organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o979-o980

Crystal structure of 1H-imidazol-3-ium 2-(1,3-dioxoisoindolin-2-yl)acetate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dAnalytical Development Division, Manchester Metropolitan University, Manchester M1 5GD, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 22 July 2014; accepted 31 July 2014; online 6 August 2014)

The title salt, C3H5N2+·C10H6NO4, was obtained during a study of the co-crystallization of N′-[bis­(1H-imidazol-1-yl)methyl­ene]isonicotinohydrazide with (1,3-dioxoisoindolin-2-yl)acetic acid under aqueous conditions. The 1,3-dioxoisoindolinyl ring system of the anion is essentially planar [maximum deviation = 0.023 (2) Å]. In the crystal, cations and anions are linked via classical N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds, forming a three-dimensional network. Weak C—H⋯π inter­actions and ππ stacking inter­actions [centroid–centroid distances = 3.4728 (13) and 3.7339 (13) Å] also occur in the crystal.

1. Related literature

For the use of co-crystals in drug design, see: Babu & Nangia (2011[Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 2662-2679.]); Sekhon (2013[Sekhon, B. S. (2013). Int. Bull. Drug Res. 1, 24-39.]); Frantz (2006[Frantz, S. (2006). Nat. Rev. Drug Discov. 5, 881-882.]); Pan et al. (2008[Pan, F., Chernew, M. E. & Fendrick, A. M. (2008). J. Gen. Intern. Med. 23, 611-614.]); Vermeire et al. (2001[Vermeire, E., Hearnshaw, H., Van Royen, P. & Denekens, J. (2001). J. Clin. Pharm. Ther. 26, 331-342.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C3H5N2+·C10H6NO4

  • Mr = 273.25

  • Monoclinic, P 21 /c

  • a = 9.8750 (7) Å

  • b = 18.0543 (15) Å

  • c = 7.0942 (5) Å

  • β = 100.955 (7)°

  • V = 1241.75 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.09 × 0.02 × 0.02 mm

2.2. Data collection

  • Agilent SuperNova, Single source at offset, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Tehnologies Ltd, Yarnton, England.]) Tmin = 0.859, Tmax = 1.000

  • 4781 measured reflections

  • 2756 independent reflections

  • 1993 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.118

  • S = 1.06

  • 2756 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the N2/N3/C11–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O4i 0.99 (3) 1.69 (3) 2.6846 (19) 178 (4)
N3—H3N⋯O4ii 0.97 (2) 1.71 (2) 2.680 (2) 175 (2)
C3—H3⋯O4iii 0.95 2.45 3.321 (3) 153
C5—H5⋯O3iv 0.95 2.48 3.266 (3) 141
C9—H9B⋯O2i 0.99 2.41 3.397 (3) 172
C11—H11⋯O3ii 0.95 2.40 2.987 (3) 120
C13—H13⋯O1v 0.95 2.54 3.352 (2) 143
C2—H2⋯Cg4 0.95 2.87 3.805 (2) 166
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Tehnologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The use of co-crystals in drug design see and delivery and as functional materials with potential applications as pharmaceuticals has recently attracted a significant amount of interest in the pharmaceutical industry (Babu & Nangia, 2011). Co-crystallization in particular is a reliable technique for the modification of the physical properties of a drug as it enables the control of physical properties of Active Pharmaceutical Ingredient (API) molecules such as dissolution, stability, solubility, bioavailability, hygroscopisity and compressibility without changing the chemical composition of the API (Sekhon, 2013). Multi-API co-crystals are also possible solid forms for the delivery of combination drugs that can be tested to overcome problems related with traditional combination drugs (Frantz, 2006). Another benefit of multi-API co-crystal is the ability to reduce the number of pills being taken by a patient due to the improvement of patients long-term medication compliance in long-term drug therapy, since fewer pills need to be taken (Pan et al., 2008; Vermeire et al., 2001). The title compound was obtained during our study on co-crystallization reaction of N'-(di-1H-imidazol-1-ylmethylene)isonicotinohydrazide with (1,3-dioxoisoindolin-2-yl)acetic acid under aqouse condition.

Fig. 1 shows one 1H-imidazol-3-ium cation and one (1,3-dioxoisoindolin-2-yl)acetate anion in the asymmetric unit of the title compound (I).

The five-membered ring (N2/N3/C11—C13) of the 1H-imidazol-3-ium cation is essentially planar [maximum deviation = 0.003 (2) Å for C12]. The nine-membered ring system (N1/C1–C8) of the (1,3-dioxoisoindolin-2-yl)acetate anion is also essentially planar [maximum deviation = -0.023 (2) Å for C8].

In the crystal structure, the anions and cations of (I) are linked via N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2), forming three dimensional network. Further C—H···π interactions (Table 1) and face-to-face π-π stacking interactions [Cg1···Cg2 (x, 1/2 - y, -1/2 + z) = 3.4728 (13) Å, Cg2···Cg2 (x, 1/2-y, 1/2+z) = 3.7339 (13) Å, where Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively] presents in the three-dimensional framework.

Related literature top

For the use of co-crystals in drug design, see: Babu & Nangia (2011); Sekhon (2013); Frantz (2006); Pan et al. (2008); Vermeire et al. (2001).

Experimental top

A mixture of 1 mmol (281 mg) of N'-(di-1H-imidazol-1-ylmethylene)isonicotinohydrazide and 1 mmol (205 mg) of (1,3-dioxoisoindolin-2-yl)acetic acid was stirred in 30 ml ethanol at room temperature. Few drops of glacial acetic acid as a catalyst was added to the reaction mixture and allowed to reflux at 351 K for 5 h. The reaction progress was monitored by TLC using a mixture of cyclohexane and ethyl acetate (1:1) as an eluent. On completion, the reaction mixture was poured on crushed ice (50 g). The resulting solid was filtered off, washed with cold ethanol dried under vacuum and recrystallized from ethanol to yield colourless blocks of the title compound (74% yield).

Refinement top

H atoms attached to carbon were placed in calculated positions (C—H = 0.95 and 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 those of the attached atoms. H-atoms attached to nitrogen were placed in locations derived from a difference map and they were refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing viewed down the a axis showing the intermolecular interactions as dotted lines.
1H-imidazol-3-ium (1,3-dioxoisoindolin-2-yl)acetate top
Crystal data top
C3H5N2+·C10H6NO4F(000) = 568
Mr = 273.25Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 1373 reflections
a = 9.8750 (7) Åθ = 4.0–27.4°
b = 18.0543 (15) ŵ = 0.11 mm1
c = 7.0942 (5) ÅT = 150 K
β = 100.955 (7)°Block, colourless
V = 1241.75 (16) Å30.09 × 0.02 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova, Single source at offset, Eos
diffractometer
2756 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1993 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 8.0714 pixels mm-1θmax = 29.1°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 923
Tmin = 0.859, Tmax = 1.000l = 95
4781 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.2765P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2756 reflectionsΔρmax = 0.26 e Å3
189 parametersΔρmin = 0.26 e Å3
Crystal data top
C3H5N2+·C10H6NO4V = 1241.75 (16) Å3
Mr = 273.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8750 (7) ŵ = 0.11 mm1
b = 18.0543 (15) ÅT = 150 K
c = 7.0942 (5) Å0.09 × 0.02 × 0.02 mm
β = 100.955 (7)°
Data collection top
Agilent SuperNova, Single source at offset, Eos
diffractometer
2756 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1993 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 1.000Rint = 0.028
4781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
2756 reflectionsΔρmin = 0.26 e Å3
189 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16235 (14)0.29586 (8)0.05484 (19)0.0277 (5)
O20.54966 (15)0.42729 (9)0.1952 (2)0.0316 (5)
O30.24304 (16)0.45939 (9)0.33073 (19)0.0310 (5)
O40.14750 (14)0.54438 (8)0.11691 (18)0.0236 (5)
N10.33840 (16)0.37710 (10)0.0589 (2)0.0202 (5)
C10.5087 (2)0.29370 (12)0.1790 (3)0.0215 (6)
C20.6297 (2)0.25882 (14)0.2609 (3)0.0292 (7)
C30.6299 (2)0.18176 (14)0.2585 (3)0.0344 (8)
C40.5146 (3)0.14112 (14)0.1752 (3)0.0343 (8)
C50.3917 (2)0.17722 (12)0.0932 (3)0.0265 (7)
C60.3923 (2)0.25360 (12)0.0988 (3)0.0207 (6)
C70.2809 (2)0.30730 (12)0.0234 (3)0.0199 (6)
C80.4768 (2)0.37384 (13)0.1526 (3)0.0221 (6)
C90.2655 (2)0.44563 (12)0.0027 (3)0.0231 (7)
C100.2159 (2)0.48474 (12)0.1675 (3)0.0212 (6)
N20.90678 (17)0.40848 (10)0.2486 (2)0.0228 (6)
N30.91310 (17)0.40494 (10)0.5539 (2)0.0221 (6)
C110.8627 (2)0.44091 (13)0.3939 (3)0.0227 (6)
C120.9894 (2)0.34962 (12)0.3193 (3)0.0244 (7)
C130.9924 (2)0.34743 (12)0.5102 (3)0.0247 (7)
H20.709500.286200.316600.0350*
H30.711400.156100.315600.0410*
H40.519000.088600.173700.0410*
H50.311700.150300.036400.0320*
H9A0.184900.434900.099800.0280*
H9B0.327200.479400.051500.0280*
H2N0.885 (3)0.4263 (15)0.114 (4)0.061 (8)*
H3N0.894 (2)0.4211 (13)0.677 (3)0.040 (7)*
H110.804300.483100.384200.0270*
H121.035400.316800.247700.0290*
H131.040700.312500.598200.0300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (8)0.0262 (9)0.0296 (8)0.0052 (7)0.0014 (6)0.0001 (7)
O20.0293 (8)0.0287 (10)0.0353 (9)0.0110 (7)0.0026 (6)0.0010 (7)
O30.0450 (10)0.0266 (10)0.0218 (8)0.0109 (8)0.0074 (7)0.0055 (7)
O40.0313 (8)0.0196 (9)0.0195 (7)0.0062 (7)0.0040 (6)0.0007 (6)
N10.0209 (8)0.0159 (10)0.0235 (9)0.0004 (7)0.0038 (7)0.0011 (7)
C10.0241 (10)0.0227 (12)0.0191 (10)0.0015 (9)0.0080 (8)0.0019 (9)
C20.0248 (11)0.0383 (15)0.0259 (11)0.0047 (11)0.0083 (9)0.0046 (10)
C30.0383 (14)0.0365 (16)0.0308 (13)0.0171 (12)0.0130 (10)0.0083 (11)
C40.0523 (15)0.0262 (14)0.0280 (12)0.0147 (12)0.0168 (11)0.0067 (11)
C50.0395 (13)0.0205 (13)0.0209 (11)0.0008 (10)0.0090 (9)0.0030 (9)
C60.0270 (11)0.0205 (12)0.0164 (10)0.0007 (9)0.0091 (8)0.0002 (9)
C70.0237 (10)0.0199 (12)0.0174 (10)0.0018 (9)0.0069 (8)0.0009 (9)
C80.0211 (10)0.0267 (13)0.0191 (10)0.0018 (9)0.0057 (8)0.0015 (9)
C90.0257 (11)0.0199 (12)0.0233 (11)0.0017 (9)0.0039 (8)0.0016 (9)
C100.0217 (10)0.0206 (12)0.0206 (10)0.0034 (9)0.0025 (8)0.0003 (9)
N20.0241 (9)0.0260 (11)0.0190 (9)0.0016 (8)0.0061 (7)0.0021 (8)
N30.0245 (9)0.0233 (11)0.0184 (9)0.0000 (8)0.0038 (7)0.0003 (8)
C110.0223 (10)0.0240 (12)0.0212 (11)0.0017 (9)0.0025 (8)0.0007 (9)
C120.0225 (10)0.0234 (13)0.0285 (12)0.0052 (9)0.0079 (8)0.0010 (10)
C130.0236 (11)0.0208 (13)0.0289 (12)0.0059 (9)0.0033 (9)0.0057 (9)
Geometric parameters (Å, º) top
O1—C71.214 (2)C2—C31.391 (4)
O2—C81.207 (3)C3—C41.389 (3)
O3—C101.227 (3)C4—C51.403 (3)
O4—C101.285 (3)C5—C61.380 (3)
N1—C71.386 (3)C6—C71.488 (3)
N1—C81.403 (3)C9—C101.524 (3)
N1—C91.449 (3)C2—H20.9500
N2—C111.329 (3)C3—H30.9500
N2—C121.375 (3)C4—H40.9500
N3—C111.320 (3)C5—H50.9500
N3—C131.371 (3)C9—H9A0.9900
N2—H2N0.99 (3)C9—H9B0.9900
N3—H3N0.97 (2)C12—C131.350 (3)
C1—C81.485 (3)C11—H110.9500
C1—C21.378 (3)C12—H120.9500
C1—C61.386 (3)C13—H130.9500
C7—N1—C8112.13 (17)O3—C10—O4125.81 (19)
C7—N1—C9124.17 (16)O3—C10—C9120.46 (19)
C8—N1—C9123.69 (18)O4—C10—C9113.72 (17)
C11—N2—C12108.47 (16)C3—C2—H2121.00
C11—N3—C13108.44 (16)C1—C2—H2121.00
C12—N2—H2N127.4 (16)C2—C3—H3119.00
C11—N2—H2N124.1 (16)C4—C3—H3119.00
C13—N3—H3N130.3 (13)C3—C4—H4120.00
C11—N3—H3N121.2 (13)C5—C4—H4120.00
C2—C1—C8130.2 (2)C4—C5—H5122.00
C6—C1—C8108.52 (18)C6—C5—H5122.00
C2—C1—C6121.3 (2)C10—C9—H9A109.00
C1—C2—C3117.1 (2)N1—C9—H9B109.00
C2—C3—C4122.1 (2)H9A—C9—H9B108.00
C3—C4—C5120.4 (2)N1—C9—H9A109.00
C4—C5—C6117.0 (2)C10—C9—H9B109.00
C1—C6—C5122.19 (19)N2—C11—N3108.95 (19)
C1—C6—C7107.83 (18)N2—C12—C13106.68 (18)
C5—C6—C7129.97 (19)N3—C13—C12107.47 (18)
N1—C7—C6106.14 (17)N2—C11—H11126.00
O1—C7—N1124.34 (19)N3—C11—H11126.00
O1—C7—C6129.5 (2)N2—C12—H12127.00
N1—C8—C1105.36 (18)C13—C12—H12127.00
O2—C8—C1130.18 (19)N3—C13—H13126.00
O2—C8—N1124.5 (2)C12—C13—H13126.00
N1—C9—C10113.57 (17)
C9—N1—C7—C6178.15 (17)C2—C1—C6—C51.2 (3)
C7—N1—C8—O2178.4 (2)C6—C1—C2—C30.3 (3)
C9—N1—C8—O20.4 (3)C8—C1—C6—C71.6 (2)
C7—N1—C8—C10.3 (2)C8—C1—C6—C5177.06 (19)
C8—N1—C7—O1179.48 (19)C6—C1—C8—O2177.4 (2)
C9—N1—C7—O11.7 (3)C6—C1—C8—N11.2 (2)
C8—N1—C7—C60.7 (2)C1—C2—C3—C40.9 (3)
C8—N1—C9—C1079.5 (2)C2—C3—C4—C51.3 (3)
C9—N1—C8—C1179.10 (17)C3—C4—C5—C60.4 (3)
C7—N1—C9—C10101.9 (2)C4—C5—C6—C7179.2 (2)
C12—N2—C11—N30.4 (2)C4—C5—C6—C10.8 (3)
C11—N2—C12—C130.5 (2)C1—C6—C7—O1178.8 (2)
C13—N3—C11—N20.0 (2)C5—C6—C7—N1177.1 (2)
C11—N3—C13—C120.3 (2)C1—C6—C7—N11.4 (2)
C2—C1—C8—O20.7 (4)C5—C6—C7—O12.7 (4)
C2—C1—C8—N1179.3 (2)N1—C9—C10—O4177.97 (17)
C2—C1—C6—C7179.89 (19)N1—C9—C10—O32.7 (3)
C8—C1—C2—C3177.6 (2)N2—C12—C13—N30.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the N2/N3/C11–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O4i0.99 (3)1.69 (3)2.6846 (19)178 (4)
N3—H3N···O3ii0.97 (2)2.54 (2)3.087 (2)115.4 (16)
N3—H3N···O4ii0.97 (2)1.71 (2)2.680 (2)175 (2)
C3—H3···O4iii0.952.453.321 (3)153
C5—H5···O3iv0.952.483.266 (3)141
C9—H9A···O10.992.552.891 (3)100
C9—H9B···O2i0.992.413.397 (3)172
C11—H11···O3ii0.952.402.987 (3)120
C13—H13···O1v0.952.543.352 (2)143
C2—H2···Cg40.952.873.805 (2)166
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the N2/N3/C11–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O4i0.99 (3)1.69 (3)2.6846 (19)178 (4)
N3—H3N···O4ii0.97 (2)1.71 (2)2.680 (2)175 (2)
C3—H3···O4iii0.952.453.321 (3)153
C5—H5···O3iv0.952.483.266 (3)141
C9—H9B···O2i0.992.413.397 (3)172
C11—H11···O3ii0.952.402.987 (3)120
C13—H13···O1v0.952.543.352 (2)143
C2—H2···Cg40.952.873.805 (2)166
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y, z+1.
 

Acknowledgements

The authors express their thanks to Dr Robin Pritchard, The University of Manchester, for providing the X-ray diffraction data.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Tehnologies Ltd, Yarnton, England.  Google Scholar
First citationBabu, N. J. & Nangia, A. (2011). Cryst. Growth Des. 11, 2662–2679.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrantz, S. (2006). Nat. Rev. Drug Discov. 5, 881–882.  Web of Science PubMed Google Scholar
First citationPan, F., Chernew, M. E. & Fendrick, A. M. (2008). J. Gen. Intern. Med. 23, 611–614.  Web of Science CrossRef PubMed Google Scholar
First citationSekhon, B. S. (2013). Int. Bull. Drug Res. 1, 24–39.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVermeire, E., Hearnshaw, H., Van Royen, P. & Denekens, J. (2001). J. Clin. Pharm. Ther. 26, 331–342.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o979-o980
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds