metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m316-m317

Crystal structure of bis­­{μ-4-methyl-N′-[3-(oxido­imino)­butan-2-yl­­idene]benzene­sulfono­hydrazidato}bis­­[(di­methyl sulfoxide-κO)copper(II)]

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil, and bDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000, São Cristóvão, SE, Brazil
*Correspondence e-mail: vanessa.gervini@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 15 July 2014; accepted 17 July 2014; online 1 August 2014)

In the title compound, [Cu2(C11H13N3O3S)2(C2H6OS)2], the CuII cation is N,N′,O-chelated by a deprotonated hy­droxy­imino-tosyl­hydrazone ligand and coordinated by a dimethyl sulfoxide mol­ecule. One O atom from the adjacent hy­droxy­imino-tosyl­hydrazone ligand bridges the CuII cation, forming the centrosymmetric dimeric complex. The cation is in an overall distorted N2O3 square-pyramidal coordination environment. The methyl­benzene ring is twisted with respect to the hydrazine fragment, with a dihedral angle of 89.54 (9)° between the planes. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯S inter­actions. Weak ππ stacking is also observed between parallel benzene rings of adjacent mol­ecules, the centroid–centroid distance being 3.9592 (17) Å.

1. Related literature

For the synthesis and applications of hy­droxy­imino-tosyl­hydrazones as complexing agents, see: Beger et al. (1991[Beger, J., Siedler, F., Mühl, P. & Gloe, K. (1991). German Patent DD287027A5.]). For the crystal structure of the 4-methyl-N′-[3-(hy­droxy­imino)­butan-2-yl­idene]benzene­sulfono­hydrazide ligand, see: Bulhosa et al. (2012[Bulhosa, M. C. S., Gervini, V. C., Bresolin, L., Locatelli, A. & Oliveira, A. B. de (2012). Acta Cryst. E68, o592.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu2(C11H13N3O3S)2(C2H6OS)2]

  • Mr = 817.95

  • Triclinic, [P \overline 1]

  • a = 7.8097 (3) Å

  • b = 8.4670 (3) Å

  • c = 15.1586 (6) Å

  • α = 74.656 (2)°

  • β = 75.955 (2)°

  • γ = 65.042 (2)°

  • V = 866.47 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 293 K

  • 0.61 × 0.28 × 0.07 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.457, Tmax = 0.901

  • 5765 measured reflections

  • 4054 independent reflections

  • 3366 reflections with I > 2σ(I)

  • Rint = 0.015

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.04

  • 4054 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N2 1.9580 (19)
Cu1—N3 1.9728 (18)
Cu1—O2 2.0970 (16)
Cu1—O3i 1.8798 (16)
Cu1—O4 2.2517 (17)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4 0.93 2.39 3.299 (3) 166
C2—H2⋯O1ii 0.93 2.57 3.430 (4) 154
C9—H9A⋯S2iii 0.96 2.75 3.693 (3) 166
C10—H10C⋯O1iv 0.96 2.47 3.415 (4) 166
Symmetry codes: (ii) x-1, y, z; (iii) x+1, y-1, z; (iv) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

Hy­droxy­imino-tosyl­hydrazone derivatives are N,O-donors that show an application as complexing agents (Beger et al., 1991). In the crystal structure of the title compound the CuII cations are five-coordinated by one crystallographically independent deprotonated hy­droxy­imino-tosyl­hydrazone derivative, one DMSO molecule and one O-atom from a second, symmetry generated, hy­droxy­imino-tosyl­hydrazone derivative into dimers (Fig. 1). The metal centres are in a slightly distorted pyramidal environment. The aromatic ring and the N1/N2/C7/C8/N3/O3-fragment angle amount to 89,54 (09)°. In this complex molecule significant structural changes of the N–O and N–N bonds. For the uncoordinated ligand the N–O and N–N bonds distances amount to 1.4084 (16) Å and 1.3807 (16) Å. These distances indicate the double bond character for the N–N and the single bond character for the N–O bond (Bulhosa et al., 2012). In contrast, in the title compound, the acidic hydrogen of the hydrazine fragment is removed and the negative charge is delocalized over the N–N–C–C–N–O fragment. Therefore, N–N and N–O distances amount to 1.367 (3) Å and 1.343 (2) Å. Additionally, the complexes are linked by N–O bridges into dimers (Fig. 2). Finally, the dimers are arranged along the b-axis with very weak ππ inter­actions.

Synthesis and crystallization top

Starting materials were commercially available and were used without further purification. The ligand synthesis was adapted from a procedure reported previously and its structure is already published (Bulhosa et al., 2012). N'-[3-(Hy­droxy­imino)­butan- 2-yl­idene]-4-methyl­benzene-1-sulfono­hydrazide was dissolved in methanol (2 mmol/40 mL) with stirring maintained for 30 min and deprotonated with sodium, while the solution turns yellow. At the same time, a solution of copper(II) acetate monohydrate (1 mmol/40 mL) in methanol was prepared under continuous stirring. A mixture of both solutions was maintained with stirring at room temperature for 6 h. The methanol was removed by evaporation and crystals suitable for X-ray diffraction were obtained in DMSO by the slow evaporation of the solvent.

Refinement top

H atoms attached to C atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) set to 1.2 times Ueq(C) for the aromatic and 1.5 times Ueq(C) for methyl H atoms using a riding model with C—H = 0.93 Å and C—H = 0.96 Å, respectively.

Related literature top

For the synthesis and applications of hydroxyimino-tosylhydrazones as complexing agents, see: Beger et al. (1991). For the crystal structure of the 4-methyl-N'-[3-(hydroxyimino)butan-2-ylidene]benzenesulfonohydrazide ligand, see: Bulhosa et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level showing the dimeric structure. Symmetry code: (i)-x + 1,-y + 1,-z + 1
[Figure 2] Fig. 2. : Molecules of the title compound arranged along b-axis showing the column of the aromatic rings with very weak ππ interactions.
Bis{µ-4-methyl-N'-[3-(oxidoimino)butan-2-ylidene]benzenesulfonohydrazidato}-κ4O,N,N':O';κ4O':O,N,N'-bis[(dimethyl sulfoxide-κO)copper(II)] top
Crystal data top
[Cu2(C11H13N3O3S)2(C2H6OS)2]Z = 1
Mr = 817.95F(000) = 422
Triclinic, P1Dx = 1.568 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8097 (3) ÅCell parameters from 7693 reflections
b = 8.4670 (3) Åθ = 2.8–28.1°
c = 15.1586 (6) ŵ = 1.52 mm1
α = 74.656 (2)°T = 293 K
β = 75.955 (2)°Block, black
γ = 65.042 (2)°0.61 × 0.28 × 0.07 mm
V = 866.47 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4054 independent reflections
Radiation source: fine-focus sealed tube, Bruker Kappa CCD3366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.457, Tmax = 0.901k = 117
5765 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.3887P]
where P = (Fo2 + 2Fc2)/3
4054 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu2(C11H13N3O3S)2(C2H6OS)2]γ = 65.042 (2)°
Mr = 817.95V = 866.47 (6) Å3
Triclinic, P1Z = 1
a = 7.8097 (3) ÅMo Kα radiation
b = 8.4670 (3) ŵ = 1.52 mm1
c = 15.1586 (6) ÅT = 293 K
α = 74.656 (2)°0.61 × 0.28 × 0.07 mm
β = 75.955 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4054 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3366 reflections with I > 2σ(I)
Tmin = 0.457, Tmax = 0.901Rint = 0.015
5765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
4054 reflectionsΔρmin = 0.42 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58200 (4)0.31552 (3)0.593265 (18)0.02826 (9)
S10.77302 (8)0.04077 (8)0.74973 (4)0.03261 (14)
S20.14080 (8)0.50296 (8)0.67789 (4)0.03775 (15)
O20.6646 (2)0.2330 (2)0.72499 (11)0.0355 (4)
N20.7236 (3)0.0618 (2)0.59334 (13)0.0287 (4)
C100.6295 (4)0.1222 (3)0.35609 (16)0.0370 (5)
H10A0.55810.23160.31940.056*
H10B0.56630.04130.36850.056*
H10C0.75560.07150.32310.056*
C70.7440 (3)0.0142 (3)0.51572 (15)0.0293 (4)
O40.2837 (2)0.3281 (2)0.65248 (12)0.0386 (4)
O10.9442 (3)0.0107 (3)0.78807 (13)0.0480 (5)
N10.8225 (3)0.0535 (3)0.66265 (13)0.0361 (4)
O30.4716 (2)0.4478 (2)0.40297 (11)0.0346 (4)
N30.5685 (3)0.3140 (2)0.46524 (12)0.0281 (4)
C80.6430 (3)0.1565 (3)0.44490 (15)0.0271 (4)
C20.3225 (4)0.0775 (4)0.88982 (19)0.0486 (7)
H20.19830.04850.88100.058*
C10.4370 (4)0.0029 (4)0.82421 (17)0.0400 (6)
H10.38970.07610.77190.048*
C60.6226 (3)0.0460 (3)0.83647 (15)0.0332 (5)
C90.8650 (4)0.1691 (3)0.49726 (19)0.0417 (6)
H9A0.91890.24280.55170.062*
H9B0.96590.16460.44700.062*
H9C0.78780.21740.48130.062*
C30.3885 (5)0.1948 (4)0.96864 (19)0.0526 (7)
C50.6905 (4)0.1601 (4)0.91562 (18)0.0471 (6)
H50.81410.18760.92510.057*
C40.5723 (5)0.2326 (4)0.9805 (2)0.0583 (8)
H40.61810.30911.03370.070*
C0210.1846 (5)0.5082 (5)0.7870 (2)0.0674 (9)
H02A0.30270.52370.77890.101*
H02B0.19270.39870.82860.101*
H02C0.08210.60490.81220.101*
C0220.0802 (4)0.4738 (5)0.7154 (3)0.0650 (9)
H02D0.12560.46850.66330.097*
H02E0.17230.57180.74360.097*
H02F0.06180.36560.75970.097*
C110.2614 (6)0.2742 (5)1.0403 (3)0.0812 (12)
H11A0.13950.23291.02050.122*
H11B0.24440.23931.09820.122*
H11C0.31940.40111.04800.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03260 (15)0.02483 (15)0.02657 (15)0.00907 (11)0.00598 (10)0.00532 (10)
S10.0312 (3)0.0331 (3)0.0312 (3)0.0074 (2)0.0101 (2)0.0054 (2)
S20.0296 (3)0.0328 (3)0.0422 (3)0.0086 (2)0.0041 (2)0.0001 (2)
O20.0420 (9)0.0315 (9)0.0331 (8)0.0111 (7)0.0110 (7)0.0062 (7)
N20.0290 (9)0.0258 (9)0.0288 (9)0.0084 (7)0.0051 (7)0.0038 (7)
C100.0443 (13)0.0342 (13)0.0342 (12)0.0130 (10)0.0068 (10)0.0115 (10)
C70.0272 (10)0.0285 (11)0.0315 (11)0.0107 (9)0.0015 (8)0.0071 (9)
O40.0341 (9)0.0360 (9)0.0434 (10)0.0108 (7)0.0056 (7)0.0080 (7)
O10.0360 (9)0.0588 (12)0.0493 (11)0.0131 (9)0.0180 (8)0.0081 (9)
N10.0388 (11)0.0311 (10)0.0289 (9)0.0027 (8)0.0078 (8)0.0057 (8)
O30.0486 (10)0.0259 (8)0.0310 (8)0.0119 (7)0.0166 (7)0.0023 (6)
N30.0315 (9)0.0268 (9)0.0270 (9)0.0129 (7)0.0048 (7)0.0034 (7)
C80.0265 (10)0.0282 (11)0.0277 (10)0.0122 (8)0.0009 (8)0.0071 (8)
C20.0486 (15)0.0597 (18)0.0432 (15)0.0256 (14)0.0016 (12)0.0154 (13)
C10.0441 (14)0.0450 (14)0.0322 (12)0.0163 (11)0.0121 (10)0.0049 (11)
C60.0394 (12)0.0306 (12)0.0276 (11)0.0080 (9)0.0097 (9)0.0069 (9)
C90.0451 (14)0.0316 (12)0.0417 (14)0.0051 (10)0.0072 (11)0.0117 (11)
C30.073 (2)0.0493 (17)0.0369 (14)0.0293 (15)0.0038 (13)0.0115 (12)
C50.0512 (16)0.0452 (15)0.0355 (13)0.0083 (12)0.0157 (11)0.0011 (11)
C40.081 (2)0.0475 (17)0.0336 (14)0.0170 (16)0.0146 (14)0.0048 (12)
C0210.071 (2)0.070 (2)0.057 (2)0.0141 (18)0.0073 (16)0.0295 (17)
C0220.0335 (14)0.060 (2)0.091 (3)0.0199 (14)0.0026 (15)0.0057 (18)
C110.111 (3)0.077 (3)0.057 (2)0.055 (2)0.020 (2)0.0123 (19)
Geometric parameters (Å, º) top
Cu1—N21.9580 (19)C2—C11.378 (4)
Cu1—N31.9728 (18)C2—C31.385 (4)
Cu1—O22.0970 (16)C2—H20.9300
Cu1—O3i1.8798 (16)C1—C61.385 (3)
Cu1—O42.2517 (17)C1—H10.9300
S1—O11.4376 (18)C6—C51.385 (3)
S1—O21.4745 (17)C9—H9A0.9600
S1—N11.606 (2)C9—H9B0.9600
S1—C61.765 (2)C9—H9C0.9600
S2—O41.5114 (18)C3—C41.379 (5)
S2—C0221.781 (3)C3—C111.507 (4)
S2—C0211.783 (3)C5—C41.384 (4)
N2—C71.295 (3)C5—H50.9300
N2—N11.367 (3)C4—H40.9300
C10—C81.486 (3)C021—H02A0.9600
C10—H10A0.9600C021—H02B0.9600
C10—H10B0.9600C021—H02C0.9600
C10—H10C0.9600C022—H02D0.9600
C7—C81.467 (3)C022—H02E0.9600
C7—C91.498 (3)C022—H02F0.9600
O3—N31.343 (2)C11—H11A0.9600
O3—Cu1i1.8798 (16)C11—H11B0.9600
N3—C81.299 (3)C11—H11C0.9600
O3i—Cu1—N2160.52 (8)C1—C2—H2119.3
O3i—Cu1—N3105.85 (7)C3—C2—H2119.3
N2—Cu1—N381.34 (8)C2—C1—C6119.7 (2)
O3i—Cu1—O290.50 (6)C2—C1—H1120.1
N2—Cu1—O280.08 (7)C6—C1—H1120.1
N3—Cu1—O2160.90 (7)C1—C6—C5119.9 (2)
O3i—Cu1—O495.33 (7)C1—C6—S1119.73 (18)
N2—Cu1—O4101.95 (7)C5—C6—S1120.4 (2)
N3—Cu1—O496.11 (7)C7—C9—H9A109.5
O2—Cu1—O492.01 (7)C7—C9—H9B109.5
O1—S1—O2116.12 (11)H9A—C9—H9B109.5
O1—S1—N1109.45 (11)C7—C9—H9C109.5
O2—S1—N1110.60 (10)H9A—C9—H9C109.5
O1—S1—C6105.75 (11)H9B—C9—H9C109.5
O2—S1—C6107.02 (11)C4—C3—C2117.8 (3)
N1—S1—C6107.42 (11)C4—C3—C11121.2 (3)
O4—S2—C022105.09 (14)C2—C3—C11121.0 (3)
O4—S2—C021106.15 (14)C4—C5—C6119.1 (3)
C022—S2—C02198.59 (18)C4—C5—H5120.4
S1—O2—Cu1114.45 (9)C6—C5—H5120.4
C7—N2—N1120.75 (19)C3—C4—C5121.9 (3)
C7—N2—Cu1114.72 (15)C3—C4—H4119.0
N1—N2—Cu1123.60 (15)C5—C4—H4119.0
C8—C10—H10A109.5S2—C021—H02A109.5
C8—C10—H10B109.5S2—C021—H02B109.5
H10A—C10—H10B109.5H02A—C021—H02B109.5
C8—C10—H10C109.5S2—C021—H02C109.5
H10A—C10—H10C109.5H02A—C021—H02C109.5
H10B—C10—H10C109.5H02B—C021—H02C109.5
N2—C7—C8114.58 (19)S2—C022—H02D109.5
N2—C7—C9123.5 (2)S2—C022—H02E109.5
C8—C7—C9121.8 (2)H02D—C022—H02E109.5
S2—O4—Cu1116.15 (10)S2—C022—H02F109.5
N2—N1—S1110.24 (15)H02D—C022—H02F109.5
N3—O3—Cu1i120.90 (13)H02E—C022—H02F109.5
C8—N3—O3117.04 (18)C3—C11—H11A109.5
C8—N3—Cu1113.71 (15)C3—C11—H11B109.5
O3—N3—Cu1128.55 (14)H11A—C11—H11B109.5
N3—C8—C7115.07 (19)C3—C11—H11C109.5
N3—C8—C10122.8 (2)H11A—C11—H11C109.5
C7—C8—C10122.1 (2)H11B—C11—H11C109.5
C1—C2—C3121.5 (3)
O1—S1—O2—Cu1132.54 (11)O3i—Cu1—N3—C8165.37 (15)
N1—S1—O2—Cu17.05 (14)N2—Cu1—N3—C83.91 (15)
C6—S1—O2—Cu1109.67 (11)O2—Cu1—N3—C817.4 (3)
O3i—Cu1—O2—S1164.58 (11)O4—Cu1—N3—C897.30 (15)
N2—Cu1—O2—S11.72 (10)O3i—Cu1—N3—O324.6 (2)
N3—Cu1—O2—S115.2 (3)N2—Cu1—N3—O3173.91 (18)
O4—Cu1—O2—S1100.06 (11)O2—Cu1—N3—O3172.62 (17)
O3i—Cu1—N2—C7112.5 (2)O4—Cu1—N3—O372.70 (17)
N3—Cu1—N2—C70.93 (15)O3—N3—C8—C7178.83 (17)
O2—Cu1—N2—C7174.63 (16)Cu1—N3—C8—C77.6 (2)
O4—Cu1—N2—C795.40 (16)O3—N3—C8—C101.8 (3)
O3i—Cu1—N2—N156.5 (3)Cu1—N3—C8—C10173.05 (16)
N3—Cu1—N2—N1170.01 (18)N2—C7—C8—N38.5 (3)
O2—Cu1—N2—N15.55 (17)C9—C7—C8—N3169.7 (2)
O4—Cu1—N2—N195.52 (17)N2—C7—C8—C10172.10 (19)
N1—N2—C7—C8174.51 (18)C9—C7—C8—C109.6 (3)
Cu1—N2—C7—C85.1 (2)C3—C2—C1—C60.4 (4)
N1—N2—C7—C93.7 (3)C2—C1—C6—C51.7 (4)
Cu1—N2—C7—C9173.13 (18)C2—C1—C6—S1176.8 (2)
C022—S2—O4—Cu1176.67 (15)O1—S1—C6—C1173.2 (2)
C021—S2—O4—Cu179.50 (17)O2—S1—C6—C148.8 (2)
O3i—Cu1—O4—S21.22 (11)N1—S1—C6—C170.0 (2)
N2—Cu1—O4—S2169.76 (11)O1—S1—C6—C58.3 (2)
N3—Cu1—O4—S2107.83 (11)O2—S1—C6—C5132.7 (2)
O2—Cu1—O4—S289.47 (11)N1—S1—C6—C5108.5 (2)
C7—N2—N1—S1179.00 (16)C1—C2—C3—C41.1 (4)
Cu1—N2—N1—S110.5 (2)C1—C2—C3—C11179.4 (3)
O1—S1—N1—N2139.82 (16)C1—C6—C5—C41.5 (4)
O2—S1—N1—N210.66 (19)S1—C6—C5—C4177.0 (2)
C6—S1—N1—N2105.82 (17)C2—C3—C4—C51.4 (5)
Cu1i—O3—N3—C8162.43 (15)C11—C3—C4—C5179.6 (3)
Cu1i—O3—N3—Cu127.9 (2)C6—C5—C4—C30.1 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.932.393.299 (3)166
C2—H2···O1ii0.932.573.430 (4)154
C9—H9A···S2iii0.962.753.693 (3)166
C10—H10C···O1iv0.962.473.415 (4)166
Symmetry codes: (ii) x1, y, z; (iii) x+1, y1, z; (iv) x+2, y, z+1.
Selected bond lengths (Å) top
Cu1—N21.9580 (19)Cu1—O3i1.8798 (16)
Cu1—N31.9728 (18)Cu1—O42.2517 (17)
Cu1—O22.0970 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.932.393.299 (3)166
C2—H2···O1ii0.932.573.430 (4)154
C9—H9A···S2iii0.962.753.693 (3)166
C10—H10C···O1iv0.962.473.415 (4)166
Symmetry codes: (ii) x1, y, z; (iii) x+1, y1, z; (iv) x+2, y, z+1.
 

Acknowledgements

We gratefully acknowledge Professor Dr Manfredo Hörner (Federal University of Santa Maria, Brazil) for his help and support with the X-ray measurements. DPS and MCBS thank CNPq, CAPES and FAPERGS for the award of scholarships.

References

First citationBeger, J., Siedler, F., Mühl, P. & Gloe, K. (1991). German Patent DD287027A5.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulhosa, M. C. S., Gervini, V. C., Bresolin, L., Locatelli, A. & Oliveira, A. B. de (2012). Acta Cryst. E68, o592.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m316-m317
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds