organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-eth­­oxy-N-(4-eth­­oxy­phen­yl)-N-phenyl­aniline

aDeparment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 10 August 2014; accepted 22 August 2014; online 30 August 2014)

In the title compound, C22H23NO2, the planes of the eth­oxy­benzene rings are oriented with respect to that of the phenyl ring at dihedral angles of 61.77 (8) and 84.77 (8)°, and they are twisted with respect to one another, with a dihedral angle of 80.37 (7)°. In the crystal, weak C—H⋯π inter­actions link the mol­ecules into supra­molecular chains propagating along [101].

1. Related literature

For applications of tri­phenyl­amine derivatives, see: Liu et al. (2012[Liu, B., Zhang, Q., Ding, H.-J., Du, Y.-J., Wang, C.-K., Wu, J.-Y., Li, S.-L., Zhou, H.-P., Yang, J.-X. & Tian, Y.-P. (2012). Dyes Pigm. 95, 149-160.]); Pina et al. (2013[Pina, J., Seixas de Melo, J. S., Batista, R. M., Costa, S. P. & Raposo, M. M. (2013). J. Org. Chem. 78, 11389-11395.]). For related compounds, see: Wang et al. (2011[Wang, X.-M., Jin, F., Chen, Z.-G., Liu, S.-Q., Wang, X.-H., Duan, X.-M., Tao, X.-T. & Jiang, M.-H. (2011). J. Phys. Chem. C, 115, 776-784.]); Gudeika et al.(2012[Gudeika, D., Michaleviciute, A., Lygaitis, R., Grigalevicius, S., Miasojedovas, A., Jursenas, S. & Sini, G. (2012). J. Phys. Chem. C, 116, 14811-14819.]). For properties of triphenyl derivatives, see: Costa & Santos (2013[Costa, J. & Santos, L. (2013). J. Phys. Chem. C, 117, 10919-10928.]); Metri et al. (2012[Metri, N., Sallenave, X., Plesse, C., Beouch, L., Aubert, P. H., Goubard, F., Chevrot, C. & Sini, G. (2012). J. Phys. Chem. C, 116, 3765-3772.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H23NO2

  • Mr = 333.41

  • Monoclinic, P 21 /n

  • a = 7.3634 (7) Å

  • b = 31.908 (3) Å

  • c = 8.1372 (8) Å

  • β = 107.598 (1)°

  • V = 1822.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

2.1.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 13155 measured reflections

  • 3274 independent reflections

  • 2288 reflections with I > 2σ(I)

  • Rint = 0.035

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 1.03

  • 3274 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg1i 0.96 2.83 3.6763 (17) 148
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tripheylamine derivatives catch considerable interest and attention in application of OLEDs and efficient optical chemosensors due to useful properties in electrical conductivity and electroluminescence (Pina et al., 2013; Liu et al., 2012). Much effort has been made to explore the relationship between their structures and properties. The ethoxyl groups as donors in the title compound have enhanced the properties in several optical applications, its special structure also contributes to its transport properties when used to those areas (Costa & Santos, 2013 and Metri et al., 2012). In the molecule, the two ethoxybenzene rings are oriented with respect to the phenyl ring at 61.77 (8) and 84.77 (8)°, and they are twisted to each other with a dihedral angle of 80.37 (7)°. In the crystal, weak C—H···π interaction links the molecules into the supramolecular chains propagated along the [101] direction.

Related literature top

For applications of triphenylamine derivatives, see: Liu et al. (2012); Pina et al. (2013). For related compounds, see: Wang et al. (2011); Gudeika et al.(2012). For properties of triphenyl derivatives, see: Costa & Santos (2013); Metri et al. (2012).

