organic compounds
H)-thione
of 2-ethylquinazoline-4(3aChemistry Department, College of Sciences and Humanities, Salman bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa
In the title compound, C10H10N2S, all non-H atoms are almost coplanar [maximum deviation = 0.103 (1) Å]. In the crystal, N—H⋯S interactions form R22(8) rings linking pairs of molecules related by inversion. The molecular pairs are stacked along [100]. A herringbone arrangement of pairs in the [010] direction forms layers parallel to (010).
Keywords: crystal structure; N—H⋯S interactions; quinazoline-4(3H)-thione; hydrogen-bonded dimers; herringbone arrangement.
CCDC reference: 1014729
1. Related literature
For the synthesis of quinazoline-4(3H)-thiones, see: Bogert et al. (1903); Zoltewicz & Sharpless (1976); Segarra et al. (1998); El-Hiti (2004); Ozturk et al. (2007); El-Hiti et al. (2011).
2. Experimental
2.1. Crystal data
|
2..3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1014729
10.1107/S160053681401664X/xu5804sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681401664X/xu5804Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681401664X/xu5804Isup3.cml
The 2-ethyl-3H-quinazoline-4-thione molecule (Fig 1) is almost planer (apart from the ethyl hydrogens) with the ethyl group being twisted from the quinazoline-4-thione plane by 8.7 (2)°. N—H···S interactions form R22(8) rings to link pairs of molecules related by inversion. The pairs of molecules are stacked parallel to the a-axis (Fig 2). Adjacent pairs pack in a herring bone arrangement in the [010] direction to form layers parallel to the (010) plane. 2-(Substituted alkyl)-3H-quinazoline-4-thione derivatives can be obtained from double lithiation of 2-alkyl-3H-quinazoline-4-thiones followed by reactions with electrophiles, including alkyl iodides, at low temperature in anhydrous THF (El-Hiti, 2004). Also, 3H-quinazoline-4-thiones are produced from the corresponding 3H-quinazoline-4-ones using phosphorus pentasulfide (Bogert et al., 1903; Ozturk et al., 2007; El-Hiti et al., 2011) or Lawesson's reagent (Segarra et al., 1998). 3H-Quinazoline-4-thiones have also been synthesized in one-step from reaction of 2-aminobenzonitriles and thioamides in the presence of hydrogen bromide in various solvents on a steam bath for 1–4 h (Zoltewicz & Sharpless, 1976).
2-Ethyl-3H-quinazoline-4-thione was obtained in 92% yield from double lithiation of 2-methyl-3H-quinazoline-4-thione with n-butyllithium at 78 οC in anhydrous THF under nitrogen followed by reaction with iodomethane (El-Hiti, 2004). Crystallization from methanol gave the title compound as yellow crystals. The NMR and low and high resolution mass spectra for the title compound were consistent with those reported (El-Hiti, 2004).
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A molecule of the title compound showing atom labels and 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. Crystal structure packing showing N—H···S contacts as dotted lines. |
C10H10N2S | Dx = 1.394 Mg m−3 |
Mr = 190.26 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3617 reflections |
a = 5.8231 (3) Å | θ = 3.9–29.3° |
b = 14.3214 (6) Å | µ = 0.31 mm−1 |
c = 21.7365 (8) Å | T = 150 K |
V = 1812.71 (14) Å3 | Plate, yellow |
Z = 8 | 0.41 × 0.24 × 0.15 mm |
F(000) = 800 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2240 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 1973 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.020 |
ω scans | θmax = 29.8°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −6→7 |
Tmin = 0.780, Tmax = 1.000 | k = −19→14 |
7795 measured reflections | l = −23→29 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0416P)2 + 0.7981P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2240 reflections | Δρmax = 0.30 e Å−3 |
119 parameters | Δρmin = −0.25 e Å−3 |
C10H10N2S | V = 1812.71 (14) Å3 |
Mr = 190.26 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 5.8231 (3) Å | µ = 0.31 mm−1 |
b = 14.3214 (6) Å | T = 150 K |
c = 21.7365 (8) Å | 0.41 × 0.24 × 0.15 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2240 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 1973 reflections with I > 2σ(I) |
Tmin = 0.780, Tmax = 1.000 | Rint = 0.020 |
7795 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.30 e Å−3 |
2240 reflections | Δρmin = −0.25 e Å−3 |
119 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7433 (2) | 0.57478 (9) | 0.62537 (6) | 0.0185 (3) | |
C2 | 0.6649 (2) | 0.44643 (8) | 0.55604 (5) | 0.0178 (2) | |
C3 | 0.4705 (2) | 0.42557 (8) | 0.59550 (5) | 0.0177 (3) | |
C4 | 0.4368 (2) | 0.48131 (8) | 0.64832 (5) | 0.0183 (3) | |
C5 | 0.3171 (2) | 0.35262 (9) | 0.58239 (6) | 0.0209 (3) | |
H5 | 0.3379 | 0.3158 | 0.5465 | 0.025* | |
C6 | 0.1366 (2) | 0.33425 (9) | 0.62146 (6) | 0.0236 (3) | |
H6 | 0.0337 | 0.2845 | 0.6127 | 0.028* | |
C7 | 0.1046 (2) | 0.38917 (9) | 0.67440 (6) | 0.0240 (3) | |
H7 | −0.0197 | 0.3760 | 0.7013 | 0.029* | |
C8 | 0.2513 (2) | 0.46175 (9) | 0.68761 (6) | 0.0218 (3) | |
H8 | 0.2272 | 0.4987 | 0.7233 | 0.026* | |
C9 | 0.8998 (2) | 0.65696 (9) | 0.63452 (6) | 0.0227 (3) | |
H9A | 0.8734 | 0.7023 | 0.6009 | 0.027* | |
H9B | 1.0609 | 0.6354 | 0.6316 | 0.027* | |
C10 | 0.8668 (3) | 0.70632 (9) | 0.69567 (6) | 0.0246 (3) | |
H10A | 0.7058 | 0.7252 | 0.7000 | 0.037* | |
H10B | 0.9652 | 0.7618 | 0.6972 | 0.037* | |
H10C | 0.9080 | 0.6639 | 0.7293 | 0.037* | |
N1 | 0.78973 (18) | 0.52156 (7) | 0.57402 (5) | 0.0188 (2) | |
H1 | 0.9086 | 0.5374 | 0.5513 | 0.023* | |
N2 | 0.57662 (19) | 0.55697 (7) | 0.66273 (5) | 0.0199 (2) | |
S1 | 0.73978 (6) | 0.38502 (2) | 0.49367 (2) | 0.02214 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0210 (6) | 0.0177 (6) | 0.0169 (6) | 0.0022 (5) | −0.0006 (4) | −0.0010 (5) |
C2 | 0.0203 (6) | 0.0164 (5) | 0.0166 (5) | 0.0039 (5) | −0.0026 (5) | 0.0008 (4) |
C3 | 0.0194 (6) | 0.0171 (6) | 0.0167 (5) | 0.0027 (5) | −0.0019 (5) | 0.0020 (4) |
C4 | 0.0197 (6) | 0.0178 (6) | 0.0172 (5) | 0.0019 (5) | −0.0012 (4) | 0.0010 (5) |
C5 | 0.0237 (7) | 0.0189 (6) | 0.0202 (6) | 0.0008 (5) | −0.0032 (5) | −0.0006 (5) |
C6 | 0.0238 (7) | 0.0212 (6) | 0.0258 (6) | −0.0033 (5) | −0.0029 (5) | 0.0012 (5) |
C7 | 0.0213 (7) | 0.0264 (7) | 0.0244 (6) | −0.0013 (5) | 0.0028 (5) | 0.0038 (5) |
C8 | 0.0242 (7) | 0.0226 (6) | 0.0186 (6) | 0.0015 (5) | 0.0016 (5) | 0.0002 (5) |
C9 | 0.0238 (7) | 0.0208 (6) | 0.0233 (6) | −0.0033 (5) | 0.0041 (5) | −0.0040 (5) |
C10 | 0.0292 (7) | 0.0233 (6) | 0.0214 (6) | −0.0047 (5) | 0.0001 (5) | −0.0040 (5) |
N1 | 0.0188 (5) | 0.0194 (5) | 0.0182 (5) | −0.0003 (4) | 0.0030 (4) | −0.0024 (4) |
N2 | 0.0220 (6) | 0.0191 (5) | 0.0187 (5) | −0.0006 (4) | 0.0015 (4) | −0.0012 (4) |
S1 | 0.0244 (2) | 0.02191 (18) | 0.02011 (17) | 0.00029 (12) | 0.00293 (12) | −0.00599 (12) |
C1—N2 | 1.2908 (16) | C6—C7 | 1.4061 (19) |
C1—N1 | 1.3784 (16) | C6—H6 | 0.9500 |
C1—C9 | 1.5017 (18) | C7—C8 | 1.3757 (19) |
C2—N1 | 1.3560 (16) | C7—H7 | 0.9500 |
C2—C3 | 1.4514 (17) | C8—H8 | 0.9500 |
C2—S1 | 1.6737 (12) | C9—C10 | 1.5177 (17) |
C3—C5 | 1.4038 (18) | C9—H9A | 0.9900 |
C3—C4 | 1.4119 (16) | C9—H9B | 0.9900 |
C4—N2 | 1.3910 (16) | C10—H10A | 0.9800 |
C4—C8 | 1.4054 (18) | C10—H10B | 0.9800 |
C5—C6 | 1.3766 (19) | C10—H10C | 0.9800 |
C5—H5 | 0.9500 | N1—H1 | 0.8800 |
N2—C1—N1 | 123.21 (12) | C6—C7—H7 | 119.6 |
N2—C1—C9 | 121.86 (11) | C7—C8—C4 | 120.08 (12) |
N1—C1—C9 | 114.92 (11) | C7—C8—H8 | 120.0 |
N1—C2—C3 | 114.27 (11) | C4—C8—H8 | 120.0 |
N1—C2—S1 | 120.71 (10) | C1—C9—C10 | 113.84 (11) |
C3—C2—S1 | 125.01 (10) | C1—C9—H9A | 108.8 |
C5—C3—C4 | 119.83 (12) | C10—C9—H9A | 108.8 |
C5—C3—C2 | 121.97 (11) | C1—C9—H9B | 108.8 |
C4—C3—C2 | 118.19 (11) | C10—C9—H9B | 108.8 |
N2—C4—C8 | 117.93 (11) | H9A—C9—H9B | 107.7 |
N2—C4—C3 | 122.83 (11) | C9—C10—H10A | 109.5 |
C8—C4—C3 | 119.22 (12) | C9—C10—H10B | 109.5 |
C6—C5—C3 | 120.19 (12) | H10A—C10—H10B | 109.5 |
C6—C5—H5 | 119.9 | C9—C10—H10C | 109.5 |
C3—C5—H5 | 119.9 | H10A—C10—H10C | 109.5 |
C5—C6—C7 | 119.94 (12) | H10B—C10—H10C | 109.5 |
C5—C6—H6 | 120.0 | C2—N1—C1 | 124.53 (11) |
C7—C6—H6 | 120.0 | C2—N1—H1 | 117.7 |
C8—C7—C6 | 120.73 (13) | C1—N1—H1 | 117.7 |
C8—C7—H7 | 119.6 | C1—N2—C4 | 116.89 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.88 | 2.53 | 3.3854 (11) | 166 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.88 | 2.53 | 3.3854 (11) | 165.5 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Footnotes
‡Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.
Acknowledgements
This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under the research project 2013/01/134.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bogert, M. T., Breneman, H. C. & Hand, W. F. (1903). J. Am. Chem. Soc. 25, 372–380. CrossRef CAS Google Scholar
El-Hiti, G. A. (2004). Synthesis, pp. 363–368. Google Scholar
El-Hiti, G. A., Hussain, A., Hegazy, A. S. & Alotaibi, M. H. (2011). J. Sulfur Chem. 32, 361–395. CAS Google Scholar
Ozturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210–5278. Web of Science CrossRef PubMed CAS Google Scholar
Segarra, V., Crespo, M. I., Pujol, F., Beleta, J., Doménech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). Bioorg. Med. Chem. Lett. 8, 505–510. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zoltewicz, J. A. & Sharpless, T. W. (1976). J. Org. Chem. 32, 2681–2685. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.