organic compounds
of 1′-(2-methylpropyl)-2,3-dihydrospiro[1-benzothiopyran-4,4′-imidazolidine]-2′,5′-dione
aDepartment of Chemistry, School of Engineering and Technology, Jain University, Bangalore 562 112, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, dDepartment of Nanotechnology, Center for Post Graduate Studies, Visveswaraya Technological University, Bangalore 560 018, India, and eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore m570 006, India
*Correspondence e-mail: benakaprasad@gmail.com
In the title compound, C15H18N2O2S, the 2,3-dihydro-1-benzothiopyran ring adopts a sofa conformation and the hydantoin ring is twisted with respect to the benzene ring at 78.73 (17)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the molecules into inversion dimers.
Keywords: crystal structure; hydantoin compounds; hydrogen bonding; spiro[1-benzothiopyran-4,4′-imidazolidine].
CCDC reference: 1018087
1. Related literature
For background and applications of hydantoin compounds, see: Nefzi et al. (2002); Park & Kurth (2000); Manjunath et al. (2012); Hussein et al. (2014). For related structures, see: Manjunath et al. (2011); Hussein et al. (2014).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
CCDC reference: 1018087
10.1107/S1600536814018030/xu5809sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814018030/xu5809Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814018030/xu5809Isup3.cml
A solution of spiro[1-benzothiopyran-4,4'-imidazolidine]-2',5'-dione (1.0 eq) in N,N-dimethylformamide was taken, anhydrous K2CO3 (3.0 eq) was added to the solution and stirred for 10 min. 1-Bromo–2 methyl propane (1–1.1 eq) was then added. The reaction mixture was stirred at room temperature for 8 h and the progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was taken in water and extracted with ethyl acetate. Finally water wash was given to the organic layer and dried over anhydrous sodium sulfate. The solvent was evaporated. The crude product was purified by
using chloroform:methanol (9:1) as an Single crystals were obtained from slow evaporation of its solvent.The C-bound hydrogen atom were fixed geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was included in the model with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C15H18N2O2S | Z = 4 |
Mr = 290.38 | F(000) = 616 |
Monoclinic, P21/c | Dx = 1.254 Mg m−3 |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54178 Å |
a = 13.279 (3) Å | µ = 1.90 mm−1 |
b = 9.939 (3) Å | T = 296 K |
c = 13.264 (3) Å | Block, yellow |
β = 118.56 (1)° | 0.20 × 0.15 × 0.15 mm |
V = 1537.6 (7) Å3 |
Bruker X8 Proteum diffractometer | 1959 reflections with I > 2σ(I) |
Detector resolution: 18.4 pixels mm-1 | Rint = 0.067 |
ϕ and ω scans | θmax = 64.2°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −15→14 |
Tmin = 0.747, Tmax = 0.753 | k = −8→11 |
5024 measured reflections | l = −11→15 |
2397 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.066 | H-atom parameters constrained |
wR(F2) = 0.195 | w = 1/[σ2(Fo2) + (0.1345P)2 + 0.3286P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2397 reflections | Δρmax = 0.43 e Å−3 |
184 parameters | Δρmin = −0.47 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0092 (15) |
C15H18N2O2S | V = 1537.6 (7) Å3 |
Mr = 290.38 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 13.279 (3) Å | µ = 1.90 mm−1 |
b = 9.939 (3) Å | T = 296 K |
c = 13.264 (3) Å | 0.20 × 0.15 × 0.15 mm |
β = 118.56 (1)° |
Bruker X8 Proteum diffractometer | 2397 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 1959 reflections with I > 2σ(I) |
Tmin = 0.747, Tmax = 0.753 | Rint = 0.067 |
5024 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.195 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.43 e Å−3 |
2397 reflections | Δρmin = −0.47 e Å−3 |
184 parameters |
Experimental. H1NMR (DMSO, 400 MHz) δ:9.0(s, 1H, –NH), δ:7.2(m, 2H, Ar—H) δ:7.1(m, 2H, Ar—H) δ:3.3(d, 2H, –CH2–)δ:3.1(m, 2H, –CH2–) δ:2.1(m, 1H, –CH–) δ:0.9(m, 6H, –CH3–). Melting point 636.52 K. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.50647 (7) | 0.34459 (8) | 0.13658 (6) | 0.0529 (3) | |
O15 | 0.8299 (2) | 0.2088 (3) | 0.52413 (19) | 0.0547 (8) | |
O16 | 0.62741 (16) | 0.4706 (2) | 0.64774 (16) | 0.0400 (6) | |
N11 | 0.59964 (19) | 0.4235 (2) | 0.46550 (18) | 0.0348 (7) | |
N13 | 0.75117 (18) | 0.3354 (2) | 0.61452 (18) | 0.0305 (7) | |
C2 | 0.4715 (3) | 0.2679 (3) | 0.2388 (3) | 0.0490 (10) | |
C3 | 0.5783 (3) | 0.2225 (3) | 0.3462 (2) | 0.0426 (9) | |
C4 | 0.6545 (2) | 0.3412 (2) | 0.4141 (2) | 0.0302 (8) | |
C5 | 0.6935 (2) | 0.4273 (3) | 0.3446 (2) | 0.0343 (8) | |
C6 | 0.7916 (3) | 0.5061 (3) | 0.4013 (3) | 0.0487 (10) | |
C7 | 0.8306 (3) | 0.5889 (4) | 0.3438 (3) | 0.0629 (12) | |
C8 | 0.7704 (4) | 0.5939 (4) | 0.2254 (3) | 0.0637 (12) | |
C9 | 0.6728 (3) | 0.5174 (4) | 0.1671 (3) | 0.0521 (11) | |
C10 | 0.6325 (3) | 0.4346 (3) | 0.2243 (2) | 0.0374 (8) | |
C12 | 0.6543 (2) | 0.4167 (3) | 0.5811 (2) | 0.0299 (7) | |
C14 | 0.7571 (2) | 0.2853 (3) | 0.5222 (2) | 0.0342 (8) | |
C17 | 0.8345 (2) | 0.3059 (3) | 0.7353 (2) | 0.0362 (8) | |
C18 | 0.9406 (3) | 0.3929 (4) | 0.7806 (2) | 0.0475 (10) | |
C19 | 0.9119 (4) | 0.5421 (4) | 0.7785 (4) | 0.0785 (16) | |
C20 | 1.0243 (3) | 0.3466 (5) | 0.9022 (3) | 0.0727 (16) | |
H2A | 0.42970 | 0.33190 | 0.26000 | 0.0590* | |
H2B | 0.42210 | 0.19100 | 0.20360 | 0.0590* | |
H3A | 0.62210 | 0.16230 | 0.32440 | 0.0510* | |
H3B | 0.55560 | 0.17280 | 0.39500 | 0.0510* | |
H6 | 0.83250 | 0.50270 | 0.48100 | 0.0580* | |
H7 | 0.89640 | 0.64050 | 0.38410 | 0.0760* | |
H8 | 0.79560 | 0.64880 | 0.18520 | 0.0770* | |
H9 | 0.63290 | 0.52130 | 0.08730 | 0.0630* | |
H11 | 0.53910 | 0.47100 | 0.42630 | 0.0420* | |
H17A | 0.85700 | 0.21210 | 0.74160 | 0.0430* | |
H17B | 0.79780 | 0.31930 | 0.78250 | 0.0430* | |
H18 | 0.97670 | 0.37940 | 0.73190 | 0.0570* | |
H19A | 0.86290 | 0.56990 | 0.70070 | 0.1180* | |
H19B | 0.98140 | 0.59390 | 0.81030 | 0.1180* | |
H19C | 0.87330 | 0.55640 | 0.82310 | 0.1180* | |
H20A | 0.99140 | 0.36250 | 0.95170 | 0.1090* | |
H20B | 1.09470 | 0.39600 | 0.92990 | 0.1090* | |
H20C | 1.03950 | 0.25230 | 0.90150 | 0.1090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0564 (6) | 0.0552 (6) | 0.0243 (5) | 0.0026 (4) | 0.0009 (4) | 0.0035 (3) |
O15 | 0.0531 (13) | 0.0668 (15) | 0.0394 (12) | 0.0333 (12) | 0.0183 (10) | 0.0072 (11) |
O16 | 0.0359 (10) | 0.0554 (12) | 0.0244 (10) | 0.0082 (9) | 0.0109 (8) | −0.0034 (8) |
N11 | 0.0302 (11) | 0.0462 (13) | 0.0214 (11) | 0.0122 (10) | 0.0071 (9) | 0.0028 (9) |
N13 | 0.0249 (11) | 0.0396 (12) | 0.0168 (11) | 0.0062 (9) | 0.0017 (9) | 0.0031 (9) |
C2 | 0.0441 (17) | 0.0490 (17) | 0.0367 (16) | −0.0070 (13) | 0.0055 (14) | −0.0110 (13) |
C3 | 0.0496 (17) | 0.0408 (16) | 0.0319 (15) | −0.0034 (13) | 0.0151 (13) | 0.0008 (12) |
C4 | 0.0347 (14) | 0.0328 (14) | 0.0190 (13) | 0.0056 (10) | 0.0096 (11) | −0.0007 (10) |
C5 | 0.0384 (14) | 0.0352 (14) | 0.0269 (14) | 0.0059 (11) | 0.0136 (11) | 0.0001 (11) |
C6 | 0.0464 (17) | 0.0569 (19) | 0.0367 (17) | −0.0064 (14) | 0.0149 (14) | −0.0048 (14) |
C7 | 0.060 (2) | 0.072 (2) | 0.059 (2) | −0.0149 (18) | 0.0302 (18) | 0.0002 (19) |
C8 | 0.070 (2) | 0.068 (2) | 0.065 (2) | 0.0000 (19) | 0.042 (2) | 0.0157 (19) |
C9 | 0.064 (2) | 0.0580 (19) | 0.0363 (16) | 0.0142 (16) | 0.0257 (15) | 0.0160 (15) |
C10 | 0.0446 (15) | 0.0382 (14) | 0.0251 (13) | 0.0128 (12) | 0.0133 (12) | 0.0049 (11) |
C12 | 0.0256 (12) | 0.0374 (13) | 0.0217 (13) | 0.0014 (10) | 0.0073 (10) | 0.0003 (10) |
C14 | 0.0326 (13) | 0.0360 (14) | 0.0288 (14) | 0.0089 (11) | 0.0105 (11) | 0.0032 (11) |
C17 | 0.0296 (13) | 0.0460 (15) | 0.0220 (13) | 0.0051 (11) | 0.0034 (11) | 0.0096 (11) |
C18 | 0.0305 (14) | 0.078 (2) | 0.0244 (15) | −0.0055 (14) | 0.0053 (12) | 0.0011 (14) |
C19 | 0.074 (3) | 0.063 (2) | 0.062 (3) | −0.026 (2) | 0.003 (2) | −0.0043 (19) |
C20 | 0.0395 (18) | 0.125 (4) | 0.0326 (18) | 0.005 (2) | 0.0003 (15) | 0.007 (2) |
S1—C2 | 1.799 (4) | C17—C18 | 1.511 (5) |
S1—C10 | 1.759 (3) | C18—C19 | 1.528 (6) |
O15—C14 | 1.221 (4) | C18—C20 | 1.528 (5) |
O16—C12 | 1.224 (3) | C2—H2A | 0.9700 |
N11—C4 | 1.463 (4) | C2—H2B | 0.9700 |
N11—C12 | 1.349 (3) | C3—H3A | 0.9700 |
N13—C12 | 1.400 (4) | C3—H3B | 0.9700 |
N13—C14 | 1.359 (3) | C6—H6 | 0.9300 |
N13—C17 | 1.477 (3) | C7—H7 | 0.9300 |
N11—H11 | 0.8600 | C8—H8 | 0.9300 |
C2—C3 | 1.521 (5) | C9—H9 | 0.9300 |
C3—C4 | 1.535 (4) | C17—H17A | 0.9700 |
C4—C5 | 1.519 (4) | C17—H17B | 0.9700 |
C4—C14 | 1.534 (4) | C18—H18 | 0.9800 |
C5—C6 | 1.393 (5) | C19—H19A | 0.9600 |
C5—C10 | 1.404 (3) | C19—H19B | 0.9600 |
C6—C7 | 1.380 (6) | C19—H19C | 0.9600 |
C7—C8 | 1.381 (5) | C20—H20A | 0.9600 |
C8—C9 | 1.378 (6) | C20—H20B | 0.9600 |
C9—C10 | 1.388 (5) | C20—H20C | 0.9600 |
C2—S1—C10 | 102.93 (16) | C3—C2—H2A | 109.00 |
C4—N11—C12 | 112.6 (2) | C3—C2—H2B | 109.00 |
C12—N13—C14 | 111.5 (2) | H2A—C2—H2B | 108.00 |
C12—N13—C17 | 123.8 (2) | C2—C3—H3A | 109.00 |
C14—N13—C17 | 124.7 (2) | C2—C3—H3B | 109.00 |
C12—N11—H11 | 124.00 | C4—C3—H3A | 109.00 |
C4—N11—H11 | 124.00 | C4—C3—H3B | 109.00 |
S1—C2—C3 | 111.8 (3) | H3A—C3—H3B | 108.00 |
C2—C3—C4 | 112.3 (2) | C5—C6—H6 | 119.00 |
N11—C4—C3 | 111.6 (3) | C7—C6—H6 | 119.00 |
C3—C4—C5 | 113.4 (2) | C6—C7—H7 | 121.00 |
N11—C4—C5 | 110.99 (19) | C8—C7—H7 | 120.00 |
N11—C4—C14 | 100.64 (19) | C7—C8—H8 | 120.00 |
C5—C4—C14 | 111.3 (2) | C9—C8—H8 | 120.00 |
C3—C4—C14 | 108.2 (2) | C8—C9—H9 | 119.00 |
C4—C5—C10 | 122.7 (3) | C10—C9—H9 | 119.00 |
C4—C5—C6 | 119.4 (2) | N13—C17—H17A | 109.00 |
C6—C5—C10 | 117.9 (3) | N13—C17—H17B | 109.00 |
C5—C6—C7 | 122.6 (3) | C18—C17—H17A | 109.00 |
C6—C7—C8 | 118.9 (4) | C18—C17—H17B | 109.00 |
C7—C8—C9 | 119.8 (4) | H17A—C17—H17B | 108.00 |
C8—C9—C10 | 121.7 (3) | C17—C18—H18 | 108.00 |
S1—C10—C9 | 115.7 (2) | C19—C18—H18 | 108.00 |
C5—C10—C9 | 119.2 (3) | C20—C18—H18 | 108.00 |
S1—C10—C5 | 125.1 (3) | C18—C19—H19A | 109.00 |
N11—C12—N13 | 107.6 (2) | C18—C19—H19B | 109.00 |
O16—C12—N11 | 128.0 (3) | C18—C19—H19C | 110.00 |
O16—C12—N13 | 124.4 (2) | H19A—C19—H19B | 109.00 |
N13—C14—C4 | 107.6 (2) | H19A—C19—H19C | 109.00 |
O15—C14—N13 | 126.6 (2) | H19B—C19—H19C | 110.00 |
O15—C14—C4 | 125.9 (2) | C18—C20—H20A | 109.00 |
N13—C17—C18 | 113.0 (2) | C18—C20—H20B | 109.00 |
C19—C18—C20 | 111.2 (3) | C18—C20—H20C | 110.00 |
C17—C18—C19 | 111.8 (3) | H20A—C20—H20B | 109.00 |
C17—C18—C20 | 108.5 (3) | H20A—C20—H20C | 110.00 |
S1—C2—H2A | 109.00 | H20B—C20—H20C | 109.00 |
S1—C2—H2B | 109.00 | ||
C10—S1—C2—C3 | −37.5 (3) | N11—C4—C14—N13 | 0.2 (3) |
C2—S1—C10—C5 | 7.6 (3) | C14—C4—C5—C10 | 146.9 (3) |
C2—S1—C10—C9 | −173.0 (3) | N11—C4—C5—C6 | 76.0 (3) |
C4—N11—C12—N13 | 2.7 (3) | N11—C4—C5—C10 | −101.9 (3) |
C4—N11—C12—O16 | −177.7 (3) | C3—C4—C5—C6 | −157.4 (3) |
C12—N11—C4—C5 | −119.6 (2) | C3—C4—C5—C10 | 24.6 (4) |
C12—N11—C4—C14 | −1.8 (3) | C3—C4—C14—O15 | 62.5 (4) |
C12—N11—C4—C3 | 112.8 (3) | C3—C4—C14—N13 | −117.0 (3) |
C17—N13—C12—O16 | −0.9 (4) | C5—C4—C14—O15 | −62.8 (4) |
C14—N13—C12—N11 | −2.6 (3) | C5—C4—C14—N13 | 117.8 (2) |
C12—N13—C14—C4 | 1.4 (3) | C10—C5—C6—C7 | −0.6 (5) |
C14—N13—C12—O16 | 177.8 (3) | C4—C5—C10—S1 | −1.6 (5) |
C12—N13—C17—C18 | −99.0 (3) | C4—C5—C6—C7 | −178.6 (3) |
C14—N13—C17—C18 | 82.5 (3) | C4—C5—C10—C9 | 179.0 (3) |
C12—N13—C14—O15 | −178.0 (3) | C6—C5—C10—S1 | −179.6 (3) |
C17—N13—C14—C4 | −179.9 (2) | C6—C5—C10—C9 | 1.0 (5) |
C17—N13—C12—N11 | 178.8 (2) | C5—C6—C7—C8 | −0.2 (6) |
C17—N13—C14—O15 | 0.7 (5) | C6—C7—C8—C9 | 0.4 (7) |
S1—C2—C3—C4 | 65.3 (3) | C7—C8—C9—C10 | 0.1 (7) |
C2—C3—C4—C5 | −57.9 (4) | C8—C9—C10—C5 | −0.8 (6) |
C2—C3—C4—C14 | 178.1 (3) | C8—C9—C10—S1 | 179.8 (3) |
C2—C3—C4—N11 | 68.3 (3) | N13—C17—C18—C19 | 61.5 (3) |
C14—C4—C5—C6 | −35.2 (4) | N13—C17—C18—C20 | −175.6 (3) |
N11—C4—C14—O15 | 179.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O16i | 0.86 | 2.03 | 2.850 (3) | 160 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O16i | 0.86 | 2.03 | 2.850 (3) | 160 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are thankful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.
References
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hussein, W. M., Theodore, C. E., Benaka Prasad, S. B., Madaiah, M., Naveen, S. & Lokanath, N. K. (2014). Acta Cryst. E70, o954. CSD CrossRef IUCr Journals Google Scholar
Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2011). J. Struct. Chem. 52, 986–990. CrossRef Google Scholar
Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2012). J. Chem. Crystallogr. 42, 505–507. Web of Science CSD CrossRef Google Scholar
Nefzi, A., Giulianotti, M., Truong, L., Rattan, S., Ostresh, J. M. & Houghten, R. A. (2002). J. Comb. Chem. 4, 175–178. Web of Science CrossRef PubMed CAS Google Scholar
Park, K. H. & Kurth, M. J. (2000). Tetrahedron Lett. 41, 7409–7413. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The combinatorial generation of organic compound libraries has emerged as a powerful tool for drug discovery. Small substituted heterocyclic compounds play an important role in the development of biologically active substances by offering a high structural diversity. Among such heterocycles, particularly the hydantoin scaffold opens the possibility of different kinds and degrees of substitution. They have been the focus of attention as a ubiquitous moiety incorporated into compounds with numerous biological activities and therapeutic applications (Nefzi et al., 2002). A variety of combinatorial approaches have been described by which pharmacophoric groups were attached to such a relatively rigid scaffold (Park & Kurth, 2000). Therefore, the chemistry of multiple substituted hydantoins has newly attracted much interest, and traditional approaches have been combined with recently developed strategies. Hence as a part of our ongoing research on hydantoins (Manjunath et al., 2012; Hussein et al., 2014), the synthesis, characterization and the structural work of the title compound was undertaken and herein we report its crystal structure.
The hydantoin ring in the structure is planar within the experimental limits with a maximum deviation of 0.012 (2) Å for N1 atom from the least-squares plane of the hydantoin ring. The N—C bong length values of N11—C12 = 1.349 (3) Å, N13—C12 = 1.400 (4) Å and N13—C14 = 1.359 (2) Å are comparable with the values reported earlier (Manjunath et al., 2011; Hussein et al., 2014). The shortened bond length values can be attributed to the π conjugation in the hydantoin ring. The isobutyl group is twisted out of the plane of the hydantoin ring as indicated by the torsion angle values of -175.6 (3)° and 61.5 (3)° for the atoms N13—C17—C18—C20 and N13—C17—C18—C19 indicating that they are in antiperiplanar and synclinal conformations respectively.
The study of torsion angles, asymmetric parameters and least-squares plane reveals that the 2,3-dihydro-1-benzothiopyran ring in the structure adopts envelope conformation with S1 atom deviating by 0.0851 (14) Å from the least-squares plane. This is confirmed by the puckering amplitude Q = 0.519 (3) Å. The hydantoin ring is in a equatorial position with the 2,3-dihydro-1-benzothiopyran ring which is evident by the dihedral angle of 81.15 (15)°. This value is slightly lesser than the value reported earlier (Hussein et al., 2014) for 1-ethyl-2',3'-dihydrospiro[imidazoline-4,1-indene]-2,5-dione. The molecules are interlinked by N—H···O hydrogen bonds to form inverted dimers.