Experimental top

A mixture of 4-iodophenol and sodium hydroxide was grinded for 0.5 h and added to 1000 ml flask, following the addition of bromoethane (750 ml) as solvent, Cs2CO3 (4 g) and 18-crown-6 (1 g, 3.78 mmol) as catalysts. The mixture was refluxed for 72 h, and obtained yellow oil was washed with NaOH solution (500 ml, 5%) until neutral. After extraction with dichloromethane (50 ml) for three times, the organic solution was evaporated, which yielded the intermediate as a white product (101 g, 90.5%). A 1,2-dichlorobenzene (purified) solution containing synthesized 4-ethoxy-iodobenzene (20.86 g, 75 mmol), aniline (2.38 g, 22 mmol), K2CO3 (17.94 g, 130 mmol), Cu powder (8.34 g, 130 mmol), 18-crown-6 (100 mg, 0.38 mmol) was stirred under N2 for 0.5 h at room temperature, refluxed for 2 h, and continuous reaction at air. After cooling, copper was filtered out, 1,2-dichlorobenzene was evaporated, then white solid was obtained through column chromatography purification. 1H NMR: (400 MHz, (C1D3)2C1O1), d(p.p.m.): d(p.p.m.): 7.18–7.14 (t, 2H), 7.02–7.00 (d, 4H), 6.86–6.71 (m, 7H), 4.04–3.99 (m, 4H), 1.37–1.34 (t, 6H).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å, Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The weak interactions among molecules.
4-Ethoxy-N-(4-ethoxyphenyl)-N-phenylaniline top
Crystal data top
C22H23NO2F(000) = 712
Mr = 333.41Dx = 1.215 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2593 reflections
a = 7.3634 (7) Åθ = 2.5–21.4°
b = 31.908 (3) ŵ = 0.08 mm1
c = 8.1372 (8) ÅT = 298 K
β = 107.598 (1)°Block, colorless
V = 1822.4 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2288 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.2°, θmin = 2.6°
phi and ω scansh = 88
13155 measured reflectionsk = 3836
3274 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.0295P]
where P = (Fo2 + 2Fc2)/3
3274 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C22H23NO2V = 1822.4 (3) Å3
Mr = 333.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3634 (7) ŵ = 0.08 mm1
b = 31.908 (3) ÅT = 298 K
c = 8.1372 (8) Å0.30 × 0.20 × 0.20 mm
β = 107.598 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2288 reflections with I > 2σ(I)
13155 measured reflectionsRint = 0.035
3274 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
3274 reflectionsΔρmin = 0.16 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.56747 (19)0.12535 (4)0.45337 (16)0.0565 (4)
O10.53889 (15)0.25318 (3)0.02262 (14)0.0552 (3)
O20.07739 (15)0.02297 (3)0.28521 (16)0.0634 (3)
C10.5355 (2)0.28483 (5)0.2863 (2)0.0621 (5)
H1A0.43530.30260.27380.093*
H1B0.51770.27980.40640.093*
H1C0.65630.29820.23580.093*
C20.5312 (2)0.24385 (5)0.1966 (2)0.0543 (4)
H2A0.41530.22870.25400.065*
H2B0.63930.22670.19850.065*
C30.5385 (2)0.22017 (5)0.08506 (19)0.0441 (4)
C40.5504 (2)0.23063 (5)0.2528 (2)0.0510 (4)
H40.55170.25870.28430.061*
C50.5603 (2)0.19973 (5)0.3734 (2)0.0530 (4)
H50.56840.20720.48590.064*
C60.5319 (2)0.17841 (5)0.0390 (2)0.0513 (4)
H60.52040.17090.07410.062*
C70.5424 (2)0.14783 (5)0.1615 (2)0.0522 (4)
H70.53850.11980.12950.063*
C80.5585 (2)0.15785 (5)0.33024 (19)0.0458 (4)
C90.2755 (3)0.03507 (6)0.1792 (3)0.0809 (6)
H9A0.32140.03320.27750.121*
H9B0.27830.06380.14290.121*
H9C0.35510.01850.08690.121*
C100.0747 (2)0.01898 (5)0.2265 (2)0.0628 (5)
H10A0.00830.03620.31670.075*
H10B0.02820.01970.12700.075*
C110.0897 (2)0.04537 (5)0.32911 (19)0.0494 (4)
C120.2629 (2)0.03055 (5)0.3206 (2)0.0575 (4)
H120.27380.00310.28630.069*
C130.4208 (2)0.05683 (5)0.3634 (2)0.0591 (5)
H130.53680.04700.35590.071*
C140.0770 (2)0.08574 (5)0.3849 (2)0.0542 (4)
H140.03880.09570.39260.065*
C150.2339 (2)0.11136 (5)0.4291 (2)0.0541 (4)
H150.22380.13840.46780.065*
C160.4072 (2)0.09730 (5)0.41669 (19)0.0494 (4)
C170.7052 (2)0.12510 (5)0.61526 (19)0.0462 (4)
C180.8721 (2)0.14857 (5)0.6470 (2)0.0536 (4)
H180.89070.16560.56080.064*
C191.0098 (2)0.14661 (5)0.8058 (2)0.0628 (5)
H191.12040.16240.82480.075*
C200.6829 (2)0.10018 (5)0.7488 (2)0.0549 (4)
H200.57270.08430.73140.066*
C210.8226 (3)0.09876 (6)0.9064 (2)0.0637 (5)
H210.80520.08190.99370.076*
C220.9866 (3)0.12182 (6)0.9362 (2)0.0674 (5)
H221.08020.12071.04260.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0563 (8)0.0573 (9)0.0469 (8)0.0146 (7)0.0020 (6)0.0095 (7)
O10.0699 (7)0.0504 (7)0.0452 (7)0.0056 (5)0.0173 (5)0.0047 (5)
O20.0567 (7)0.0525 (7)0.0794 (8)0.0090 (6)0.0184 (6)0.0062 (6)
C10.0653 (11)0.0667 (12)0.0537 (11)0.0014 (9)0.0170 (9)0.0094 (9)
C20.0592 (10)0.0608 (11)0.0427 (9)0.0029 (8)0.0152 (8)0.0027 (8)
C30.0410 (8)0.0477 (9)0.0424 (9)0.0029 (7)0.0108 (7)0.0031 (8)
C40.0587 (10)0.0473 (9)0.0475 (10)0.0038 (7)0.0170 (8)0.0043 (8)
C50.0613 (10)0.0586 (11)0.0406 (9)0.0003 (8)0.0177 (8)0.0034 (8)
C60.0579 (10)0.0536 (10)0.0392 (9)0.0026 (8)0.0100 (7)0.0023 (8)
C70.0600 (10)0.0445 (9)0.0479 (10)0.0066 (7)0.0101 (8)0.0050 (8)
C80.0428 (9)0.0493 (10)0.0418 (9)0.0060 (7)0.0073 (7)0.0021 (7)
C90.0746 (13)0.0733 (13)0.0890 (15)0.0234 (10)0.0162 (11)0.0096 (11)
C100.0723 (12)0.0518 (11)0.0646 (12)0.0113 (8)0.0214 (9)0.0050 (9)
C110.0503 (10)0.0492 (10)0.0461 (9)0.0065 (7)0.0108 (7)0.0033 (7)
C120.0615 (11)0.0440 (9)0.0662 (12)0.0021 (8)0.0179 (9)0.0032 (8)
C130.0532 (10)0.0563 (11)0.0672 (12)0.0002 (8)0.0175 (9)0.0009 (9)
C140.0544 (10)0.0496 (10)0.0591 (11)0.0011 (8)0.0180 (8)0.0012 (8)
C150.0636 (11)0.0439 (9)0.0531 (10)0.0035 (8)0.0152 (8)0.0006 (7)
C160.0510 (9)0.0508 (10)0.0414 (9)0.0072 (8)0.0062 (7)0.0045 (7)
C170.0504 (9)0.0446 (9)0.0411 (9)0.0015 (7)0.0100 (7)0.0019 (7)
C180.0553 (10)0.0524 (10)0.0498 (10)0.0034 (8)0.0107 (8)0.0025 (8)
C190.0552 (10)0.0608 (11)0.0617 (12)0.0038 (8)0.0018 (9)0.0080 (9)
C200.0575 (10)0.0569 (10)0.0497 (10)0.0005 (8)0.0153 (8)0.0023 (8)
C210.0772 (13)0.0652 (12)0.0457 (10)0.0101 (10)0.0139 (9)0.0043 (9)
C220.0718 (12)0.0681 (12)0.0485 (11)0.0082 (10)0.0027 (9)0.0077 (9)
Geometric parameters (Å, º) top
N1—C171.3985 (19)C9—H9B0.9600
N1—C81.4296 (18)C9—H9C0.9600
N1—C161.4384 (18)C10—H10A0.9700
O1—C31.3705 (17)C10—H10B0.9700
O1—C21.4312 (18)C11—C141.378 (2)
O2—C111.3736 (17)C11—C121.382 (2)
O2—C101.4237 (19)C12—C131.389 (2)
C1—C21.502 (2)C12—H120.9300
C1—H1A0.9600C13—C161.376 (2)
C1—H1B0.9600C13—H130.9300
C1—H1C0.9600C14—C151.372 (2)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—C161.385 (2)
C3—C61.381 (2)C15—H150.9300
C3—C41.382 (2)C17—C181.395 (2)
C4—C51.378 (2)C17—C201.395 (2)
C4—H40.9300C18—C191.382 (2)
C5—C81.381 (2)C18—H180.9300
C5—H50.9300C19—C221.375 (2)
C6—C71.380 (2)C19—H190.9300
C6—H60.9300C20—C211.381 (2)
C7—C81.379 (2)C20—H200.9300
C7—H70.9300C21—C221.372 (2)
C9—C101.501 (2)C21—H210.9300
C9—H9A0.9600C22—H220.9300
C17—N1—C8122.07 (12)O2—C10—H10A110.3
C17—N1—C16120.50 (12)C9—C10—H10A110.3
C8—N1—C16116.40 (12)O2—C10—H10B110.3
C3—O1—C2117.76 (12)C9—C10—H10B110.3
C11—O2—C10118.31 (12)H10A—C10—H10B108.5
C2—C1—H1A109.5O2—C11—C14115.30 (14)
C2—C1—H1B109.5O2—C11—C12125.23 (14)
H1A—C1—H1B109.5C14—C11—C12119.48 (14)
C2—C1—H1C109.5C11—C12—C13119.72 (15)
H1A—C1—H1C109.5C11—C12—H12120.1
H1B—C1—H1C109.5C13—C12—H12120.1
O1—C2—C1107.40 (13)C16—C13—C12120.71 (15)
O1—C2—H2A110.2C16—C13—H13119.6
C1—C2—H2A110.2C12—C13—H13119.6
O1—C2—H2B110.2C15—C14—C11120.51 (15)
C1—C2—H2B110.2C15—C14—H14119.7
H2A—C2—H2B108.5C11—C14—H14119.7
O1—C3—C6125.08 (13)C14—C15—C16120.63 (15)
O1—C3—C4115.74 (13)C14—C15—H15119.7
C6—C3—C4119.16 (14)C16—C15—H15119.7
C5—C4—C3120.33 (15)C13—C16—C15118.91 (14)
C5—C4—H4119.8C13—C16—N1121.09 (15)
C3—C4—H4119.8C15—C16—N1119.96 (14)
C4—C5—C8121.12 (14)C18—C17—C20117.78 (14)
C4—C5—H5119.4C18—C17—N1121.23 (14)
C8—C5—H5119.4C20—C17—N1120.95 (14)
C7—C6—C3119.78 (14)C19—C18—C17120.33 (16)
C7—C6—H6120.1C19—C18—H18119.8
C3—C6—H6120.1C17—C18—H18119.8
C8—C7—C6121.61 (14)C22—C19—C18121.37 (17)
C8—C7—H7119.2C22—C19—H19119.3
C6—C7—H7119.2C18—C19—H19119.3
C7—C8—C5117.96 (14)C21—C20—C17120.81 (16)
C7—C8—N1120.09 (14)C21—C20—H20119.6
C5—C8—N1121.92 (14)C17—C20—H20119.6
C10—C9—H9A109.5C22—C21—C20121.00 (17)
C10—C9—H9B109.5C22—C21—H21119.5
H9A—C9—H9B109.5C20—C21—H21119.5
C10—C9—H9C109.5C21—C22—C19118.70 (16)
H9A—C9—H9C109.5C21—C22—H22120.6
H9B—C9—H9C109.5C19—C22—H22120.6
O2—C10—C9107.15 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1i0.962.833.6763 (17)148
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1i0.962.833.6763 (17)148
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant Nos. 21271004 and 51372003) and the Natural Science Foundation of Anhui Province, China (grant No. 1208085MB22).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, J. & Santos, L. (2013). J. Phys. Chem. C, 117, 10919–10928.  Web of Science CrossRef CAS Google Scholar
First citationGudeika, D., Michaleviciute, A., Lygaitis, R., Grigalevicius, S., Miasojedovas, A., Jursenas, S. & Sini, G. (2012). J. Phys. Chem. C, 116, 14811–14819.  Web of Science CrossRef CAS Google Scholar
First citationLiu, B., Zhang, Q., Ding, H.-J., Du, Y.-J., Wang, C.-K., Wu, J.-Y., Li, S.-L., Zhou, H.-P., Yang, J.-X. & Tian, Y.-P. (2012). Dyes Pigm. 95, 149–160.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetri, N., Sallenave, X., Plesse, C., Beouch, L., Aubert, P. H., Goubard, F., Chevrot, C. & Sini, G. (2012). J. Phys. Chem. C, 116, 3765–3772.  Web of Science CrossRef CAS Google Scholar
First citationPina, J., Seixas de Melo, J. S., Batista, R. M., Costa, S. P. & Raposo, M. M. (2013). J. Org. Chem. 78, 11389–11395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-M., Jin, F., Chen, Z.-G., Liu, S.-Q., Wang, X.-H., Duan, X.-M., Tao, X.-T. & Jiang, M.-H. (2011). J. Phys. Chem. C, 115, 776–784.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds