organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1043-o1044

Crystal structure of 1′-(2-methyl­prop­yl)-2,3-di­hydro­spiro­[1-benzo­thio­pyran-4,4′-imidazolidine]-2′,5′-dione

aDepartment of Chemistry, School of Engineering and Technology, Jain University, Bangalore 562 112, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, dDepartment of Nanotechnology, Center for Post Graduate Studies, Visveswaraya Technological University, Bangalore 560 018, India, and eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore m570 006, India
*Correspondence e-mail: benakaprasad@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 31 July 2014; accepted 6 August 2014; online 23 August 2014)

In the title compound, C15H18N2O2S, the 2,3-di­hydro-1-benzo­thio­pyran ring adopts a sofa conformation and the hydantoin ring is twisted with respect to the benzene ring at 78.73 (17)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

1. Related literature

For background and applications of hydantoin compounds, see: Nefzi et al. (2002[Nefzi, A., Giulianotti, M., Truong, L., Rattan, S., Ostresh, J. M. & Houghten, R. A. (2002). J. Comb. Chem. 4, 175-178.]); Park & Kurth (2000[Park, K. H. & Kurth, M. J. (2000). Tetrahedron Lett. 41, 7409-7413.]); Manjunath et al. (2012[Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2012). J. Chem. Crystallogr. 42, 505-507.]); Hussein et al. (2014[Hussein, W. M., Theodore, C. E., Benaka Prasad, S. B., Madaiah, M., Naveen, S. & Lokanath, N. K. (2014). Acta Cryst. E70, o954.]). For related structures, see: Manjunath et al. (2011[Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2011). J. Struct. Chem. 52, 986-990.]); Hussein et al. (2014[Hussein, W. M., Theodore, C. E., Benaka Prasad, S. B., Madaiah, M., Naveen, S. & Lokanath, N. K. (2014). Acta Cryst. E70, o954.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H18N2O2S

  • Mr = 290.38

  • Monoclinic, P 21 /c

  • a = 13.279 (3) Å

  • b = 9.939 (3) Å

  • c = 13.264 (3) Å

  • β = 118.56 (1)°

  • V = 1537.6 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.90 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.15 mm

2.2. Data collection

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.747, Tmax = 0.753

  • 5024 measured reflections

  • 2397 independent reflections

  • 1959 reflections with I > 2σ(I)

  • Rint = 0.067

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.195

  • S = 1.06

  • 2397 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O16i 0.86 2.03 2.850 (3) 160
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The combinatorial generation of organic compound libraries has emerged as a powerful tool for drug discovery. Small substituted heterocyclic compounds play an important role in the development of biologically active substances by offering a high structural diversity. Among such heterocycles, particularly the hydantoin scaffold opens the possibility of different kinds and degrees of substitution. They have been the focus of attention as a ubiquitous moiety incorporated into compounds with numerous biological activities and therapeutic applications (Nefzi et al., 2002). A variety of combinatorial approaches have been described by which pharmacophoric groups were attached to such a relatively rigid scaffold (Park & Kurth, 2000). Therefore, the chemistry of multiple substituted hydantoins has newly attracted much interest, and traditional approaches have been combined with recently developed strategies. Hence as a part of our ongoing research on hydantoins (Manjunath et al., 2012; Hussein et al., 2014), the synthesis, characterization and the structural work of the title compound was undertaken and herein we report its crystal structure.

The hydantoin ring in the structure is planar within the experimental limits with a maximum deviation of 0.012 (2) Å for N1 atom from the least-squares plane of the hydantoin ring. The N—C bong length values of N11—C12 = 1.349 (3) Å, N13—C12 = 1.400 (4) Å and N13—C14 = 1.359 (2) Å are comparable with the values reported earlier (Manjunath et al., 2011; Hussein et al., 2014). The shortened bond length values can be attributed to the π conjugation in the hydantoin ring. The isobutyl group is twisted out of the plane of the hydantoin ring as indicated by the torsion angle values of -175.6 (3)° and 61.5 (3)° for the atoms N13—C17—C18—C20 and N13—C17—C18—C19 indicating that they are in antiperiplanar and synclinal conformations respectively.

The study of torsion angles, asymmetric parameters and least-squares plane reveals that the 2,3-dihydro-1-benzothiopyran ring in the structure adopts envelope conformation with S1 atom deviating by 0.0851 (14) Å from the least-squares plane. This is confirmed by the puckering amplitude Q = 0.519 (3) Å. The hydantoin ring is in a equatorial position with the 2,3-dihydro-1-benzothiopyran ring which is evident by the dihedral angle of 81.15 (15)°. This value is slightly lesser than the value reported earlier (Hussein et al., 2014) for 1-ethyl-2',3'-dihydrospiro[imidazoline-4,1-indene]-2,5-dione. The molecules are interlinked by N—H···O hydrogen bonds to form inverted dimers.

Related literature top

For background and applications of hydantoin compounds, see: Nefzi et al. (2002); Park & Kurth (2000); Manjunath et al. (2012); Hussein et al. (2014). For related structures, see: Manjunath et al. (2011); Hussein et al. (2014).

Experimental top

A solution of spiro[1-benzothiopyran-4,4'-imidazolidine]-2',5'-dione (1.0 eq) in N,N-dimethylformamide was taken, anhydrous K2CO3 (3.0 eq) was added to the solution and stirred for 10 min. 1-Bromo–2 methyl propane (1–1.1 eq) was then added. The reaction mixture was stirred at room temperature for 8 h and the progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was taken in water and extracted with ethyl acetate. Finally water wash was given to the organic layer and dried over anhydrous sodium sulfate. The solvent was evaporated. The crude product was purified by column chromatography using chloroform:methanol (9:1) as an eluent. Single crystals were obtained from slow evaporation of its solvent.

Refinement top

The C-bound hydrogen atom were fixed geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was included in the model with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound showing inverted dimers.
1'-(2-Methylpropyl)-2,3-dihydrospiro[1-benzothiopyran-4,4'-imidazolidine]-2',5'-dione top
Crystal data top
C15H18N2O2SZ = 4
Mr = 290.38F(000) = 616
Monoclinic, P21/cDx = 1.254 Mg m3
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 13.279 (3) ŵ = 1.90 mm1
b = 9.939 (3) ÅT = 296 K
c = 13.264 (3) ÅBlock, yellow
β = 118.56 (1)°0.20 × 0.15 × 0.15 mm
V = 1537.6 (7) Å3
Data collection top
Bruker X8 Proteum
diffractometer
1959 reflections with I > 2σ(I)
Detector resolution: 18.4 pixels mm-1Rint = 0.067
ϕ and ω scansθmax = 64.2°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1514
Tmin = 0.747, Tmax = 0.753k = 811
5024 measured reflectionsl = 1115
2397 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.1345P)2 + 0.3286P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2397 reflectionsΔρmax = 0.43 e Å3
184 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0092 (15)
Crystal data top
C15H18N2O2SV = 1537.6 (7) Å3
Mr = 290.38Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.279 (3) ŵ = 1.90 mm1
b = 9.939 (3) ÅT = 296 K
c = 13.264 (3) Å0.20 × 0.15 × 0.15 mm
β = 118.56 (1)°
Data collection top
Bruker X8 Proteum
diffractometer
2397 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1959 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.753Rint = 0.067
5024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
2397 reflectionsΔρmin = 0.47 e Å3
184 parameters
Special details top

Experimental. H1NMR (DMSO, 400 MHz) δ:9.0(s, 1H, –NH), δ:7.2(m, 2H, Ar—H) δ:7.1(m, 2H, Ar—H) δ:3.3(d, 2H, –CH2–)δ:3.1(m, 2H, –CH2–) δ:2.1(m, 1H, –CH–) δ:0.9(m, 6H, –CH3–). Melting point 636.52 K.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50647 (7)0.34459 (8)0.13658 (6)0.0529 (3)
O150.8299 (2)0.2088 (3)0.52413 (19)0.0547 (8)
O160.62741 (16)0.4706 (2)0.64774 (16)0.0400 (6)
N110.59964 (19)0.4235 (2)0.46550 (18)0.0348 (7)
N130.75117 (18)0.3354 (2)0.61452 (18)0.0305 (7)
C20.4715 (3)0.2679 (3)0.2388 (3)0.0490 (10)
C30.5783 (3)0.2225 (3)0.3462 (2)0.0426 (9)
C40.6545 (2)0.3412 (2)0.4141 (2)0.0302 (8)
C50.6935 (2)0.4273 (3)0.3446 (2)0.0343 (8)
C60.7916 (3)0.5061 (3)0.4013 (3)0.0487 (10)
C70.8306 (3)0.5889 (4)0.3438 (3)0.0629 (12)
C80.7704 (4)0.5939 (4)0.2254 (3)0.0637 (12)
C90.6728 (3)0.5174 (4)0.1671 (3)0.0521 (11)
C100.6325 (3)0.4346 (3)0.2243 (2)0.0374 (8)
C120.6543 (2)0.4167 (3)0.5811 (2)0.0299 (7)
C140.7571 (2)0.2853 (3)0.5222 (2)0.0342 (8)
C170.8345 (2)0.3059 (3)0.7353 (2)0.0362 (8)
C180.9406 (3)0.3929 (4)0.7806 (2)0.0475 (10)
C190.9119 (4)0.5421 (4)0.7785 (4)0.0785 (16)
C201.0243 (3)0.3466 (5)0.9022 (3)0.0727 (16)
H2A0.429700.331900.260000.0590*
H2B0.422100.191000.203600.0590*
H3A0.622100.162300.324400.0510*
H3B0.555600.172800.395000.0510*
H60.832500.502700.481000.0580*
H70.896400.640500.384100.0760*
H80.795600.648800.185200.0770*
H90.632900.521300.087300.0630*
H110.539100.471000.426300.0420*
H17A0.857000.212100.741600.0430*
H17B0.797800.319300.782500.0430*
H180.976700.379400.731900.0570*
H19A0.862900.569900.700700.1180*
H19B0.981400.593900.810300.1180*
H19C0.873300.556400.823100.1180*
H20A0.991400.362500.951700.1090*
H20B1.094700.396000.929900.1090*
H20C1.039500.252300.901500.1090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0564 (6)0.0552 (6)0.0243 (5)0.0026 (4)0.0009 (4)0.0035 (3)
O150.0531 (13)0.0668 (15)0.0394 (12)0.0333 (12)0.0183 (10)0.0072 (11)
O160.0359 (10)0.0554 (12)0.0244 (10)0.0082 (9)0.0109 (8)0.0034 (8)
N110.0302 (11)0.0462 (13)0.0214 (11)0.0122 (10)0.0071 (9)0.0028 (9)
N130.0249 (11)0.0396 (12)0.0168 (11)0.0062 (9)0.0017 (9)0.0031 (9)
C20.0441 (17)0.0490 (17)0.0367 (16)0.0070 (13)0.0055 (14)0.0110 (13)
C30.0496 (17)0.0408 (16)0.0319 (15)0.0034 (13)0.0151 (13)0.0008 (12)
C40.0347 (14)0.0328 (14)0.0190 (13)0.0056 (10)0.0096 (11)0.0007 (10)
C50.0384 (14)0.0352 (14)0.0269 (14)0.0059 (11)0.0136 (11)0.0001 (11)
C60.0464 (17)0.0569 (19)0.0367 (17)0.0064 (14)0.0149 (14)0.0048 (14)
C70.060 (2)0.072 (2)0.059 (2)0.0149 (18)0.0302 (18)0.0002 (19)
C80.070 (2)0.068 (2)0.065 (2)0.0000 (19)0.042 (2)0.0157 (19)
C90.064 (2)0.0580 (19)0.0363 (16)0.0142 (16)0.0257 (15)0.0160 (15)
C100.0446 (15)0.0382 (14)0.0251 (13)0.0128 (12)0.0133 (12)0.0049 (11)
C120.0256 (12)0.0374 (13)0.0217 (13)0.0014 (10)0.0073 (10)0.0003 (10)
C140.0326 (13)0.0360 (14)0.0288 (14)0.0089 (11)0.0105 (11)0.0032 (11)
C170.0296 (13)0.0460 (15)0.0220 (13)0.0051 (11)0.0034 (11)0.0096 (11)
C180.0305 (14)0.078 (2)0.0244 (15)0.0055 (14)0.0053 (12)0.0011 (14)
C190.074 (3)0.063 (2)0.062 (3)0.026 (2)0.003 (2)0.0043 (19)
C200.0395 (18)0.125 (4)0.0326 (18)0.005 (2)0.0003 (15)0.007 (2)
Geometric parameters (Å, º) top
S1—C21.799 (4)C17—C181.511 (5)
S1—C101.759 (3)C18—C191.528 (6)
O15—C141.221 (4)C18—C201.528 (5)
O16—C121.224 (3)C2—H2A0.9700
N11—C41.463 (4)C2—H2B0.9700
N11—C121.349 (3)C3—H3A0.9700
N13—C121.400 (4)C3—H3B0.9700
N13—C141.359 (3)C6—H60.9300
N13—C171.477 (3)C7—H70.9300
N11—H110.8600C8—H80.9300
C2—C31.521 (5)C9—H90.9300
C3—C41.535 (4)C17—H17A0.9700
C4—C51.519 (4)C17—H17B0.9700
C4—C141.534 (4)C18—H180.9800
C5—C61.393 (5)C19—H19A0.9600
C5—C101.404 (3)C19—H19B0.9600
C6—C71.380 (6)C19—H19C0.9600
C7—C81.381 (5)C20—H20A0.9600
C8—C91.378 (6)C20—H20B0.9600
C9—C101.388 (5)C20—H20C0.9600
C2—S1—C10102.93 (16)C3—C2—H2A109.00
C4—N11—C12112.6 (2)C3—C2—H2B109.00
C12—N13—C14111.5 (2)H2A—C2—H2B108.00
C12—N13—C17123.8 (2)C2—C3—H3A109.00
C14—N13—C17124.7 (2)C2—C3—H3B109.00
C12—N11—H11124.00C4—C3—H3A109.00
C4—N11—H11124.00C4—C3—H3B109.00
S1—C2—C3111.8 (3)H3A—C3—H3B108.00
C2—C3—C4112.3 (2)C5—C6—H6119.00
N11—C4—C3111.6 (3)C7—C6—H6119.00
C3—C4—C5113.4 (2)C6—C7—H7121.00
N11—C4—C5110.99 (19)C8—C7—H7120.00
N11—C4—C14100.64 (19)C7—C8—H8120.00
C5—C4—C14111.3 (2)C9—C8—H8120.00
C3—C4—C14108.2 (2)C8—C9—H9119.00
C4—C5—C10122.7 (3)C10—C9—H9119.00
C4—C5—C6119.4 (2)N13—C17—H17A109.00
C6—C5—C10117.9 (3)N13—C17—H17B109.00
C5—C6—C7122.6 (3)C18—C17—H17A109.00
C6—C7—C8118.9 (4)C18—C17—H17B109.00
C7—C8—C9119.8 (4)H17A—C17—H17B108.00
C8—C9—C10121.7 (3)C17—C18—H18108.00
S1—C10—C9115.7 (2)C19—C18—H18108.00
C5—C10—C9119.2 (3)C20—C18—H18108.00
S1—C10—C5125.1 (3)C18—C19—H19A109.00
N11—C12—N13107.6 (2)C18—C19—H19B109.00
O16—C12—N11128.0 (3)C18—C19—H19C110.00
O16—C12—N13124.4 (2)H19A—C19—H19B109.00
N13—C14—C4107.6 (2)H19A—C19—H19C109.00
O15—C14—N13126.6 (2)H19B—C19—H19C110.00
O15—C14—C4125.9 (2)C18—C20—H20A109.00
N13—C17—C18113.0 (2)C18—C20—H20B109.00
C19—C18—C20111.2 (3)C18—C20—H20C110.00
C17—C18—C19111.8 (3)H20A—C20—H20B109.00
C17—C18—C20108.5 (3)H20A—C20—H20C110.00
S1—C2—H2A109.00H20B—C20—H20C109.00
S1—C2—H2B109.00
C10—S1—C2—C337.5 (3)N11—C4—C14—N130.2 (3)
C2—S1—C10—C57.6 (3)C14—C4—C5—C10146.9 (3)
C2—S1—C10—C9173.0 (3)N11—C4—C5—C676.0 (3)
C4—N11—C12—N132.7 (3)N11—C4—C5—C10101.9 (3)
C4—N11—C12—O16177.7 (3)C3—C4—C5—C6157.4 (3)
C12—N11—C4—C5119.6 (2)C3—C4—C5—C1024.6 (4)
C12—N11—C4—C141.8 (3)C3—C4—C14—O1562.5 (4)
C12—N11—C4—C3112.8 (3)C3—C4—C14—N13117.0 (3)
C17—N13—C12—O160.9 (4)C5—C4—C14—O1562.8 (4)
C14—N13—C12—N112.6 (3)C5—C4—C14—N13117.8 (2)
C12—N13—C14—C41.4 (3)C10—C5—C6—C70.6 (5)
C14—N13—C12—O16177.8 (3)C4—C5—C10—S11.6 (5)
C12—N13—C17—C1899.0 (3)C4—C5—C6—C7178.6 (3)
C14—N13—C17—C1882.5 (3)C4—C5—C10—C9179.0 (3)
C12—N13—C14—O15178.0 (3)C6—C5—C10—S1179.6 (3)
C17—N13—C14—C4179.9 (2)C6—C5—C10—C91.0 (5)
C17—N13—C12—N11178.8 (2)C5—C6—C7—C80.2 (6)
C17—N13—C14—O150.7 (5)C6—C7—C8—C90.4 (7)
S1—C2—C3—C465.3 (3)C7—C8—C9—C100.1 (7)
C2—C3—C4—C557.9 (4)C8—C9—C10—C50.8 (6)
C2—C3—C4—C14178.1 (3)C8—C9—C10—S1179.8 (3)
C2—C3—C4—N1168.3 (3)N13—C17—C18—C1961.5 (3)
C14—C4—C5—C635.2 (4)N13—C17—C18—C20175.6 (3)
N11—C4—C14—O15179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O16i0.862.032.850 (3)160
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O16i0.862.032.850 (3)160
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors are thankful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHussein, W. M., Theodore, C. E., Benaka Prasad, S. B., Madaiah, M., Naveen, S. & Lokanath, N. K. (2014). Acta Cryst. E70, o954.  CSD CrossRef IUCr Journals Google Scholar
First citationManjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2011). J. Struct. Chem. 52, 986–990.  CrossRef Google Scholar
First citationManjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2012). J. Chem. Crystallogr. 42, 505–507.  Web of Science CSD CrossRef Google Scholar
First citationNefzi, A., Giulianotti, M., Truong, L., Rattan, S., Ostresh, J. M. & Houghten, R. A. (2002). J. Comb. Chem. 4, 175–178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, K. H. & Kurth, M. J. (2000). Tetrahedron Lett. 41, 7409–7413.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1043-o1044
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds