organic compounds
H-imidazol-3-ium 2-(1,3-dioxoisoindolin-2-yl)acetate
of 1aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dAnalytical Development Division, Manchester Metropolitan University, Manchester M1 5GD, England
*Correspondence e-mail: akkurt@erciyes.edu.tr
The title salt, C3H5N2+·C10H6NO4−, was obtained during a study of the co-crystallization of N′-[bis(1H-imidazol-1-yl)methylene]isonicotinohydrazide with (1,3-dioxoisoindolin-2-yl)acetic acid under aqueous conditions. The 1,3-dioxoisoindolinyl ring system of the anion is essentially planar [maximum deviation = 0.023 (2) Å]. In the crystal, cations and anions are linked via classical N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds, forming a three-dimensional network. Weak C—H⋯π interactions and π–π stacking interactions [centroid–centroid distances = 3.4728 (13) and 3.7339 (13) Å] also occur in the crystal.
Keywords: crystal structure; 1H-imidazol-3-ium salt; 2-(1,3-dioxoisoindolin-2-yl)acetate salt; hydrogen bonding; π–π stacking interactions; co-crystallization; pharmaceuticals.
CCDC reference: 1017262
1. Related literature
For the use of co-crystals in drug design, see: Babu & Nangia (2011); Sekhon (2013); Frantz (2006); Pan et al. (2008); Vermeire et al. (2001).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
CCDC reference: 1017262
10.1107/S1600536814017619/xu5807sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814017619/xu5807Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017619/xu5807Isup3.cml
A mixture of 1 mmol (281 mg) of N'-(di-1H-imidazol-1-ylmethylene)isonicotinohydrazide and 1 mmol (205 mg) of (1,3-dioxoisoindolin-2-yl)acetic acid was stirred in 30 ml ethanol at room temperature. Few drops of glacial acetic acid as a catalyst was added to the reaction mixture and allowed to reflux at 351 K for 5 h. The reaction progress was monitored by TLC using a mixture of cyclohexane and ethyl acetate (1:1) as an
On completion, the reaction mixture was poured on crushed ice (50 g). The resulting solid was filtered off, washed with cold ethanol dried under vacuum and recrystallized from ethanol to yield colourless blocks of the title compound (74% yield).H atoms attached to carbon were placed in calculated positions (C—H = 0.95 and 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 those of the attached atoms. H-atoms attached to nitrogen were placed in locations derived from a difference map and they were refined freely.
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. Perspective view of the title compound (I). Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Packing viewed down the a axis showing the intermolecular interactions as dotted lines. |
C3H5N2+·C10H6NO4− | F(000) = 568 |
Mr = 273.25 | Dx = 1.462 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ybc | Cell parameters from 1373 reflections |
a = 9.8750 (7) Å | θ = 4.0–27.4° |
b = 18.0543 (15) Å | µ = 0.11 mm−1 |
c = 7.0942 (5) Å | T = 150 K |
β = 100.955 (7)° | Block, colourless |
V = 1241.75 (16) Å3 | 0.09 × 0.02 × 0.02 mm |
Z = 4 |
Agilent SuperNova, Single source at offset, Eos diffractometer | 2756 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 1993 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 8.0714 pixels mm-1 | θmax = 29.1°, θmin = 3.1° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −9→23 |
Tmin = 0.859, Tmax = 1.000 | l = −9→5 |
4781 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0327P)2 + 0.2765P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2756 reflections | Δρmax = 0.26 e Å−3 |
189 parameters | Δρmin = −0.26 e Å−3 |
C3H5N2+·C10H6NO4− | V = 1241.75 (16) Å3 |
Mr = 273.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.8750 (7) Å | µ = 0.11 mm−1 |
b = 18.0543 (15) Å | T = 150 K |
c = 7.0942 (5) Å | 0.09 × 0.02 × 0.02 mm |
β = 100.955 (7)° |
Agilent SuperNova, Single source at offset, Eos diffractometer | 2756 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 1993 reflections with I > 2σ(I) |
Tmin = 0.859, Tmax = 1.000 | Rint = 0.028 |
4781 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.26 e Å−3 |
2756 reflections | Δρmin = −0.26 e Å−3 |
189 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.16235 (14) | 0.29586 (8) | −0.05484 (19) | 0.0277 (5) | |
O2 | 0.54966 (15) | 0.42729 (9) | 0.1952 (2) | 0.0316 (5) | |
O3 | 0.24304 (16) | 0.45939 (9) | 0.33073 (19) | 0.0310 (5) | |
O4 | 0.14750 (14) | 0.54438 (8) | 0.11691 (18) | 0.0236 (5) | |
N1 | 0.33840 (16) | 0.37710 (10) | 0.0589 (2) | 0.0202 (5) | |
C1 | 0.5087 (2) | 0.29370 (12) | 0.1790 (3) | 0.0215 (6) | |
C2 | 0.6297 (2) | 0.25882 (14) | 0.2609 (3) | 0.0292 (7) | |
C3 | 0.6299 (2) | 0.18176 (14) | 0.2585 (3) | 0.0344 (8) | |
C4 | 0.5146 (3) | 0.14112 (14) | 0.1752 (3) | 0.0343 (8) | |
C5 | 0.3917 (2) | 0.17722 (12) | 0.0932 (3) | 0.0265 (7) | |
C6 | 0.3923 (2) | 0.25360 (12) | 0.0988 (3) | 0.0207 (6) | |
C7 | 0.2809 (2) | 0.30730 (12) | 0.0234 (3) | 0.0199 (6) | |
C8 | 0.4768 (2) | 0.37384 (13) | 0.1526 (3) | 0.0221 (6) | |
C9 | 0.2655 (2) | 0.44563 (12) | 0.0027 (3) | 0.0231 (7) | |
C10 | 0.2159 (2) | 0.48474 (12) | 0.1675 (3) | 0.0212 (6) | |
N2 | 0.90678 (17) | 0.40848 (10) | 0.2486 (2) | 0.0228 (6) | |
N3 | 0.91310 (17) | 0.40494 (10) | 0.5539 (2) | 0.0221 (6) | |
C11 | 0.8627 (2) | 0.44091 (13) | 0.3939 (3) | 0.0227 (6) | |
C12 | 0.9894 (2) | 0.34962 (12) | 0.3193 (3) | 0.0244 (7) | |
C13 | 0.9924 (2) | 0.34743 (12) | 0.5102 (3) | 0.0247 (7) | |
H2 | 0.70950 | 0.28620 | 0.31660 | 0.0350* | |
H3 | 0.71140 | 0.15610 | 0.31560 | 0.0410* | |
H4 | 0.51900 | 0.08860 | 0.17370 | 0.0410* | |
H5 | 0.31170 | 0.15030 | 0.03640 | 0.0320* | |
H9A | 0.18490 | 0.43490 | −0.09980 | 0.0280* | |
H9B | 0.32720 | 0.47940 | −0.05150 | 0.0280* | |
H2N | 0.885 (3) | 0.4263 (15) | 0.114 (4) | 0.061 (8)* | |
H3N | 0.894 (2) | 0.4211 (13) | 0.677 (3) | 0.040 (7)* | |
H11 | 0.80430 | 0.48310 | 0.38420 | 0.0270* | |
H12 | 1.03540 | 0.31680 | 0.24770 | 0.0290* | |
H13 | 1.04070 | 0.31250 | 0.59820 | 0.0300* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0257 (8) | 0.0262 (9) | 0.0296 (8) | −0.0052 (7) | 0.0014 (6) | −0.0001 (7) |
O2 | 0.0293 (8) | 0.0287 (10) | 0.0353 (9) | −0.0110 (7) | 0.0026 (6) | 0.0010 (7) |
O3 | 0.0450 (10) | 0.0266 (10) | 0.0218 (8) | 0.0109 (8) | 0.0074 (7) | 0.0055 (7) |
O4 | 0.0313 (8) | 0.0196 (9) | 0.0195 (7) | 0.0062 (7) | 0.0040 (6) | 0.0007 (6) |
N1 | 0.0209 (8) | 0.0159 (10) | 0.0235 (9) | 0.0004 (7) | 0.0038 (7) | −0.0011 (7) |
C1 | 0.0241 (10) | 0.0227 (12) | 0.0191 (10) | 0.0015 (9) | 0.0080 (8) | 0.0019 (9) |
C2 | 0.0248 (11) | 0.0383 (15) | 0.0259 (11) | 0.0047 (11) | 0.0083 (9) | 0.0046 (10) |
C3 | 0.0383 (14) | 0.0365 (16) | 0.0308 (13) | 0.0171 (12) | 0.0130 (10) | 0.0083 (11) |
C4 | 0.0523 (15) | 0.0262 (14) | 0.0280 (12) | 0.0147 (12) | 0.0168 (11) | 0.0067 (11) |
C5 | 0.0395 (13) | 0.0205 (13) | 0.0209 (11) | −0.0008 (10) | 0.0090 (9) | −0.0030 (9) |
C6 | 0.0270 (11) | 0.0205 (12) | 0.0164 (10) | 0.0007 (9) | 0.0091 (8) | −0.0002 (9) |
C7 | 0.0237 (10) | 0.0199 (12) | 0.0174 (10) | −0.0018 (9) | 0.0069 (8) | −0.0009 (9) |
C8 | 0.0211 (10) | 0.0267 (13) | 0.0191 (10) | −0.0018 (9) | 0.0057 (8) | 0.0015 (9) |
C9 | 0.0257 (11) | 0.0199 (12) | 0.0233 (11) | 0.0017 (9) | 0.0039 (8) | 0.0016 (9) |
C10 | 0.0217 (10) | 0.0206 (12) | 0.0206 (10) | −0.0034 (9) | 0.0025 (8) | 0.0003 (9) |
N2 | 0.0241 (9) | 0.0260 (11) | 0.0190 (9) | 0.0016 (8) | 0.0061 (7) | 0.0021 (8) |
N3 | 0.0245 (9) | 0.0233 (11) | 0.0184 (9) | 0.0000 (8) | 0.0038 (7) | 0.0003 (8) |
C11 | 0.0223 (10) | 0.0240 (12) | 0.0212 (11) | 0.0017 (9) | 0.0025 (8) | 0.0007 (9) |
C12 | 0.0225 (10) | 0.0234 (13) | 0.0285 (12) | 0.0052 (9) | 0.0079 (8) | 0.0010 (10) |
C13 | 0.0236 (11) | 0.0208 (13) | 0.0289 (12) | 0.0059 (9) | 0.0033 (9) | 0.0057 (9) |
O1—C7 | 1.214 (2) | C2—C3 | 1.391 (4) |
O2—C8 | 1.207 (3) | C3—C4 | 1.389 (3) |
O3—C10 | 1.227 (3) | C4—C5 | 1.403 (3) |
O4—C10 | 1.285 (3) | C5—C6 | 1.380 (3) |
N1—C7 | 1.386 (3) | C6—C7 | 1.488 (3) |
N1—C8 | 1.403 (3) | C9—C10 | 1.524 (3) |
N1—C9 | 1.449 (3) | C2—H2 | 0.9500 |
N2—C11 | 1.329 (3) | C3—H3 | 0.9500 |
N2—C12 | 1.375 (3) | C4—H4 | 0.9500 |
N3—C11 | 1.320 (3) | C5—H5 | 0.9500 |
N3—C13 | 1.371 (3) | C9—H9A | 0.9900 |
N2—H2N | 0.99 (3) | C9—H9B | 0.9900 |
N3—H3N | 0.97 (2) | C12—C13 | 1.350 (3) |
C1—C8 | 1.485 (3) | C11—H11 | 0.9500 |
C1—C2 | 1.378 (3) | C12—H12 | 0.9500 |
C1—C6 | 1.386 (3) | C13—H13 | 0.9500 |
C7—N1—C8 | 112.13 (17) | O3—C10—O4 | 125.81 (19) |
C7—N1—C9 | 124.17 (16) | O3—C10—C9 | 120.46 (19) |
C8—N1—C9 | 123.69 (18) | O4—C10—C9 | 113.72 (17) |
C11—N2—C12 | 108.47 (16) | C3—C2—H2 | 121.00 |
C11—N3—C13 | 108.44 (16) | C1—C2—H2 | 121.00 |
C12—N2—H2N | 127.4 (16) | C2—C3—H3 | 119.00 |
C11—N2—H2N | 124.1 (16) | C4—C3—H3 | 119.00 |
C13—N3—H3N | 130.3 (13) | C3—C4—H4 | 120.00 |
C11—N3—H3N | 121.2 (13) | C5—C4—H4 | 120.00 |
C2—C1—C8 | 130.2 (2) | C4—C5—H5 | 122.00 |
C6—C1—C8 | 108.52 (18) | C6—C5—H5 | 122.00 |
C2—C1—C6 | 121.3 (2) | C10—C9—H9A | 109.00 |
C1—C2—C3 | 117.1 (2) | N1—C9—H9B | 109.00 |
C2—C3—C4 | 122.1 (2) | H9A—C9—H9B | 108.00 |
C3—C4—C5 | 120.4 (2) | N1—C9—H9A | 109.00 |
C4—C5—C6 | 117.0 (2) | C10—C9—H9B | 109.00 |
C1—C6—C5 | 122.19 (19) | N2—C11—N3 | 108.95 (19) |
C1—C6—C7 | 107.83 (18) | N2—C12—C13 | 106.68 (18) |
C5—C6—C7 | 129.97 (19) | N3—C13—C12 | 107.47 (18) |
N1—C7—C6 | 106.14 (17) | N2—C11—H11 | 126.00 |
O1—C7—N1 | 124.34 (19) | N3—C11—H11 | 126.00 |
O1—C7—C6 | 129.5 (2) | N2—C12—H12 | 127.00 |
N1—C8—C1 | 105.36 (18) | C13—C12—H12 | 127.00 |
O2—C8—C1 | 130.18 (19) | N3—C13—H13 | 126.00 |
O2—C8—N1 | 124.5 (2) | C12—C13—H13 | 126.00 |
N1—C9—C10 | 113.57 (17) | ||
C9—N1—C7—C6 | 178.15 (17) | C2—C1—C6—C5 | −1.2 (3) |
C7—N1—C8—O2 | 178.4 (2) | C6—C1—C2—C3 | 0.3 (3) |
C9—N1—C8—O2 | −0.4 (3) | C8—C1—C6—C7 | −1.6 (2) |
C7—N1—C8—C1 | −0.3 (2) | C8—C1—C6—C5 | 177.06 (19) |
C8—N1—C7—O1 | 179.48 (19) | C6—C1—C8—O2 | −177.4 (2) |
C9—N1—C7—O1 | −1.7 (3) | C6—C1—C8—N1 | 1.2 (2) |
C8—N1—C7—C6 | −0.7 (2) | C1—C2—C3—C4 | 0.9 (3) |
C8—N1—C9—C10 | −79.5 (2) | C2—C3—C4—C5 | −1.3 (3) |
C9—N1—C8—C1 | −179.10 (17) | C3—C4—C5—C6 | 0.4 (3) |
C7—N1—C9—C10 | 101.9 (2) | C4—C5—C6—C7 | 179.2 (2) |
C12—N2—C11—N3 | −0.4 (2) | C4—C5—C6—C1 | 0.8 (3) |
C11—N2—C12—C13 | 0.5 (2) | C1—C6—C7—O1 | −178.8 (2) |
C13—N3—C11—N2 | 0.0 (2) | C5—C6—C7—N1 | −177.1 (2) |
C11—N3—C13—C12 | 0.3 (2) | C1—C6—C7—N1 | 1.4 (2) |
C2—C1—C8—O2 | 0.7 (4) | C5—C6—C7—O1 | 2.7 (4) |
C2—C1—C8—N1 | 179.3 (2) | N1—C9—C10—O4 | −177.97 (17) |
C2—C1—C6—C7 | −179.89 (19) | N1—C9—C10—O3 | 2.7 (3) |
C8—C1—C2—C3 | −177.6 (2) | N2—C12—C13—N3 | −0.5 (2) |
Cg4 is the centroid of the N2/N3/C11–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O4i | 0.99 (3) | 1.69 (3) | 2.6846 (19) | 178 (4) |
N3—H3N···O3ii | 0.97 (2) | 2.54 (2) | 3.087 (2) | 115.4 (16) |
N3—H3N···O4ii | 0.97 (2) | 1.71 (2) | 2.680 (2) | 175 (2) |
C3—H3···O4iii | 0.95 | 2.45 | 3.321 (3) | 153 |
C5—H5···O3iv | 0.95 | 2.48 | 3.266 (3) | 141 |
C9—H9A···O1 | 0.99 | 2.55 | 2.891 (3) | 100 |
C9—H9B···O2i | 0.99 | 2.41 | 3.397 (3) | 172 |
C11—H11···O3ii | 0.95 | 2.40 | 2.987 (3) | 120 |
C13—H13···O1v | 0.95 | 2.54 | 3.352 (2) | 143 |
C2—H2···Cg4 | 0.95 | 2.87 | 3.805 (2) | 166 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2; (v) x+1, y, z+1. |
Cg4 is the centroid of the N2/N3/C11–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O4i | 0.99 (3) | 1.69 (3) | 2.6846 (19) | 178 (4) |
N3—H3N···O4ii | 0.97 (2) | 1.71 (2) | 2.680 (2) | 175 (2) |
C3—H3···O4iii | 0.95 | 2.45 | 3.321 (3) | 153 |
C5—H5···O3iv | 0.95 | 2.48 | 3.266 (3) | 141 |
C9—H9B···O2i | 0.99 | 2.41 | 3.397 (3) | 172 |
C11—H11···O3ii | 0.95 | 2.40 | 2.987 (3) | 120 |
C13—H13···O1v | 0.95 | 2.54 | 3.352 (2) | 143 |
C2—H2···Cg4 | 0.95 | 2.87 | 3.805 (2) | 166 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2; (v) x+1, y, z+1. |
Acknowledgements
The authors express their thanks to Dr Robin Pritchard, The University of Manchester, for providing the X-ray diffraction data.
References
Agilent (2013). CrysAlis PRO. Agilent Tehnologies Ltd, Yarnton, England. Google Scholar
Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 2662–2679. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frantz, S. (2006). Nat. Rev. Drug Discov. 5, 881–882. Web of Science PubMed Google Scholar
Pan, F., Chernew, M. E. & Fendrick, A. M. (2008). J. Gen. Intern. Med. 23, 611–614. Web of Science CrossRef PubMed Google Scholar
Sekhon, B. S. (2013). Int. Bull. Drug Res. 1, 24–39. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vermeire, E., Hearnshaw, H., Van Royen, P. & Denekens, J. (2001). J. Clin. Pharm. Ther. 26, 331–342. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The use of co-crystals in drug design see and delivery and as functional materials with potential applications as pharmaceuticals has recently attracted a significant amount of interest in the pharmaceutical industry (Babu & Nangia, 2011). Co-crystallization in particular is a reliable technique for the modification of the physical properties of a drug as it enables the control of physical properties of Active Pharmaceutical Ingredient (API) molecules such as dissolution, stability, solubility, bioavailability, hygroscopisity and compressibility without changing the chemical composition of the API (Sekhon, 2013). Multi-API co-crystals are also possible solid forms for the delivery of combination drugs that can be tested to overcome problems related with traditional combination drugs (Frantz, 2006). Another benefit of multi-API co-crystal is the ability to reduce the number of pills being taken by a patient due to the improvement of patients long-term medication compliance in long-term drug therapy, since fewer pills need to be taken (Pan et al., 2008; Vermeire et al., 2001). The title compound was obtained during our study on co-crystallization reaction of N'-(di-1H-imidazol-1-ylmethylene)isonicotinohydrazide with (1,3-dioxoisoindolin-2-yl)acetic acid under aqouse condition.
Fig. 1 shows one 1H-imidazol-3-ium cation and one (1,3-dioxoisoindolin-2-yl)acetate anion in the asymmetric unit of the title compound (I).
The five-membered ring (N2/N3/C11—C13) of the 1H-imidazol-3-ium cation is essentially planar [maximum deviation = 0.003 (2) Å for C12]. The nine-membered ring system (N1/C1–C8) of the (1,3-dioxoisoindolin-2-yl)acetate anion is also essentially planar [maximum deviation = -0.023 (2) Å for C8].
In the crystal structure, the anions and cations of (I) are linked via N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2), forming three dimensional network. Further C—H···π interactions (Table 1) and face-to-face π-π stacking interactions [Cg1···Cg2 (x, 1/2 - y, -1/2 + z) = 3.4728 (13) Å, Cg2···Cg2 (x, 1/2-y, 1/2+z) = 3.7339 (13) Å, where Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively] presents in the three-dimensional framework.