing is stabilized by an N—H⋯Cl hydrogen bond between the N atom of the amino group of the 4-nitro­aniline axial ligand and the chloride counter-ion. The supra­molecular architecture is further stabilized by weak C—H⋯π inter­actions.

1. Related literature

For the synthesis of the title compound, see: Madure & Scheidt (1976[Madure, P. & Scheidt, W. R. (1976). Inorg. Chem. 15, 3182-3184.]). For related structures, see: Dhifet et al. (2010[Dhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208-3213.]); Konarev et al. (2003[Konarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837-3848.]); Jentzen et al. (1995[Jentzen, W., Simpson, M. C., Hobbs, J. D., Song, X., Ema, T., Nelson, N. Y., Medforth, C. J., Smith, K. M., Veyrat, M., Mazzanti, M., Ramasseul, R., Marchon, J.-C., Takeuchi, T., Goddard, W. A. & Shelnutt, J. A. (1995). J. Am. Chem. Soc. 117, 11085-11097.]); Mansour et al. (2013[Mansour, A., Belghith, Y., Belkhiria, M. S., Bujacz, A., Guérineau, V. & Nasri, H. (2013). J. Porphyrins Phthalocyanines, 17, 1094-1103.]); Zhang et al. (2005[Zhang, J., Liang, J.-L., Sun, X.-R., Zhou, H.-B., Zhu, N.-Y., Zhou, Z.-Y., Chan, P. W. H. & Che, C.-M. (2005). Inorg. Chem. 44, 3942-3954.]); Feng (2012[Feng, T.-J. (2012). Acta Cryst. E68, m1351.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C44H28N4)(C6H6N2O2)2]Cl·CH2Cl2

  • Mr = 1068.30

  • Monoclinic, P 2/c

  • a = 13.3527 (9) Å

  • b = 12.4492 (10) Å

  • c = 14.8935 (14) Å

  • β = 95.604 (4)°

  • V = 2463.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 150 K

  • 0.40 × 0.24 × 0.11 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.819, Tmax = 0.939

  • 20514 measured reflections

  • 4853 independent reflections

  • 4083 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.04

  • 4853 reflections

  • 338 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 and Cg8 are the centroids of the C11/C12–C16 and C17/C18–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl2 0.88 (4) 2.32 (3) 3.174 (2) 164 (3)
C13—H13⋯Cg8i 0.95 3.00 3.723 (3) 134
C20—H20⋯Cg7ii 0.95 2.94 3.788 (2) 150
Symmetry codes: (i) x, y-1, z; (ii) -x-1, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In continuation of our research on the crystal structures of porphyrin complexes (Dhifet et al., 2010) we herein report the crystal structure of the title compound. The coordination geometry around the CoIII is octahedral where the N-donor atoms from the four pyrrole moieties of the meso-tetraphenylporphyrin (TPP) occupy equatorial positions along the porphyrin core. The nitrogen atoms of the amino groups of the two 4-nitroaniline trans axial ligands occupy the axial positions (Fig. 1).

The average equatorial cobalt–pyrrole N atom distance [Co—Np = 1.982 (2) Å] is (i) longer than the one of the [CoII(TPP)] complex (Konarev et al., 2003) [Co—Np = 1.923 (4) Å which presents a very ruffled porphyrin core (Jentzen et al., 1995), (ii) very close the Co—Np bond length [1.9885 (5) Å] of the dimer {[CoII(TPP)(µ-4,4'-bipy)].2bipy}n (Mansour et al., 2013) which exhibits a practically planar porphyrin core. Thus, our synthetic derivative should display a planar conformation of the porphyrin core which is confirmed by the very small desplacements of the atoms of the porphyrin core with respect to the CoN4C20 mean plane [between -0.052 (1) Å and 0.041 (1) Å].

The distance between the cobalt cation and the nitrogen of the amino group of the 4-nitroaniline is 2.006 (2) Å. It is noteworthy that in the Cambridge Structural Database (CSD, Version 5.35; Allen, 2002) there are only one reported structure of a N-bonded 4-nitroaniline complex [PdCl2(p-NO2C6H4NH2)2] (Feng, 2012) and one reported structure of a N-bonded 4-nitroanilinato coordination compound [OsIV(Br-salch)(p-NO2C6H4NH)2] (Zhang et al., 2005) (Br-salch = (3,5-dibromosalicylidene)-1,2-cyclohexane-diamine].

The crystal packing of the title compound is stabilized by N—H···Cl intermolecular hydrogen bonding between the nitrogen N5 of amino group of the 4-nitroaniline and the Cl2 counterion and by weak C—H···π intermolecular interactions involving Cg pyrrole and phenyl rings (Table 1 and Fig. 2).

Related literature top

For the synthesis of the title compound, see: Madure & Scheidt (1976). For related structures, see: Dhifet et al. (2010); Konarev et al. (2003); Jentzen et al. (1995); Mansour et al. (2013); Zhang et al. (2005); Feng (2012). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a solution of [CoIII(TPP)Cl] (100 mg, 0.141 mmol) (Madure & Scheidt, 1976) in dichloromethane (10 mL) was added an excess of 4-nitroaniline (80 mg, 0.579 mmol). The reaction mixture was stirred at room temperature and at the end of the reaction, the color of the solution changed from red-orange to dark–red. Crystals of the title complex were obtained by diffusion of hexanes through the dichloromethane solution.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene) and 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic, methylene). The two H atoms of the amino group of the 4-nitroaniline axial ligand were found in the difference Fourier map and were refined independently with fixed isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at 50%. The H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal structure of the title compound plotted in projection along [100]. H atoms have been omitted.
Bis(4-nitroaniline-κN1)(5,10,15,20-tetraphenylporphyrinato-κ4N)cobalt(III) chloride dichloromethane monosolvate top
Crystal data top
[Co(C44H28N4)(C6H6N2O2)2]Cl·CH2Cl2F(000) = 1100
Mr = 1068.30Dx = 1.440 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yCCell parameters from 22812 reflections
a = 13.3527 (9) Åθ = 3.0–26.0°
b = 12.4492 (10) ŵ = 0.57 mm1
c = 14.8935 (14) ÅT = 150 K
β = 95.604 (4)°Prism, black
V = 2463.9 (3) Å30.40 × 0.24 × 0.11 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
4853 independent reflections
Radiation source: fine-focus sealed tube4083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
CCD rotation images, thin slices scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1516
Tmin = 0.819, Tmax = 0.939k = 1513
20514 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.037P)2 + 2.4863P]
where P = (Fo2 + 2Fc2)/3
4853 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
[Co(C44H28N4)(C6H6N2O2)2]Cl·CH2Cl2V = 2463.9 (3) Å3
Mr = 1068.30Z = 2
Monoclinic, P2/cMo Kα radiation
a = 13.3527 (9) ŵ = 0.57 mm1
b = 12.4492 (10) ÅT = 150 K
c = 14.8935 (14) Å0.40 × 0.24 × 0.11 mm
β = 95.604 (4)°
Data collection top
Bruker APEXII
diffractometer
4853 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4083 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.939Rint = 0.038
20514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.63 e Å3
4853 reflectionsΔρmin = 0.96 e Å3
338 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00000.00000.50000.01228 (11)
N10.02932 (12)0.15405 (13)0.48224 (11)0.0141 (4)
N20.14475 (12)0.03522 (14)0.50284 (11)0.0151 (4)
N30.01549 (13)0.01847 (15)0.63444 (12)0.0163 (4)
H3A0.034 (2)0.061 (3)0.640 (2)0.050*
H3B0.007 (2)0.046 (3)0.656 (2)0.050*
N40.37671 (17)0.1997 (2)0.79687 (15)0.0439 (6)
O10.44300 (15)0.1385 (2)0.82761 (14)0.0564 (6)
O20.38324 (17)0.2986 (2)0.79970 (15)0.0616 (7)
C10.03818 (15)0.23849 (16)0.47479 (13)0.0161 (4)
C20.14203 (15)0.23050 (17)0.47355 (14)0.0170 (4)
C30.19067 (15)0.13424 (17)0.48748 (14)0.0164 (4)
C40.29731 (16)0.12384 (18)0.48996 (15)0.0218 (5)
H40.34560.17960.47970.026*
C50.31655 (16)0.02085 (18)0.50949 (15)0.0215 (5)
H50.38050.00900.51760.026*
C60.22209 (15)0.03581 (17)0.51590 (14)0.0160 (4)
C70.21196 (15)0.14533 (17)0.53055 (14)0.0168 (4)
C80.12188 (15)0.19990 (17)0.52819 (14)0.0163 (4)
C90.11209 (16)0.31445 (17)0.53702 (15)0.0206 (5)
H90.16490.36420.54340.025*
C100.01374 (16)0.33815 (17)0.53458 (15)0.0200 (5)
H100.01560.40770.53840.024*
C110.20377 (15)0.32921 (17)0.45060 (15)0.0188 (4)
C120.25842 (16)0.38074 (18)0.51311 (16)0.0236 (5)
H120.25780.35310.57260.028*
C130.31392 (17)0.47253 (19)0.48862 (19)0.0305 (6)
H130.35040.50760.53180.037*
C140.31641 (18)0.51302 (19)0.40228 (19)0.0321 (6)
H140.35420.57590.38610.038*
C150.26382 (18)0.46183 (19)0.33937 (18)0.0313 (6)
H150.26610.48900.27960.038*
C160.20733 (17)0.37009 (18)0.36355 (16)0.0253 (5)
H160.17100.33530.32010.030*
C170.30262 (15)0.20696 (16)0.55320 (14)0.0172 (4)
C180.38252 (15)0.22896 (18)0.48905 (15)0.0203 (5)
H180.37990.20610.42850.024*
C190.46643 (16)0.28433 (18)0.51305 (16)0.0232 (5)
H190.52030.30010.46850.028*
C200.47187 (16)0.31632 (19)0.60080 (17)0.0267 (5)
H200.52980.35310.61710.032*
C210.39250 (18)0.2947 (2)0.66542 (17)0.0313 (6)
H210.39610.31630.72620.038*
C220.30775 (17)0.24141 (19)0.64141 (16)0.0262 (5)
H220.25280.22840.68560.031*
C230.10649 (15)0.06513 (17)0.67693 (13)0.0179 (4)
C240.11492 (17)0.17626 (19)0.68680 (15)0.0232 (5)
H240.06000.22150.66680.028*
C250.20399 (19)0.2201 (2)0.72605 (16)0.0311 (6)
H250.21100.29570.73310.037*
C260.28217 (18)0.1523 (2)0.75473 (15)0.0307 (6)
C270.27532 (17)0.0420 (2)0.74682 (16)0.0304 (6)
H270.33020.00280.76790.036*
C280.18596 (17)0.00184 (19)0.70711 (15)0.0237 (5)
H280.17930.07750.70060.028*
Cl20.00000.19408 (6)0.75000.02607 (19)
Cl10.07442 (8)0.55949 (7)0.67168 (6)0.0712 (3)
C290.00000.4862 (4)0.75000.0670 (15)
H29A0.04410.43910.78250.080*0.50
H29B0.04410.43910.71750.080*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01021 (19)0.0130 (2)0.0136 (2)0.00020 (14)0.00090 (14)0.00036 (15)
N10.0125 (8)0.0149 (9)0.0149 (9)0.0002 (7)0.0015 (6)0.0006 (7)
N20.0136 (8)0.0149 (9)0.0170 (9)0.0001 (7)0.0018 (7)0.0012 (7)
N30.0151 (9)0.0171 (10)0.0164 (9)0.0001 (7)0.0007 (7)0.0000 (7)
N40.0283 (13)0.078 (2)0.0256 (12)0.0227 (13)0.0045 (10)0.0145 (12)
O10.0248 (10)0.106 (2)0.0370 (12)0.0146 (12)0.0023 (9)0.0107 (12)
O20.0546 (14)0.0739 (18)0.0554 (14)0.0394 (12)0.0005 (11)0.0199 (12)
C10.0178 (10)0.0154 (10)0.0151 (10)0.0008 (8)0.0015 (8)0.0008 (8)
C20.0158 (10)0.0172 (11)0.0177 (11)0.0016 (8)0.0011 (8)0.0009 (8)
C30.0161 (10)0.0174 (11)0.0157 (10)0.0028 (8)0.0018 (8)0.0005 (8)
C40.0148 (10)0.0199 (12)0.0306 (13)0.0030 (9)0.0020 (9)0.0009 (9)
C50.0123 (10)0.0228 (12)0.0298 (12)0.0004 (8)0.0043 (9)0.0022 (9)
C60.0127 (10)0.0194 (11)0.0160 (10)0.0007 (8)0.0021 (8)0.0006 (8)
C70.0144 (10)0.0195 (11)0.0163 (10)0.0031 (8)0.0002 (8)0.0012 (8)
C80.0159 (10)0.0173 (11)0.0154 (10)0.0020 (8)0.0005 (8)0.0005 (8)
C90.0177 (10)0.0179 (11)0.0257 (12)0.0038 (9)0.0000 (9)0.0002 (9)
C100.0212 (11)0.0136 (11)0.0250 (12)0.0002 (8)0.0002 (9)0.0009 (9)
C110.0122 (10)0.0149 (11)0.0289 (12)0.0021 (8)0.0003 (8)0.0015 (9)
C120.0198 (11)0.0193 (12)0.0317 (13)0.0011 (9)0.0025 (9)0.0035 (9)
C130.0183 (11)0.0211 (12)0.0517 (17)0.0021 (9)0.0024 (11)0.0121 (11)
C140.0210 (12)0.0164 (12)0.0570 (18)0.0022 (9)0.0058 (11)0.0011 (11)
C150.0285 (13)0.0226 (13)0.0416 (15)0.0005 (10)0.0034 (11)0.0092 (11)
C160.0227 (11)0.0231 (12)0.0300 (13)0.0020 (9)0.0017 (9)0.0003 (10)
C170.0134 (10)0.0139 (10)0.0245 (11)0.0003 (8)0.0031 (8)0.0007 (8)
C180.0157 (10)0.0212 (11)0.0241 (12)0.0018 (9)0.0018 (8)0.0025 (9)
C190.0140 (10)0.0232 (12)0.0319 (13)0.0010 (9)0.0000 (9)0.0026 (10)
C200.0172 (11)0.0263 (13)0.0377 (14)0.0061 (9)0.0089 (10)0.0027 (10)
C210.0320 (13)0.0371 (15)0.0256 (13)0.0085 (11)0.0073 (10)0.0076 (11)
C220.0220 (11)0.0306 (13)0.0253 (12)0.0069 (10)0.0012 (9)0.0026 (10)
C230.0188 (10)0.0233 (12)0.0116 (10)0.0043 (9)0.0020 (8)0.0021 (8)
C240.0265 (12)0.0240 (12)0.0190 (11)0.0021 (9)0.0020 (9)0.0023 (9)
C250.0378 (14)0.0310 (14)0.0251 (13)0.0130 (11)0.0061 (10)0.0081 (10)
C260.0245 (12)0.0509 (17)0.0165 (12)0.0146 (11)0.0011 (9)0.0084 (11)
C270.0204 (12)0.0479 (16)0.0222 (12)0.0027 (11)0.0011 (9)0.0022 (11)
C280.0233 (11)0.0276 (12)0.0197 (11)0.0018 (9)0.0009 (9)0.0004 (9)
Cl20.0409 (5)0.0192 (4)0.0185 (4)0.0000.0051 (3)0.000
Cl10.1153 (8)0.0558 (5)0.0398 (5)0.0400 (5)0.0065 (5)0.0044 (4)
C290.059 (3)0.045 (3)0.089 (4)0.0000.033 (3)0.000
Geometric parameters (Å, º) top
Co1—N1i1.9802 (17)C11—C121.394 (3)
Co1—N11.9802 (17)C12—C131.391 (3)
Co1—N2i1.9863 (16)C12—H120.9500
Co1—N21.9863 (16)C13—C141.379 (4)
Co1—N3i2.0060 (17)C13—H130.9500
Co1—N32.0060 (17)C14—C151.380 (4)
N1—C11.382 (3)C14—H140.9500
N1—C8i1.384 (3)C15—C161.396 (3)
N2—C31.386 (3)C15—H150.9500
N2—C61.388 (3)C16—H160.9500
N3—C231.437 (3)C17—C221.390 (3)
N3—H3A0.86 (3)C17—C181.388 (3)
N3—H3B0.87 (3)C18—C191.392 (3)
N4—O11.223 (3)C18—H180.9500
N4—O21.234 (4)C19—C201.375 (3)
N4—C261.477 (3)C19—H190.9500
C1—C21.389 (3)C20—C211.387 (3)
C1—C10i1.435 (3)C20—H200.9500
C2—C31.388 (3)C21—C221.388 (3)
C2—C111.500 (3)C21—H210.9500
C3—C41.434 (3)C22—H220.9500
C4—C51.345 (3)C23—C281.389 (3)
C4—H40.9500C23—C241.395 (3)
C5—C61.440 (3)C24—C251.385 (3)
C5—H50.9500C24—H240.9500
C6—C71.385 (3)C25—C261.378 (4)
C7—C81.385 (3)C25—H250.9500
C7—C171.499 (3)C26—C271.380 (4)
C8—N1i1.384 (3)C27—C281.391 (3)
C8—C91.437 (3)C27—H270.9500
C9—C101.350 (3)C28—H280.9500
C9—H90.9500Cl1—C291.719 (3)
C10—C1i1.435 (3)C29—Cl1ii1.719 (3)
C10—H100.9500C29—H29A0.9900
C11—C161.389 (3)C29—H29B0.9900
N1i—Co1—N1180.0C16—C11—C12118.8 (2)
N1i—Co1—N2i89.69 (7)C16—C11—C2118.72 (19)
N1—Co1—N2i90.31 (7)C12—C11—C2122.5 (2)
N1i—Co1—N290.31 (7)C13—C12—C11120.2 (2)
N1—Co1—N289.69 (7)C13—C12—H12119.9
N2i—Co1—N2180.0C11—C12—H12119.9
N1i—Co1—N3i91.14 (7)C14—C13—C12120.6 (2)
N1—Co1—N3i88.86 (7)C14—C13—H13119.7
N2i—Co1—N3i87.66 (7)C12—C13—H13119.7
N2—Co1—N3i92.34 (7)C13—C14—C15119.8 (2)
N1i—Co1—N388.86 (7)C13—C14—H14120.1
N1—Co1—N391.14 (7)C15—C14—H14120.1
N2i—Co1—N392.34 (7)C14—C15—C16120.0 (2)
N2—Co1—N387.66 (7)C14—C15—H15120.0
N3i—Co1—N3180.000 (15)C16—C15—H15120.0
C1—N1—C8i105.06 (16)C11—C16—C15120.6 (2)
C1—N1—Co1127.70 (13)C11—C16—H16119.7
C8i—N1—Co1127.22 (14)C15—C16—H16119.7
C3—N2—C6105.46 (16)C22—C17—C18118.96 (19)
C3—N2—Co1127.49 (13)C22—C17—C7119.08 (19)
C6—N2—Co1126.97 (14)C18—C17—C7121.95 (19)
C23—N3—Co1119.10 (13)C17—C18—C19120.3 (2)
C23—N3—H3A110 (2)C17—C18—H18119.8
Co1—N3—H3A100 (2)C19—C18—H18119.8
C23—N3—H3B111 (2)C20—C19—C18120.4 (2)
Co1—N3—H3B105 (2)C20—C19—H19119.8
H3A—N3—H3B113 (3)C18—C19—H19119.8
O1—N4—O2124.2 (2)C19—C20—C21119.7 (2)
O1—N4—C26117.9 (3)C19—C20—H20120.1
O2—N4—C26117.9 (3)C21—C20—H20120.1
N1—C1—C2126.09 (19)C22—C21—C20120.1 (2)
N1—C1—C10i110.37 (17)C22—C21—H21120.0
C2—C1—C10i123.51 (19)C20—C21—H21120.0
C3—C2—C1122.76 (19)C17—C22—C21120.5 (2)
C3—C2—C11119.10 (17)C17—C22—H22119.8
C1—C2—C11118.04 (18)C21—C22—H22119.8
C2—C3—N2125.91 (18)C28—C23—C24120.7 (2)
C2—C3—C4124.20 (19)C28—C23—N3119.1 (2)
N2—C3—C4109.87 (18)C24—C23—N3120.2 (2)
C5—C4—C3107.63 (19)C25—C24—C23119.5 (2)
C5—C4—H4126.2C25—C24—H24120.2
C3—C4—H4126.2C23—C24—H24120.2
C4—C5—C6107.25 (18)C26—C25—C24118.8 (2)
C4—C5—H5126.4C26—C25—H25120.6
C6—C5—H5126.4C24—C25—H25120.6
C7—C6—N2125.92 (18)C25—C26—C27122.8 (2)
C7—C6—C5124.32 (19)C25—C26—N4118.5 (2)
N2—C6—C5109.74 (18)C27—C26—N4118.7 (2)
C6—C7—C8123.40 (19)C26—C27—C28118.3 (2)
C6—C7—C17118.07 (18)C26—C27—H27120.9
C8—C7—C17118.49 (19)C28—C27—H27120.9
C7—C8—N1i126.01 (19)C23—C28—C27119.9 (2)
C7—C8—C9123.79 (19)C23—C28—H28120.0
N1i—C8—C9110.20 (18)C27—C28—H28120.0
C10—C9—C8107.13 (19)Cl1ii—C29—Cl1115.8 (3)
C10—C9—H9126.4Cl1ii—C29—H29A108.3
C8—C9—H9126.4Cl1—C29—H29A108.3
C9—C10—C1i107.11 (19)Cl1ii—C29—H29B108.3
C9—C10—H10126.4Cl1—C29—H29B108.3
C1i—C10—H10126.4H29A—C29—H29B107.4
N1i—Co1—N1—C132 (100)C5—C6—C7—C8173.8 (2)
N2i—Co1—N1—C1178.83 (17)N2—C6—C7—C17173.47 (19)
N2—Co1—N1—C11.17 (17)C5—C6—C7—C178.3 (3)
N3i—Co1—N1—C191.18 (17)C6—C7—C8—N1i4.9 (3)
N3—Co1—N1—C188.82 (17)C17—C7—C8—N1i172.92 (19)
N1i—Co1—N1—C8i150 (100)C6—C7—C8—C9175.5 (2)
N2i—Co1—N1—C8i1.01 (17)C17—C7—C8—C96.7 (3)
N2—Co1—N1—C8i178.99 (17)C7—C8—C9—C10178.0 (2)
N3i—Co1—N1—C8i86.64 (17)N1i—C8—C9—C101.7 (2)
N3—Co1—N1—C8i93.36 (17)C8—C9—C10—C1i0.6 (2)
N1i—Co1—N2—C3174.74 (17)C3—C2—C11—C16108.9 (2)
N1—Co1—N2—C35.26 (17)C1—C2—C11—C1667.5 (3)
N2i—Co1—N2—C310 (11)C3—C2—C11—C1270.5 (3)
N3i—Co1—N2—C383.59 (17)C1—C2—C11—C12113.2 (2)
N3—Co1—N2—C396.41 (17)C16—C11—C12—C131.1 (3)
N1i—Co1—N2—C61.48 (17)C2—C11—C12—C13179.5 (2)
N1—Co1—N2—C6178.52 (17)C11—C12—C13—C140.6 (3)
N2i—Co1—N2—C6173 (11)C12—C13—C14—C150.3 (4)
N3i—Co1—N2—C692.63 (17)C13—C14—C15—C160.8 (4)
N3—Co1—N2—C687.37 (17)C12—C11—C16—C150.7 (3)
N1i—Co1—N3—C23125.89 (16)C2—C11—C16—C15180.0 (2)
N1—Co1—N3—C2354.11 (16)C14—C15—C16—C110.3 (4)
N2i—Co1—N3—C2336.25 (16)C6—C7—C17—C22105.9 (2)
N2—Co1—N3—C23143.75 (16)C8—C7—C17—C2272.1 (3)
N3i—Co1—N3—C2388 (33)C6—C7—C17—C1872.9 (3)
C8i—N1—C1—C2174.5 (2)C8—C7—C17—C18109.1 (2)
Co1—N1—C1—C23.7 (3)C22—C17—C18—C190.2 (3)
C8i—N1—C1—C10i3.7 (2)C7—C17—C18—C19178.6 (2)
Co1—N1—C1—C10i178.12 (14)C17—C18—C19—C201.1 (3)
N1—C1—C2—C35.6 (3)C18—C19—C20—C211.0 (4)
C10i—C1—C2—C3176.5 (2)C19—C20—C21—C220.3 (4)
N1—C1—C2—C11170.66 (19)C18—C17—C22—C211.6 (3)
C10i—C1—C2—C117.3 (3)C7—C17—C22—C21177.3 (2)
C1—C2—C3—N20.9 (3)C20—C21—C22—C171.6 (4)
C11—C2—C3—N2175.24 (19)Co1—N3—C23—C2891.4 (2)
C1—C2—C3—C4177.6 (2)Co1—N3—C23—C2488.0 (2)
C11—C2—C3—C46.2 (3)C28—C23—C24—C250.8 (3)
C6—N2—C3—C2178.0 (2)N3—C23—C24—C25178.53 (19)
Co1—N2—C3—C25.2 (3)C23—C24—C25—C260.2 (3)
C6—N2—C3—C40.7 (2)C24—C25—C26—C270.6 (4)
Co1—N2—C3—C4176.13 (14)C24—C25—C26—N4179.7 (2)
C2—C3—C4—C5176.8 (2)O1—N4—C26—C25175.1 (2)
N2—C3—C4—C52.0 (3)O2—N4—C26—C254.1 (3)
C3—C4—C5—C62.3 (3)O1—N4—C26—C274.0 (3)
C3—N2—C6—C7177.7 (2)O2—N4—C26—C27176.8 (2)
Co1—N2—C6—C70.8 (3)C25—C26—C27—C280.9 (4)
C3—N2—C6—C50.7 (2)N4—C26—C27—C28179.9 (2)
Co1—N2—C6—C5177.58 (14)C24—C23—C28—C270.6 (3)
C4—C5—C6—C7176.5 (2)N3—C23—C28—C27178.75 (19)
C4—C5—C6—N21.9 (3)C26—C27—C28—C230.2 (3)
N2—C6—C7—C84.4 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg7 and Cg8 are the centroids of the C11/C12–C16 and C17/C18–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl20.88 (4)2.32 (3)3.174 (2)164 (3)
C13—H13···Cg8iii0.953.003.723 (3)134
C20—H20···Cg7iv0.952.943.788 (2)150
Symmetry codes: (iii) x, y1, z; (iv) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg7 and Cg8 are the centroids of the C11/C12–C16 and C17/C18–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl20.88 (4)2.32 (3)3.174 (2)164 (3)
C13—H13···Cg8i0.953.003.723 (3)134
C20—H20···Cg7ii0.952.943.788 (2)150
Symmetry codes: (i) x, y1, z; (ii) x1, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208–3213.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, T.-J. (2012). Acta Cryst. E68, m1351.  CSD CrossRef IUCr Journals Google Scholar
First citationJentzen, W., Simpson, M. C., Hobbs, J. D., Song, X., Ema, T., Nelson, N. Y., Medforth, C. J., Smith, K. M., Veyrat, M., Mazzanti, M., Ramasseul, R., Marchon, J.-C., Takeuchi, T., Goddard, W. A. & Shelnutt, J. A. (1995). J. Am. Chem. Soc. 117, 11085–11097.  CrossRef CAS Web of Science Google Scholar
First citationKonarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837–3848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMadure, P. & Scheidt, W. R. (1976). Inorg. Chem. 15, 3182–3184.  Google Scholar
First citationMansour, A., Belghith, Y., Belkhiria, M. S., Bujacz, A., Guérineau, V. & Nasri, H. (2013). J. Porphyrins Phthalocyanines, 17, 1094–1103.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Liang, J.-L., Sun, X.-R., Zhou, H.-B., Zhu, N.-Y., Zhou, Z.-Y., Chan, P. W. H. & Che, C.-M. (2005). Inorg. Chem. 44, 3942–3954.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m312-m313
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds