organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o907-o908

Crystal structure of 2-[(E)-2-(2-chloro­benzyl­­idene)hydrazin-1-yl]-4-phenyl-1,3-thia­zole

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 11 July 2014; accepted 14 July 2014; online 1 August 2014)

The asymmetric unit of the title compound, C16H12ClN3S, contains two independent mol­ecules whose conformations differ primarily in the orientations of the phenyl and chloro­benzene rings with respect to the thia­zole ring. In the first mol­ecule, the dihedral angles are 3.0 (1) and 9.2 (1)°, respectively, for the phenyl ring and the chloro­benzene ring, while in the second mol­ecule, the corresponding angles are 18.6 (1) and 23.4 (1)°. In the crystal, the two independent mol­ecules are associated via complementary N—H⋯N hydrogen bonds into a dimer. These dimers are associated through weak C—H⋯Cl and C—H⋯S inter­actions into supra­molecular chains propagating along the a-axis direction.

1. Related literature

For pharmaceutical properties of thia­zole derivatives, see: Siddiqui et al. (2011[Siddiqui, N., Arya, S. K., Ahsan, W. & Azad, B. (2011). Int. J. Drug Dev. Res., 3, 55-67.], 2009[Siddiqui, N., Arshad, M. F., Ahsan, W. & Alam, M. S. (2009). IJPSDR, 1, 136-143.]); Bakris et al. (2004[Bakris, G. L., Bank, A. J., Kass, D. A., Neutel, J. M., Preston, R. A. & Oparil, S. (2004). Am. J. Hypertens. 17, 23S-30S.]); Little et al. (2005[Little, W. C., Zile, M. R., Kitzman, D. W., Hundley, W. G., O'Brien, T. X. & Degroof, R. C. (2005). J. Card. Fail. 11, 191-195.]). For the synthesis of the title compound, see: Mohamed et al. (2013[Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1324.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H12ClN3S

  • Mr = 313.80

  • Orthorhombic, P b c a

  • a = 16.981 (4) Å

  • b = 8.1081 (17) Å

  • c = 41.660 (9) Å

  • V = 5736 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 150 K

  • 0.22 × 0.22 × 0.05 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.80, Tmax = 0.98

  • 99305 measured reflections

  • 7415 independent reflections

  • 5577 reflections with I > 2σ(I)

  • Rint = 0.086

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.109

  • S = 1.04

  • 7415 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N6 0.91 2.02 2.901 (2) 163
N5—H5A⋯N3 0.91 2.05 2.946 (2) 166
C9—H9⋯S1i 0.95 2.97 3.696 (2) 134
C25—H25⋯Cl1ii 0.95 2.92 3.720 (2) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazole containing compounds have been reported to possess large number of biological properties (Siddiqui et al., 2011; Siddiqui et al., 2009). Sulfathiazol (antimicrobial drug), Ritonavir (antiretroviral drug), Abafungin (antifungal drug), Bleomycine and Tiazofurin (antineoplastic drug) are common drugs with thiazole-based structures. Alagebrium (formerly known as ALT-711) is also a thiazolium salt which was the first drug used for breaking the protein crosslinks caused by advanced glycation endproducts (AGEs). Through this effect Alagebrium is designed to reverse the stiffening of blood vessel walls that contributes to hypertension and cardiovascular disease (Bakris et al., 2004; Little et al., 2005). İn this context and as part of our study in synthesis of potential bioactive heterocyclic molecules, we report the synthesis and crystal structure of the title compound.

There are two independent molecules of the title compound in the asymmetric unit whose conformations differ primarily in the orientations of the phenyl rings with respect to the thiazole ring. For molecule 1, the dihedral angles are 3.0 (1) and 9.2 (1)°, respectively, for rings C1–C6 and C11–C16 while for molecule 2 the corresponding angles are 18.6 (1) and 23.4 (1)°.

In the crystal structure, the two independent molecules are associated via complementary N—H···N hydrogen bonds (Fig. 1 and Table 1). These pairs are associated into chains running along the a axis through weak C—H···Cl interactions (Table 1) and weak C—H···S interactions (Table 1).

Related literature top

For pharmaceutical properties of thiazole derivatives, see: Siddiqui et al. (2011, 2009); Bakris et al. (2004); Little et al. (2005). For the synthesis of the title compound, see: Mohamed et al. (2013).

Experimental top

The title compound has been prepared according to our reported method (Mohamed et al., 2013). Colourless crystals suitable for X-ray diffraction have been obtained by crystallization of the crude product (I) from ethanol.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and, following initial independent refinement to verify their presence, their coordinates were adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Bruker, 2013); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2013).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with the complementary N—H···N hydrogen bonds shown as dotted lines. Ellipsoids are drawn at the 50% probability level.
2-[(E)-2-[(2-chlorophenyl)methylidene]hydrazin-1-yl]-4-phenyl-1,3-thiazole top
Crystal data top
C16H12ClN3SDx = 1.454 Mg m3
Mr = 313.80Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9986 reflections
a = 16.981 (4) Åθ = 2.6–28.7°
b = 8.1081 (17) ŵ = 0.41 mm1
c = 41.660 (9) ÅT = 150 K
V = 5736 (2) Å3Plate, colourless
Z = 160.22 × 0.22 × 0.05 mm
F(000) = 2592
Data collection top
Bruker SMART APEX CCD
diffractometer
7415 independent reflections
Radiation source: fine-focus sealed tube5577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 8.3660 pixels mm-1θmax = 28.8°, θmin = 2.0°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1010
Tmin = 0.80, Tmax = 0.98l = 5556
99305 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0371P)2 + 4.8434P]
where P = (Fo2 + 2Fc2)/3
7415 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H12ClN3SV = 5736 (2) Å3
Mr = 313.80Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 16.981 (4) ŵ = 0.41 mm1
b = 8.1081 (17) ÅT = 150 K
c = 41.660 (9) Å0.22 × 0.22 × 0.05 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
5577 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.98Rint = 0.086
99305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
7415 reflectionsΔρmin = 0.33 e Å3
379 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at ϕ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in ϕ, collected at ω = -30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and, following initial independent refinement to verify their presence, their coordinates were adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42874 (3)0.85456 (8)0.45306 (2)0.04262 (15)
S10.67429 (3)0.24168 (6)0.37657 (2)0.02704 (12)
N10.57267 (10)0.4806 (2)0.40738 (4)0.0248 (3)
N20.53242 (10)0.3466 (2)0.39636 (4)0.0266 (4)
H2A0.47890.34750.39720.032*
N30.54083 (9)0.0943 (2)0.36976 (4)0.0235 (3)
C10.52954 (12)0.8719 (3)0.44674 (5)0.0266 (4)
C20.56720 (14)1.0112 (3)0.45834 (5)0.0325 (5)
H20.53821.09430.46920.039*
C30.64723 (14)1.0279 (3)0.45392 (5)0.0354 (5)
H30.67371.12250.46200.042*
C40.68913 (13)0.9078 (3)0.43785 (5)0.0326 (5)
H40.74420.92050.43460.039*
C50.65150 (12)0.7700 (3)0.42652 (5)0.0268 (4)
H50.68110.68810.41560.032*
C60.57031 (11)0.7473 (2)0.43076 (4)0.0229 (4)
C70.53147 (11)0.5992 (2)0.41884 (5)0.0244 (4)
H70.47570.59050.41960.029*
C80.57334 (11)0.2272 (2)0.38144 (4)0.0221 (4)
C90.67232 (11)0.0512 (2)0.35830 (5)0.0263 (4)
H90.71750.00430.35030.032*
C100.59793 (11)0.0091 (2)0.35689 (4)0.0226 (4)
C110.57380 (11)0.1716 (2)0.34490 (5)0.0239 (4)
C120.62690 (12)0.2731 (3)0.32880 (5)0.0295 (4)
H120.67920.23580.32520.035*
C130.60464 (13)0.4266 (3)0.31801 (5)0.0339 (5)
H130.64170.49470.30730.041*
C140.52845 (14)0.4821 (3)0.32276 (5)0.0336 (5)
H140.51310.58770.31510.040*
C150.47497 (13)0.3835 (3)0.33864 (5)0.0321 (5)
H150.42250.42100.34180.039*
C160.49763 (12)0.2292 (3)0.34997 (5)0.0276 (4)
H160.46080.16270.36130.033*
Cl20.51373 (3)0.18369 (8)0.25484 (2)0.03684 (14)
S20.23921 (3)0.26852 (7)0.35529 (2)0.03059 (13)
N40.35122 (10)0.0848 (2)0.31580 (4)0.0254 (4)
N50.38660 (10)0.1670 (2)0.34063 (4)0.0279 (4)
H5A0.43650.13860.34640.033*
N60.36410 (9)0.2951 (2)0.39001 (4)0.0242 (3)
C170.41198 (12)0.1953 (3)0.25184 (5)0.0255 (4)
C180.38063 (13)0.2967 (3)0.22837 (5)0.0301 (4)
H180.41450.35750.21460.036*
C190.30033 (13)0.3091 (3)0.22512 (5)0.0317 (5)
H190.27860.37850.20900.038*
C200.25097 (13)0.2208 (3)0.24522 (5)0.0327 (5)
H200.19550.22940.24290.039*
C210.28249 (12)0.1202 (3)0.26869 (5)0.0287 (4)
H210.24820.06080.28250.034*
C220.36410 (12)0.1042 (2)0.27246 (5)0.0245 (4)
C230.39660 (12)0.0014 (3)0.29797 (5)0.0258 (4)
H230.45190.00140.30140.031*
C240.33820 (11)0.2402 (2)0.36249 (5)0.0232 (4)
C250.23213 (12)0.3603 (3)0.39246 (5)0.0299 (5)
H250.18470.40300.40130.036*
C260.30284 (11)0.3639 (2)0.40748 (5)0.0236 (4)
C270.31902 (11)0.4215 (2)0.44032 (5)0.0233 (4)
C280.26964 (12)0.5346 (3)0.45548 (5)0.0281 (4)
H280.22540.57740.44430.034*
C290.28430 (13)0.5849 (3)0.48644 (5)0.0325 (5)
H290.25040.66270.49640.039*
C300.34853 (14)0.5223 (3)0.50318 (5)0.0353 (5)
H300.35860.55680.52460.042*
C310.39759 (13)0.4097 (3)0.48843 (5)0.0334 (5)
H310.44150.36670.49980.040*
C320.38344 (12)0.3590 (3)0.45732 (5)0.0269 (4)
H320.41760.28130.44740.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0279 (3)0.0448 (3)0.0552 (4)0.0053 (2)0.0023 (2)0.0128 (3)
S10.0191 (2)0.0260 (2)0.0360 (3)0.00266 (19)0.00276 (19)0.0003 (2)
N10.0269 (8)0.0228 (8)0.0246 (8)0.0049 (7)0.0031 (7)0.0022 (7)
N20.0205 (8)0.0251 (9)0.0341 (9)0.0045 (7)0.0005 (7)0.0074 (7)
N30.0202 (7)0.0236 (8)0.0266 (8)0.0010 (6)0.0007 (6)0.0024 (7)
C10.0280 (10)0.0266 (10)0.0253 (10)0.0033 (8)0.0039 (8)0.0001 (8)
C20.0422 (12)0.0242 (10)0.0311 (11)0.0037 (9)0.0050 (9)0.0056 (9)
C30.0445 (13)0.0260 (11)0.0356 (12)0.0073 (10)0.0116 (10)0.0035 (9)
