organic compounds
N,N′-bis[(pyridin-4-yl)methyl]naphthalene diimide
ofaCentro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Carretera Toluca-Atlacomulco Km 14.5 CP 50200 Toluca, Estado de Mexico, Mexico
*Correspondence e-mail: adg@unam.mx
In the centrosymmetric title compound, C26H16N4O4 {systematic name: 6,13-bis[(pyridin-4-yl)methyl]-6,13-diazatetracyclo[6.6.2.04,16011,15]hexadeca-1,3,8,10,15-pantaene-5,7,12,14-tetrone}, the central ring system is essentially planar [maximum deviation = 0.0234 (8) Å] and approximately perpendicular to the terminal pyridine ring [dihedral angle = 84.38 (3)°]. The molecules displays a trans conformation with the (pyridin-4-yl)methyl groups on both sides of the central naphthalene diimide plane. In the crystal, molecules are linked by π–π stacking between parallel pyridine rings [centroid–centroid distances = 3.7014 (8) and 3.8553 (8) Å] and weak C—H⋯O hydrogen bonds, forming a three-dimensional supramolecular architecture.
Keywords: crystal structure; naphthalene diimide; transistors; organic supramolecular solids; hydrogen bonding; π–π stacking.
CCDC reference: 1017799
1. Related literature
For crystal structures of related compounds, see: Xu et al. (2011); Reczek et al. (2006); Li et al. (2009). For colorimetric applications and nanoscale properties, see: Pandeeswar et al. (2014); Trivedi et al. (2009); Matsunaga et al. (2014); Pantoş et al. (2007). For the design of transistors, see: Jung et al. (2009); Oh et al. (2010). For organic supramolecular solids, see: Cheney et al. (2007). For the design and synthesis of one-dimensional coordination polymers, see: Li et al. (2011, 2012).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1017799
10.1107/S1600536814017917/xu5806sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814017917/xu5806Isup2.hkl
All chemicals were acquired commercially and were used without further purification. A mixture of 1,4,5,8-naphthalene dianhydride (1.0 g, 0.005 mol) and 4-aminomethyl-pyridine (1.08 g, 0.01 mol) in dry DMF (35 ml) was heated under reflux in atmosphere of dinitrogen and stirring for 2 h. Afterwards the resulting yellow solution was cooling and pallid yellow crystals were obtained on the wall of the flask directly from the mixture which corresponds to the compound I pure according to 1H NMR in DMSO-d6. Yield: 95%. Elemental analysis calculated (%) for C26H16N4O4; C, 69.64; H, 3.60; N, 12.49; found: C, 69.60; H, 3.62; N, 12.45.
H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure with displacement ellipsoids drawn at the 30% probability level and H atoms as small sphere of arbitrary radii. | |
Fig. 2. View p-stacking interactions in the crystal. |
C26H16N4O4 | Z = 1 |
Mr = 448.43 | F(000) = 232 |
Triclinic, P1 | Dx = 1.522 Mg m−3 |
a = 5.5891 (4) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 7.5232 (5) Å | Cell parameters from 9981 reflections |
c = 11.9525 (8) Å | θ = 3.8–68.3° |
α = 77.093 (3)° | µ = 0.87 mm−1 |
β = 88.445 (4)° | T = 296 K |
γ = 87.590 (4)° | Plate, colourless |
V = 489.37 (6) Å3 | 0.34 × 0.13 × 0.08 mm |
Bruker APEXII CCD diffractometer | 1748 independent reflections |
Radiation source: Incoatec ImuS | 1643 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.045 |
ω scans | θmax = 68.3°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −5→6 |
Tmin = 0.555, Tmax = 0.753 | k = −9→9 |
14032 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0617P)2 + 0.0799P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1748 reflections | Δρmax = 0.19 e Å−3 |
154 parameters | Δρmin = −0.19 e Å−3 |
C26H16N4O4 | γ = 87.590 (4)° |
Mr = 448.43 | V = 489.37 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.5891 (4) Å | Cu Kα radiation |
b = 7.5232 (5) Å | µ = 0.87 mm−1 |
c = 11.9525 (8) Å | T = 296 K |
α = 77.093 (3)° | 0.34 × 0.13 × 0.08 mm |
β = 88.445 (4)° |
Bruker APEXII CCD diffractometer | 1748 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1643 reflections with I > 2σ(I) |
Tmin = 0.555, Tmax = 0.753 | Rint = 0.045 |
14032 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.19 e Å−3 |
1748 reflections | Δρmin = −0.19 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.43898 (16) | 0.61174 (13) | 0.75255 (7) | 0.0471 (3) | |
N1 | −0.0333 (2) | 0.68325 (18) | 1.12186 (9) | 0.0587 (3) | |
C1 | 0.1698 (3) | 0.7665 (2) | 1.09030 (12) | 0.0600 (4) | |
H1 | 0.2727 | 0.7785 | 1.1478 | 0.072* | |
O2 | −0.21818 (18) | 0.96340 (12) | 0.62202 (8) | 0.0540 (3) | |
N2 | 0.10767 (18) | 0.78494 (13) | 0.68880 (8) | 0.0375 (3) | |
C2 | 0.2394 (2) | 0.83681 (19) | 0.97785 (11) | 0.0482 (3) | |
H2 | 0.3847 | 0.8938 | 0.9613 | 0.058* | |
C6 | 0.1602 (2) | 0.90343 (17) | 0.76740 (10) | 0.0425 (3) | |
H6A | 0.0742 | 1.0198 | 0.7428 | 0.051* | |
H6B | 0.3301 | 0.9262 | 0.7628 | 0.051* | |
C3 | 0.0913 (2) | 0.82151 (15) | 0.89059 (9) | 0.0372 (3) | |
C5 | −0.1744 (3) | 0.66899 (19) | 1.03678 (12) | 0.0511 (3) | |
H5 | −0.3183 | 0.6110 | 1.0560 | 0.061* | |
C4 | −0.1216 (2) | 0.73457 (17) | 0.92155 (10) | 0.0435 (3) | |
H4 | −0.2276 | 0.7204 | 0.8658 | 0.052* | |
C7 | 0.2667 (2) | 0.63581 (16) | 0.69075 (9) | 0.0360 (3) | |
C8 | 0.2169 (2) | 0.51409 (15) | 0.61294 (9) | 0.0337 (3) | |
C9 | 0.02134 (19) | 0.55699 (14) | 0.53820 (8) | 0.0315 (3) | |
C10 | −0.1324 (2) | 0.71073 (15) | 0.53795 (9) | 0.0340 (3) | |
C11 | −0.0899 (2) | 0.83074 (15) | 0.61813 (9) | 0.0376 (3) | |
C12 | 0.3627 (2) | 0.36316 (16) | 0.61186 (9) | 0.0383 (3) | |
H12 | 0.4906 | 0.3354 | 0.6618 | 0.046* | |
C13 | −0.3204 (2) | 0.74975 (16) | 0.46403 (10) | 0.0384 (3) | |
H13 | −0.4206 | 0.8516 | 0.4641 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0449 (5) | 0.0592 (6) | 0.0403 (5) | −0.0028 (4) | −0.0085 (4) | −0.0169 (4) |
N1 | 0.0686 (8) | 0.0691 (8) | 0.0368 (6) | 0.0111 (6) | 0.0030 (5) | −0.0118 (5) |
C1 | 0.0676 (10) | 0.0771 (10) | 0.0401 (7) | 0.0099 (7) | −0.0136 (6) | −0.0243 (7) |
O2 | 0.0626 (6) | 0.0463 (5) | 0.0580 (6) | 0.0133 (4) | −0.0097 (4) | −0.0237 (4) |
N2 | 0.0465 (6) | 0.0387 (5) | 0.0292 (5) | −0.0039 (4) | 0.0003 (4) | −0.0113 (4) |
C2 | 0.0479 (8) | 0.0572 (8) | 0.0454 (7) | 0.0002 (5) | −0.0060 (5) | −0.0234 (6) |
C6 | 0.0530 (7) | 0.0405 (6) | 0.0372 (6) | −0.0087 (5) | 0.0007 (5) | −0.0143 (5) |
C3 | 0.0436 (6) | 0.0356 (6) | 0.0358 (6) | 0.0031 (4) | −0.0018 (4) | −0.0156 (4) |
C5 | 0.0508 (8) | 0.0541 (7) | 0.0456 (7) | 0.0033 (6) | 0.0064 (6) | −0.0074 (6) |
C4 | 0.0454 (7) | 0.0467 (7) | 0.0391 (6) | −0.0006 (5) | −0.0036 (5) | −0.0108 (5) |
C7 | 0.0376 (6) | 0.0437 (6) | 0.0264 (5) | −0.0056 (4) | 0.0017 (4) | −0.0069 (4) |
C8 | 0.0368 (6) | 0.0388 (6) | 0.0249 (5) | −0.0027 (4) | 0.0023 (4) | −0.0060 (4) |
C9 | 0.0349 (6) | 0.0351 (6) | 0.0235 (5) | −0.0026 (4) | 0.0032 (4) | −0.0044 (4) |
C10 | 0.0384 (6) | 0.0356 (6) | 0.0272 (5) | −0.0012 (4) | 0.0026 (4) | −0.0055 (4) |
C11 | 0.0436 (7) | 0.0364 (6) | 0.0325 (6) | −0.0003 (5) | 0.0021 (4) | −0.0077 (4) |
C12 | 0.0376 (6) | 0.0453 (6) | 0.0304 (6) | 0.0027 (5) | −0.0051 (4) | −0.0055 (5) |
C13 | 0.0420 (6) | 0.0376 (6) | 0.0346 (6) | 0.0061 (5) | −0.0002 (4) | −0.0071 (4) |
N1—C1 | 1.325 (2) | C5—H5 | 0.9300 |
N1—C5 | 1.3293 (19) | C6—H6A | 0.9700 |
N2—C11 | 1.3931 (16) | C6—H6B | 0.9700 |
N2—C7 | 1.3982 (16) | C7—C8 | 1.4823 (16) |
N2—C6 | 1.4746 (14) | C8—C12 | 1.3718 (16) |
O1—C7 | 1.2123 (14) | C8—C9 | 1.4110 (16) |
O2—C11 | 1.2127 (15) | C9—C10 | 1.4113 (16) |
C1—C2 | 1.382 (2) | C9—C9i | 1.416 (2) |
C1—H1 | 0.9300 | C10—C13 | 1.3708 (17) |
C2—C3 | 1.3766 (17) | C10—C11 | 1.4855 (16) |
C2—H2 | 0.9300 | C12—C13i | 1.4046 (17) |
C3—C4 | 1.3836 (18) | C12—H12 | 0.9300 |
C3—C6 | 1.5100 (16) | C13—C12i | 1.4046 (17) |
C4—C5 | 1.3834 (18) | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | ||
C1—N1—C5 | 115.61 (12) | C3—C6—H6B | 109.0 |
C11—N2—C7 | 125.48 (10) | H6A—C6—H6B | 107.8 |
C11—N2—C6 | 118.44 (10) | O1—C7—N2 | 120.35 (10) |
C7—N2—C6 | 116.06 (10) | O1—C7—C8 | 122.58 (11) |
N1—C1—C2 | 124.53 (13) | N2—C7—C8 | 117.06 (10) |
N1—C1—H1 | 117.7 | C12—C8—C9 | 120.29 (11) |
C2—C1—H1 | 117.7 | C12—C8—C7 | 120.26 (11) |
C3—C2—C1 | 119.25 (13) | C9—C8—C7 | 119.44 (10) |
C3—C2—H2 | 120.4 | C8—C9—C10 | 121.50 (11) |
C1—C2—H2 | 120.4 | C8—C9—C9i | 119.18 (13) |
C2—C3—C4 | 117.23 (11) | C10—C9—C9i | 119.32 (13) |
C2—C3—C6 | 120.00 (11) | C13—C10—C9 | 120.29 (11) |
C4—C3—C6 | 122.74 (11) | C13—C10—C11 | 119.95 (10) |
C5—C4—C3 | 118.95 (12) | C9—C10—C11 | 119.77 (11) |
C5—C4—H4 | 120.5 | O2—C11—N2 | 120.98 (11) |
C3—C4—H4 | 120.5 | O2—C11—C10 | 122.31 (11) |
N1—C5—C4 | 124.44 (13) | N2—C11—C10 | 116.70 (10) |
N1—C5—H5 | 117.8 | C8—C12—C13i | 120.51 (11) |
C4—C5—H5 | 117.8 | C8—C12—H12 | 119.7 |
N2—C6—C3 | 112.85 (9) | C13i—C12—H12 | 119.7 |
N2—C6—H6A | 109.0 | C10—C13—C12i | 120.41 (10) |
C3—C6—H6A | 109.0 | C10—C13—H13 | 119.8 |
N2—C6—H6B | 109.0 | C12i—C13—H13 | 119.8 |
C5—N1—C1—C2 | 0.1 (2) | C12—C8—C9—C10 | 179.61 (9) |
N1—C1—C2—C3 | 0.0 (2) | C7—C8—C9—C10 | −1.78 (16) |
C11—N2—C6—C3 | 104.43 (12) | C12—C8—C9—C9i | −0.36 (19) |
C7—N2—C6—C3 | −76.70 (13) | C7—C8—C9—C9i | 178.25 (10) |
C1—C2—C3—C4 | −0.20 (18) | C8—C9—C10—C13 | 179.67 (9) |
C1—C2—C3—C6 | 177.80 (12) | C9i—C9—C10—C13 | −0.36 (19) |
N2—C6—C3—C2 | 139.13 (11) | C8—C9—C10—C11 | −0.25 (17) |
N2—C6—C3—C4 | −42.99 (16) | C9i—C9—C10—C11 | 179.72 (10) |
C1—N1—C5—C4 | −0.1 (2) | C7—N2—C11—O2 | −179.77 (10) |
N1—C5—C4—C3 | 0.0 (2) | C6—N2—C11—O2 | −1.01 (17) |
C2—C3—C4—C5 | 0.19 (17) | C7—N2—C11—C10 | −0.43 (17) |
C6—C3—C4—C5 | −177.75 (11) | C6—N2—C11—C10 | 178.33 (9) |
C11—N2—C7—O1 | 177.16 (10) | C13—C10—C11—O2 | 0.79 (18) |
C6—N2—C7—O1 | −1.63 (16) | C9—C10—C11—O2 | −179.29 (10) |
C11—N2—C7—C8 | −1.55 (16) | C13—C10—C11—N2 | −178.55 (9) |
C6—N2—C7—C8 | 179.67 (8) | C9—C10—C11—N2 | 1.38 (16) |
O1—C7—C8—C12 | 2.58 (17) | C9—C8—C12—C13i | 0.44 (17) |
N2—C7—C8—C12 | −178.75 (9) | C7—C8—C12—C13i | −178.16 (9) |
O1—C7—C8—C9 | −176.03 (10) | C9—C10—C13—C12i | 0.29 (18) |
N2—C7—C8—C9 | 2.64 (15) | C11—C10—C13—C12i | −179.78 (10) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1ii | 0.93 | 2.59 | 3.5014 (15) | 165 |
C13—H13···O2iii | 0.93 | 2.51 | 3.3242 (15) | 146 |
Symmetry codes: (ii) x−1, y, z; (iii) −x−1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.93 | 2.59 | 3.5014 (15) | 165 |
C13—H13···O2ii | 0.93 | 2.51 | 3.3242 (15) | 146 |
Symmetry codes: (i) x−1, y, z; (ii) −x−1, −y+2, −z+1. |
Acknowledgements
ADG thanks CONACyT for the repatriation fellowship 203539 and M. Sc. María de las Nieves Zavala Segovia for technical assistance.
References
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheney, M. L., Mcmanus, G. J., Perman, J. A., Wang, Z. & Zaworotko, M. J. (2007). Cryst. Growth Des. 7, 616–617. Web of Science CSD CrossRef CAS Google Scholar
Jung, B. J., Sun, J., Lee, T., Sarjeant, A. & Katz, H. E. (2009). Chem. Mater. 12, 94–101. Web of Science CSD CrossRef Google Scholar
Li, G.-B., He, J.-R., Liu, J.-M. & Su, C.-Y. (2012). CrystEngComm, 14, 2152-2158. Web of Science CSD CrossRef CAS Google Scholar
Li, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des. 11, 2763–2772. Web of Science CSD CrossRef CAS Google Scholar
Li, G.-B., Liu, J.-M., Yu, Z.-Q., Wang, W. & Su, C.-Y. (2009). Inorg. Chem. 48, 8659–8661. Web of Science CSD CrossRef PubMed CAS Google Scholar
Matsunaga, Y., Goto, K., Kubono, K., Sako, K. & Shinmyozu, T. (2014). Chem. Eur. J. 20, 7309–7316. Web of Science CSD CrossRef CAS PubMed Google Scholar
Oh, J. H., Suraru, S. L., Lee, W. Y., Könemann, M., Höffken, H. W., Röger, C. & Bao, Z. (2010). Adv. Funct. Mater. 20, 2148–2156. Web of Science CSD CrossRef CAS Google Scholar
Pandeeswar, M., Khare, H., Ramakumar, S. & Govindaraju, T. (2014). RSC Adv. 4, 20154-20163. Web of Science CSD CrossRef CAS Google Scholar
Pantoş, G. D., Wietor, J. L. & Sanders, J. K. M. (2007). Angew. Chem. Int. Ed. Engl. 46, 2238–2240. Web of Science PubMed Google Scholar
Reczek, J. J., Villazor, K. R., Lynch, V., Swager, T. M. & Iverson, B. L. (2006). J. Am. Chem. Soc. 128, 7995–8002. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trivedi, D. R., Fujiki, Y., Fujita, N., Shinkai, S. & Sada, K. (2009). Chem. Asia. J. 4, 254–261. Web of Science CSD CrossRef CAS Google Scholar
Xu, L.-P., Zhao, W.-N. & Han, L. (2011). Acta Cryst. E67, o1971. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The assembly of organic molecules in solid state has attracted much attention in supramolecular chemistry, especially in crystal engineering and materials science (Cheney et al., 2007). The study and understanding of intermolecular interactions in a crystal is a central topic for design and synthesis of functional organic materials with desirable optical, electronic and structural properties (Pandeeswar et al., 2014). Herein we report the crystal structure of the title compound, which was prepared from 1,4,5,8-naphthalene dianhydride and 4-aminomethyl-pyridine under reflux in dry DMF. Suitable single-crystals for X-ray diffraction, were obtained directly from reaction mixture after of 12 h. The compound with methanol solvate (1:1) has been reported (Li et al., 2009) and was obtained as by-product during preparation of transition polymeric complexes in a mixture (methanol:chloroform) under solvothermal conditions, structurally this solvated is similar to compound reported here, both trans conformation of N-(4-pyridilmethyl) groups as to the dihedral angles between central ring and pyridil groups (86.34°). The title compound has also been studied as a semi-rigid ditopic ligand to the synthesis of one-dimensional coordination polymers with Zn(II), Mn(II), Co(II), Cd(II) where the ligand plays the key role to determine the final conformation of the polymeric structures (Li et al., 2011, 2012). The coordination of (I) to the salts of ZnCl2, Zn(ClO4)2, Zn(CF3SO3)2 generates one-dimensional polymeric structures where trans conformation of (I) is maintained and not significant structural changes observed. A series of one-dimensional metal-organic frameworks of Mn(SCN)2, Co(SCN)2 and Cd(SCN)2 with (I) have been reported, in all cases (I) shows a Z mode conformation and links up two metal centers such that one-dimensional chains are formed with π-π stacking interactions (centroid-centroid distances = 3.92–4.14 Å).