C40.0326 (11)0.0320 (11)0.0333 (11)0.0066 (9)0.0033 (9)0.0002 (9)
C50.0284 (10)0.0275 (10)0.0246 (10)0.0028 (8)0.0002 (8)0.0012 (8)
C60.0272 (9)0.0230 (9)0.0184 (9)0.0020 (8)0.0031 (7)0.0003 (7)
C70.0237 (9)0.0258 (10)0.0236 (9)0.0026 (8)0.0019 (7)0.0011 (8)
C80.0195 (8)0.0245 (9)0.0224 (9)0.0010 (7)0.0012 (7)0.0006 (7)
C90.0227 (9)0.0267 (10)0.0295 (10)0.0019 (8)0.0008 (8)0.0025 (8)
C100.0232 (9)0.0243 (10)0.0202 (9)0.0030 (7)0.0015 (7)0.0023 (7)
C110.0268 (9)0.0233 (10)0.0214 (9)0.0014 (8)0.0041 (7)0.0015 (7)
C120.0293 (10)0.0300 (11)0.0292 (10)0.0032 (9)0.0006 (8)0.0032 (9)
C130.0391 (12)0.0302 (11)0.0325 (12)0.0065 (9)0.0008 (9)0.0042 (9)
C140.0454 (13)0.0241 (10)0.0313 (11)0.0014 (9)0.0036 (10)0.0025 (9)
C150.0342 (11)0.0287 (11)0.0334 (11)0.0042 (9)0.0025 (9)0.0030 (9)
C160.0300 (10)0.0249 (10)0.0278 (10)0.0002 (8)0.0001 (8)0.0002 (8)
Cl20.0278 (3)0.0471 (3)0.0356 (3)0.0053 (2)0.0013 (2)0.0076 (2)
S20.0236 (2)0.0383 (3)0.0298 (3)0.0043 (2)0.00573 (19)0.0034 (2)
N40.0273 (8)0.0264 (9)0.0226 (8)0.0035 (7)0.0023 (6)0.0020 (7)
N50.0219 (8)0.0343 (10)0.0274 (9)0.0002 (7)0.0024 (7)0.0091 (7)
N60.0212 (8)0.0261 (9)0.0254 (8)0.0010 (7)0.0002 (6)0.0030 (7)
C170.0278 (10)0.0262 (10)0.0227 (9)0.0019 (8)0.0022 (7)0.0030 (8)
C180.0400 (12)0.0246 (10)0.0257 (10)0.0031 (9)0.0001 (9)0.0003 (8)
C190.0420 (12)0.0261 (10)0.0270 (11)0.0054 (9)0.0074 (9)0.0020 (9)
C200.0304 (10)0.0339 (11)0.0337 (11)0.0046 (9)0.0068 (9)0.0008 (9)
C210.0297 (10)0.0290 (11)0.0275 (11)0.0003 (9)0.0007 (8)0.0000 (9)
C220.0295 (10)0.0228 (10)0.0211 (9)0.0003 (8)0.0027 (8)0.0024 (8)
C230.0253 (9)0.0281 (10)0.0238 (10)0.0016 (8)0.0012 (7)0.0007 (8)
C240.0204 (9)0.0232 (9)0.0259 (9)0.0020 (7)0.0010 (7)0.0002 (8)
C250.0241 (10)0.0354 (12)0.0302 (11)0.0075 (9)0.0012 (8)0.0008 (9)
C260.0233 (9)0.0203 (9)0.0272 (10)0.0006 (7)0.0012 (7)0.0013 (8)
C270.0241 (9)0.0224 (9)0.0234 (9)0.0015 (8)0.0024 (7)0.0014 (8)
C280.0284 (10)0.0263 (10)0.0296 (11)0.0010 (8)0.0011 (8)0.0013 (9)
C290.0386 (12)0.0287 (11)0.0304 (11)0.0028 (9)0.0056 (9)0.0021 (9)
C300.0463 (13)0.0361 (12)0.0235 (10)0.0012 (10)0.0006 (9)0.0017 (9)
C310.0348 (11)0.0369 (12)0.0287 (11)0.0022 (9)0.0025 (9)0.0020 (9)
C320.0256 (9)0.0283 (10)0.0269 (10)0.0029 (8)0.0014 (8)0.0002 (8)
Geometric parameters (Å, º) top
Cl1—C11.737 (2)Cl2—C171.735 (2)
S1—C91.722 (2)S2—C251.722 (2)
S1—C81.7301 (19)S2—C241.723 (2)
N1—C71.282 (3)N4—C231.278 (3)
N1—N21.363 (2)N4—N51.370 (2)
N2—C81.344 (2)N5—C241.363 (2)
N2—H2A0.9098N5—H5A0.9100
N3—C81.305 (2)N6—C241.306 (2)
N3—C101.389 (2)N6—C261.387 (2)
C1—C21.385 (3)C17—C181.384 (3)
C1—C61.394 (3)C17—C221.395 (3)
C2—C31.378 (3)C18—C191.374 (3)
C2—H20.9500C18—H180.9500
C3—C41.380 (3)C19—C201.384 (3)
C3—H30.9500C19—H190.9500
C4—C51.371 (3)C20—C211.382 (3)
C4—H40.9500C20—H200.9500
C5—C61.402 (3)C21—C221.401 (3)
C5—H50.9500C21—H210.9500
C6—C71.458 (3)C22—C231.459 (3)
C7—H70.9500C23—H230.9500
C9—C101.356 (3)C25—C261.354 (3)
C9—H90.9500C25—H250.9500
C10—C111.468 (3)C26—C271.472 (3)
C11—C161.391 (3)C27—C281.394 (3)
C11—C121.393 (3)C27—C321.398 (3)
C12—C131.376 (3)C28—C291.375 (3)
C12—H120.9500C28—H280.9500
C13—C141.384 (3)C29—C301.390 (3)
C13—H130.9500C29—H290.9500
C14—C151.379 (3)C30—C311.380 (3)
C14—H140.9500C30—H300.9500
C15—C161.391 (3)C31—C321.381 (3)
C15—H150.9500C31—H310.9500
C16—H160.9500C32—H320.9500
C9—S1—C888.38 (9)C25—S2—C2488.24 (9)
C7—N1—N2116.74 (16)C23—N4—N5116.15 (17)
C8—N2—N1118.06 (16)C24—N5—N4116.89 (16)
C8—N2—H2A122.8C24—N5—H5A119.7
N1—N2—H2A118.7N4—N5—H5A118.9
C8—N3—C10110.30 (16)C24—N6—C26110.19 (16)
C2—C1—C6121.89 (19)C18—C17—C22121.71 (19)
C2—C1—Cl1117.90 (16)C18—C17—Cl2117.79 (16)
C6—C1—Cl1120.21 (16)C22—C17—Cl2120.50 (15)
C3—C2—C1119.3 (2)C19—C18—C17119.6 (2)
C3—C2—H2120.4C19—C18—H18120.2
C1—C2—H2120.4C17—C18—H18120.2
C2—C3—C4120.3 (2)C18—C19—C20120.2 (2)
C2—C3—H3119.9C18—C19—H19119.9
C4—C3—H3119.9C20—C19—H19119.9
C5—C4—C3120.1 (2)C21—C20—C19119.9 (2)
C5—C4—H4119.9C21—C20—H20120.0
C3—C4—H4119.9C19—C20—H20120.0
C4—C5—C6121.5 (2)C20—C21—C22121.2 (2)
C4—C5—H5119.3C20—C21—H21119.4
C6—C5—H5119.3C22—C21—H21119.4
C1—C6—C5116.98 (18)C17—C22—C21117.30 (18)
C1—C6—C7122.36 (18)C17—C22—C23122.05 (18)
C5—C6—C7120.66 (18)C21—C22—C23120.59 (18)
N1—C7—C6119.91 (18)N4—C23—C22120.50 (18)
N1—C7—H7120.0N4—C23—H23119.8
C6—C7—H7120.0C22—C23—H23119.8
N3—C8—N2123.26 (17)N6—C24—N5122.14 (17)
N3—C8—S1115.56 (15)N6—C24—S2115.85 (15)
N2—C8—S1121.18 (14)N5—C24—S2122.01 (14)
C10—C9—S1111.14 (15)C26—C25—S2111.26 (15)
C10—C9—H9124.4C26—C25—H25124.4
S1—C9—H9124.4S2—C25—H25124.4
C9—C10—N3114.57 (18)C25—C26—N6114.46 (18)
C9—C10—C11126.78 (18)C25—C26—C27126.99 (18)
N3—C10—C11118.58 (17)N6—C26—C27118.41 (17)
C16—C11—C12118.49 (19)C28—C27—C32118.67 (19)
C16—C11—C10120.61 (18)C28—C27—C26121.19 (18)
C12—C11—C10120.88 (18)C32—C27—C26120.11 (18)
C13—C12—C11120.9 (2)C29—C28—C27120.7 (2)
C13—C12—H12119.6C29—C28—H28119.6
C11—C12—H12119.6C27—C28—H28119.6
C12—C13—C14120.3 (2)C28—C29—C30120.3 (2)
C12—C13—H13119.9C28—C29—H29119.9
C14—C13—H13119.9C30—C29—H29119.9
C15—C14—C13119.7 (2)C31—C30—C29119.4 (2)
C15—C14—H14120.1C31—C30—H30120.3
C13—C14—H14120.1C29—C30—H30120.3
C14—C15—C16120.1 (2)C30—C31—C32120.7 (2)
C14—C15—H15119.9C30—C31—H31119.7
C16—C15—H15119.9C32—C31—H31119.7
C11—C16—C15120.5 (2)C31—C32—C27120.23 (19)
C11—C16—H16119.8C31—C32—H32119.9
C15—C16—H16119.8C27—C32—H32119.9
C7—N1—N2—C8173.77 (18)C23—N4—N5—C24170.95 (18)
C6—C1—C2—C30.2 (3)C22—C17—C18—C190.1 (3)
Cl1—C1—C2—C3179.50 (17)Cl2—C17—C18—C19179.82 (17)
C1—C2—C3—C40.6 (3)C17—C18—C19—C200.1 (3)
C2—C3—C4—C50.8 (3)C18—C19—C20—C210.2 (3)
C3—C4—C5—C60.2 (3)C19—C20—C21—C220.6 (3)
C2—C1—C6—C50.8 (3)C18—C17—C22—C210.5 (3)
Cl1—C1—C6—C5179.94 (15)Cl2—C17—C22—C21179.80 (15)
C2—C1—C6—C7179.12 (19)C18—C17—C22—C23177.84 (19)
Cl1—C1—C6—C70.1 (3)Cl2—C17—C22—C232.4 (3)
C4—C5—C6—C10.6 (3)C20—C21—C22—C170.7 (3)
C4—C5—C6—C7179.34 (19)C20—C21—C22—C23178.12 (19)
N2—N1—C7—C6179.33 (17)N5—N4—C23—C22175.08 (17)
C1—C6—C7—N1172.59 (19)C17—C22—C23—N4177.70 (19)
C5—C6—C7—N17.3 (3)C21—C22—C23—N45.0 (3)
C10—N3—C8—N2177.70 (18)C26—N6—C24—N5179.78 (18)
C10—N3—C8—S12.3 (2)C26—N6—C24—S20.6 (2)
N1—N2—C8—N3179.50 (18)N4—N5—C24—N6167.05 (18)
N1—N2—C8—S10.5 (3)N4—N5—C24—S213.8 (3)
C9—S1—C8—N31.55 (16)C25—S2—C24—N60.41 (17)
C9—S1—C8—N2178.42 (17)C25—S2—C24—N5179.58 (18)
C8—S1—C9—C100.33 (16)C24—S2—C25—C260.07 (17)
S1—C9—C10—N30.9 (2)S2—C25—C26—N60.3 (2)
S1—C9—C10—C11175.89 (16)S2—C25—C26—C27175.32 (16)
C8—N3—C10—C92.0 (2)C24—N6—C26—C250.6 (3)
C8—N3—C10—C11175.04 (17)C24—N6—C26—C27175.43 (17)
C9—C10—C11—C16168.6 (2)C25—C26—C27—C2824.5 (3)
N3—C10—C11—C168.0 (3)N6—C26—C27—C28160.09 (18)
C9—C10—C11—C1210.1 (3)C25—C26—C27—C32153.4 (2)
N3—C10—C11—C12173.30 (18)N6—C26—C27—C3222.0 (3)
C16—C11—C12—C130.2 (3)C32—C27—C28—C290.6 (3)
C10—C11—C12—C13178.94 (19)C26—C27—C28—C29178.54 (19)
C11—C12—C13—C140.6 (3)C27—C28—C29—C300.5 (3)
C12—C13—C14—C150.6 (3)C28—C29—C30—C310.2 (3)
C13—C14—C15—C160.3 (3)C29—C30—C31—C320.0 (3)
C12—C11—C16—C151.2 (3)C30—C31—C32—C270.1 (3)
C10—C11—C16—C15179.87 (18)C28—C27—C32—C310.4 (3)
C14—C15—C16—C111.2 (3)C26—C27—C32—C31178.36 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N60.912.022.901 (2)163
N5—H5A···N30.912.052.946 (2)166
C9—H9···S1i0.952.973.696 (2)134
C25—H25···Cl1ii0.952.923.720 (2)143
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N60.912.022.901 (2)163
N5—H5A···N30.912.052.946 (2)166
C9—H9···S1i0.952.973.696 (2)134
C25—H25···Cl1ii0.952.923.720 (2)143
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y1/2, z.
 

Acknowledgements

JTM thanks Tulane University for the support of the Tulane Crystallography Laboratory.

References

First citationBakris, G. L., Bank, A. J., Kass, D. A., Neutel, J. M., Preston, R. A. & Oparil, S. (2004). Am. J. Hypertens. 17, 23S–30S.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLittle, W. C., Zile, M. R., Kitzman, D. W., Hundley, W. G., O'Brien, T. X. & Degroof, R. C. (2005). J. Card. Fail. 11, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1324.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. F., Ahsan, W. & Alam, M. S. (2009). IJPSDR, 1, 136–143.  CAS Google Scholar
First citationSiddiqui, N., Arya, S. K., Ahsan, W. & Azad, B. (2011). Int. J. Drug Dev. Res., 3, 55–67.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o907-o908
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds