organic compounds
N-(4-ethoxyphenyl)-N-phenylaniline
of 4-ethoxy-aDeparment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: jywu1957@163.com
In the title compound, C22H23NO2, the planes of the ethoxybenzene rings are oriented with respect to that of the phenyl ring at dihedral angles of 61.77 (8) and 84.77 (8)°, and they are twisted with respect to one another, with a dihedral angle of 80.37 (7)°. In the crystal, weak C—H⋯π interactions link the molecules into supramolecular chains propagating along [101].
Keywords: crystal structure; triphenylamine derivatives; supramolecular chains; C—H⋯π interactions.
CCDC reference: 1016997
1. Related literature
For applications of triphenylamine derivatives, see: Liu et al. (2012); Pina et al. (2013). For related compounds, see: Wang et al. (2011); Gudeika et al.(2012). For properties of triphenyl derivatives, see: Costa & Santos (2013); Metri et al. (2012).
2. Experimental
2.1. Crystal data
|
2.1.2. Data collection
|
2.1.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1016997
10.1107/S160053681401900X/xu5812sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681401900X/xu5812Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681401900X/xu5812Isup3.cml
A mixture of 4-iodophenol and sodium hydroxide was grinded for 0.5 h and added to 1000 ml flask, following the addition of bromoethane (750 ml) as solvent, Cs2CO3 (4 g) and 18-crown-6 (1 g, 3.78 mmol) as catalysts. The mixture was refluxed for 72 h, and obtained yellow oil was washed with NaOH solution (500 ml, 5%) until neutral. After extraction with dichloromethane (50 ml) for three times, the organic solution was evaporated, which yielded the intermediate as a white product (101 g, 90.5%). A 1,2-dichlorobenzene (purified) solution containing synthesized 4-ethoxy-iodobenzene (20.86 g, 75 mmol), aniline (2.38 g, 22 mmol), K2CO3 (17.94 g, 130 mmol), Cu powder (8.34 g, 130 mmol), 18-crown-6 (100 mg, 0.38 mmol) was stirred under N2 for 0.5 h at room temperature, refluxed for 2 h, and continuous reaction at air. After cooling, copper was filtered out, 1,2-dichlorobenzene was evaporated, then white solid was obtained through
purification. 1H NMR: (400 MHz, (C1D3)2C1O1), d(p.p.m.): d(p.p.m.): 7.18–7.14 (t, 2H), 7.02–7.00 (d, 4H), 6.86–6.71 (m, 7H), 4.04–3.99 (m, 4H), 1.37–1.34 (t, 6H).All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å, Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. | |
Fig. 2. The weak interactions among molecules. |
C22H23NO2 | F(000) = 712 |
Mr = 333.41 | Dx = 1.215 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2593 reflections |
a = 7.3634 (7) Å | θ = 2.5–21.4° |
b = 31.908 (3) Å | µ = 0.08 mm−1 |
c = 8.1372 (8) Å | T = 298 K |
β = 107.598 (1)° | Block, colorless |
V = 1822.4 (3) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2288 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
Graphite monochromator | θmax = 25.2°, θmin = 2.6° |
phi and ω scans | h = −8→8 |
13155 measured reflections | k = −38→36 |
3274 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0539P)2 + 0.0295P] where P = (Fo2 + 2Fc2)/3 |
3274 reflections | (Δ/σ)max = 0.001 |
228 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C22H23NO2 | V = 1822.4 (3) Å3 |
Mr = 333.41 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.3634 (7) Å | µ = 0.08 mm−1 |
b = 31.908 (3) Å | T = 298 K |
c = 8.1372 (8) Å | 0.30 × 0.20 × 0.20 mm |
β = 107.598 (1)° |
Bruker APEXII CCD diffractometer | 2288 reflections with I > 2σ(I) |
13155 measured reflections | Rint = 0.035 |
3274 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.13 e Å−3 |
3274 reflections | Δρmin = −0.16 e Å−3 |
228 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.56747 (19) | 0.12535 (4) | 0.45337 (16) | 0.0565 (4) | |
O1 | 0.53889 (15) | 0.25318 (3) | −0.02262 (14) | 0.0552 (3) | |
O2 | −0.07739 (15) | 0.02297 (3) | 0.28521 (16) | 0.0634 (3) | |
C1 | 0.5355 (2) | 0.28483 (5) | −0.2863 (2) | 0.0621 (5) | |
H1A | 0.4353 | 0.3026 | −0.2738 | 0.093* | |
H1B | 0.5177 | 0.2798 | −0.4064 | 0.093* | |
H1C | 0.6563 | 0.2982 | −0.2358 | 0.093* | |
C2 | 0.5312 (2) | 0.24385 (5) | −0.1966 (2) | 0.0543 (4) | |
H2A | 0.4153 | 0.2287 | −0.2540 | 0.065* | |
H2B | 0.6393 | 0.2267 | −0.1985 | 0.065* | |
C3 | 0.5385 (2) | 0.22017 (5) | 0.08506 (19) | 0.0441 (4) | |
C4 | 0.5504 (2) | 0.23063 (5) | 0.2528 (2) | 0.0510 (4) | |
H4 | 0.5517 | 0.2587 | 0.2843 | 0.061* | |
C5 | 0.5603 (2) | 0.19973 (5) | 0.3734 (2) | 0.0530 (4) | |
H5 | 0.5684 | 0.2072 | 0.4859 | 0.064* | |
C6 | 0.5319 (2) | 0.17841 (5) | 0.0390 (2) | 0.0513 (4) | |
H6 | 0.5204 | 0.1709 | −0.0741 | 0.062* | |
C7 | 0.5424 (2) | 0.14783 (5) | 0.1615 (2) | 0.0522 (4) | |
H7 | 0.5385 | 0.1198 | 0.1295 | 0.063* | |
C8 | 0.5585 (2) | 0.15785 (5) | 0.33024 (19) | 0.0458 (4) | |
C9 | −0.2755 (3) | −0.03507 (6) | 0.1792 (3) | 0.0809 (6) | |
H9A | −0.3214 | −0.0332 | 0.2775 | 0.121* | |
H9B | −0.2783 | −0.0638 | 0.1429 | 0.121* | |
H9C | −0.3551 | −0.0185 | 0.0869 | 0.121* | |
C10 | −0.0747 (2) | −0.01898 (5) | 0.2265 (2) | 0.0628 (5) | |
H10A | 0.0083 | −0.0362 | 0.3167 | 0.075* | |
H10B | −0.0282 | −0.0197 | 0.1270 | 0.075* | |
C11 | 0.0897 (2) | 0.04537 (5) | 0.32911 (19) | 0.0494 (4) | |
C12 | 0.2629 (2) | 0.03055 (5) | 0.3206 (2) | 0.0575 (4) | |
H12 | 0.2738 | 0.0031 | 0.2863 | 0.069* | |
C13 | 0.4208 (2) | 0.05683 (5) | 0.3634 (2) | 0.0591 (5) | |
H13 | 0.5368 | 0.0470 | 0.3559 | 0.071* | |
C14 | 0.0770 (2) | 0.08574 (5) | 0.3849 (2) | 0.0542 (4) | |
H14 | −0.0388 | 0.0957 | 0.3926 | 0.065* | |
C15 | 0.2339 (2) | 0.11136 (5) | 0.4291 (2) | 0.0541 (4) | |
H15 | 0.2238 | 0.1384 | 0.4678 | 0.065* | |
C16 | 0.4072 (2) | 0.09730 (5) | 0.41669 (19) | 0.0494 (4) | |
C17 | 0.7052 (2) | 0.12510 (5) | 0.61526 (19) | 0.0462 (4) | |
C18 | 0.8721 (2) | 0.14857 (5) | 0.6470 (2) | 0.0536 (4) | |
H18 | 0.8907 | 0.1656 | 0.5608 | 0.064* | |
C19 | 1.0098 (2) | 0.14661 (5) | 0.8058 (2) | 0.0628 (5) | |
H19 | 1.1204 | 0.1624 | 0.8248 | 0.075* | |
C20 | 0.6829 (2) | 0.10018 (5) | 0.7488 (2) | 0.0549 (4) | |
H20 | 0.5727 | 0.0843 | 0.7314 | 0.066* | |
C21 | 0.8226 (3) | 0.09876 (6) | 0.9064 (2) | 0.0637 (5) | |
H21 | 0.8052 | 0.0819 | 0.9937 | 0.076* | |
C22 | 0.9866 (3) | 0.12182 (6) | 0.9362 (2) | 0.0674 (5) | |
H22 | 1.0802 | 0.1207 | 1.0426 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0563 (8) | 0.0573 (9) | 0.0469 (8) | −0.0146 (7) | 0.0020 (6) | 0.0095 (7) |
O1 | 0.0699 (7) | 0.0504 (7) | 0.0452 (7) | 0.0056 (5) | 0.0173 (5) | 0.0047 (5) |
O2 | 0.0567 (7) | 0.0525 (7) | 0.0794 (8) | −0.0090 (6) | 0.0184 (6) | −0.0062 (6) |
C1 | 0.0653 (11) | 0.0667 (12) | 0.0537 (11) | −0.0014 (9) | 0.0170 (9) | 0.0094 (9) |
C2 | 0.0592 (10) | 0.0608 (11) | 0.0427 (9) | 0.0029 (8) | 0.0152 (8) | 0.0027 (8) |
C3 | 0.0410 (8) | 0.0477 (9) | 0.0424 (9) | 0.0029 (7) | 0.0108 (7) | 0.0031 (8) |
C4 | 0.0587 (10) | 0.0473 (9) | 0.0475 (10) | 0.0038 (7) | 0.0170 (8) | −0.0043 (8) |
C5 | 0.0613 (10) | 0.0586 (11) | 0.0406 (9) | −0.0003 (8) | 0.0177 (8) | −0.0034 (8) |
C6 | 0.0579 (10) | 0.0536 (10) | 0.0392 (9) | −0.0026 (8) | 0.0100 (7) | −0.0023 (8) |
C7 | 0.0600 (10) | 0.0445 (9) | 0.0479 (10) | −0.0066 (7) | 0.0101 (8) | −0.0050 (8) |
C8 | 0.0428 (9) | 0.0493 (10) | 0.0418 (9) | −0.0060 (7) | 0.0073 (7) | 0.0021 (7) |
C9 | 0.0746 (13) | 0.0733 (13) | 0.0890 (15) | −0.0234 (10) | 0.0162 (11) | −0.0096 (11) |
C10 | 0.0723 (12) | 0.0518 (11) | 0.0646 (12) | −0.0113 (8) | 0.0214 (9) | −0.0050 (9) |
C11 | 0.0503 (10) | 0.0492 (10) | 0.0461 (9) | −0.0065 (7) | 0.0108 (7) | 0.0033 (7) |
C12 | 0.0615 (11) | 0.0440 (9) | 0.0662 (12) | −0.0021 (8) | 0.0179 (9) | −0.0032 (8) |
C13 | 0.0532 (10) | 0.0563 (11) | 0.0672 (12) | −0.0002 (8) | 0.0175 (9) | −0.0009 (9) |
C14 | 0.0544 (10) | 0.0496 (10) | 0.0591 (11) | 0.0011 (8) | 0.0180 (8) | 0.0012 (8) |
C15 | 0.0636 (11) | 0.0439 (9) | 0.0531 (10) | −0.0035 (8) | 0.0152 (8) | −0.0006 (7) |
C16 | 0.0510 (9) | 0.0508 (10) | 0.0414 (9) | −0.0072 (8) | 0.0062 (7) | 0.0045 (7) |
C17 | 0.0504 (9) | 0.0446 (9) | 0.0411 (9) | 0.0015 (7) | 0.0100 (7) | −0.0019 (7) |
C18 | 0.0553 (10) | 0.0524 (10) | 0.0498 (10) | −0.0034 (8) | 0.0107 (8) | −0.0025 (8) |
C19 | 0.0552 (10) | 0.0608 (11) | 0.0617 (12) | −0.0038 (8) | 0.0018 (9) | −0.0080 (9) |
C20 | 0.0575 (10) | 0.0569 (10) | 0.0497 (10) | −0.0005 (8) | 0.0153 (8) | 0.0023 (8) |
C21 | 0.0772 (13) | 0.0652 (12) | 0.0457 (10) | 0.0101 (10) | 0.0139 (9) | 0.0043 (9) |
C22 | 0.0718 (12) | 0.0681 (12) | 0.0485 (11) | 0.0082 (10) | −0.0027 (9) | −0.0077 (9) |
N1—C17 | 1.3985 (19) | C9—H9B | 0.9600 |
N1—C8 | 1.4296 (18) | C9—H9C | 0.9600 |
N1—C16 | 1.4384 (18) | C10—H10A | 0.9700 |
O1—C3 | 1.3705 (17) | C10—H10B | 0.9700 |
O1—C2 | 1.4312 (18) | C11—C14 | 1.378 (2) |
O2—C11 | 1.3736 (17) | C11—C12 | 1.382 (2) |
O2—C10 | 1.4237 (19) | C12—C13 | 1.389 (2) |
C1—C2 | 1.502 (2) | C12—H12 | 0.9300 |
C1—H1A | 0.9600 | C13—C16 | 1.376 (2) |
C1—H1B | 0.9600 | C13—H13 | 0.9300 |
C1—H1C | 0.9600 | C14—C15 | 1.372 (2) |
C2—H2A | 0.9700 | C14—H14 | 0.9300 |
C2—H2B | 0.9700 | C15—C16 | 1.385 (2) |
C3—C6 | 1.381 (2) | C15—H15 | 0.9300 |
C3—C4 | 1.382 (2) | C17—C18 | 1.395 (2) |
C4—C5 | 1.378 (2) | C17—C20 | 1.395 (2) |
C4—H4 | 0.9300 | C18—C19 | 1.382 (2) |
C5—C8 | 1.381 (2) | C18—H18 | 0.9300 |
C5—H5 | 0.9300 | C19—C22 | 1.375 (2) |
C6—C7 | 1.380 (2) | C19—H19 | 0.9300 |
C6—H6 | 0.9300 | C20—C21 | 1.381 (2) |
C7—C8 | 1.379 (2) | C20—H20 | 0.9300 |
C7—H7 | 0.9300 | C21—C22 | 1.372 (2) |
C9—C10 | 1.501 (2) | C21—H21 | 0.9300 |
C9—H9A | 0.9600 | C22—H22 | 0.9300 |
C17—N1—C8 | 122.07 (12) | O2—C10—H10A | 110.3 |
C17—N1—C16 | 120.50 (12) | C9—C10—H10A | 110.3 |
C8—N1—C16 | 116.40 (12) | O2—C10—H10B | 110.3 |
C3—O1—C2 | 117.76 (12) | C9—C10—H10B | 110.3 |
C11—O2—C10 | 118.31 (12) | H10A—C10—H10B | 108.5 |
C2—C1—H1A | 109.5 | O2—C11—C14 | 115.30 (14) |
C2—C1—H1B | 109.5 | O2—C11—C12 | 125.23 (14) |
H1A—C1—H1B | 109.5 | C14—C11—C12 | 119.48 (14) |
C2—C1—H1C | 109.5 | C11—C12—C13 | 119.72 (15) |
H1A—C1—H1C | 109.5 | C11—C12—H12 | 120.1 |
H1B—C1—H1C | 109.5 | C13—C12—H12 | 120.1 |
O1—C2—C1 | 107.40 (13) | C16—C13—C12 | 120.71 (15) |
O1—C2—H2A | 110.2 | C16—C13—H13 | 119.6 |
C1—C2—H2A | 110.2 | C12—C13—H13 | 119.6 |
O1—C2—H2B | 110.2 | C15—C14—C11 | 120.51 (15) |
C1—C2—H2B | 110.2 | C15—C14—H14 | 119.7 |
H2A—C2—H2B | 108.5 | C11—C14—H14 | 119.7 |
O1—C3—C6 | 125.08 (13) | C14—C15—C16 | 120.63 (15) |
O1—C3—C4 | 115.74 (13) | C14—C15—H15 | 119.7 |
C6—C3—C4 | 119.16 (14) | C16—C15—H15 | 119.7 |
C5—C4—C3 | 120.33 (15) | C13—C16—C15 | 118.91 (14) |
C5—C4—H4 | 119.8 | C13—C16—N1 | 121.09 (15) |
C3—C4—H4 | 119.8 | C15—C16—N1 | 119.96 (14) |
C4—C5—C8 | 121.12 (14) | C18—C17—C20 | 117.78 (14) |
C4—C5—H5 | 119.4 | C18—C17—N1 | 121.23 (14) |
C8—C5—H5 | 119.4 | C20—C17—N1 | 120.95 (14) |
C7—C6—C3 | 119.78 (14) | C19—C18—C17 | 120.33 (16) |
C7—C6—H6 | 120.1 | C19—C18—H18 | 119.8 |
C3—C6—H6 | 120.1 | C17—C18—H18 | 119.8 |
C8—C7—C6 | 121.61 (14) | C22—C19—C18 | 121.37 (17) |
C8—C7—H7 | 119.2 | C22—C19—H19 | 119.3 |
C6—C7—H7 | 119.2 | C18—C19—H19 | 119.3 |
C7—C8—C5 | 117.96 (14) | C21—C20—C17 | 120.81 (16) |
C7—C8—N1 | 120.09 (14) | C21—C20—H20 | 119.6 |
C5—C8—N1 | 121.92 (14) | C17—C20—H20 | 119.6 |
C10—C9—H9A | 109.5 | C22—C21—C20 | 121.00 (17) |
C10—C9—H9B | 109.5 | C22—C21—H21 | 119.5 |
H9A—C9—H9B | 109.5 | C20—C21—H21 | 119.5 |
C10—C9—H9C | 109.5 | C21—C22—C19 | 118.70 (16) |
H9A—C9—H9C | 109.5 | C21—C22—H22 | 120.6 |
H9B—C9—H9C | 109.5 | C19—C22—H22 | 120.6 |
O2—C10—C9 | 107.15 (14) |
Cg1 is the centroid of the C3–C8 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cg1i | 0.96 | 2.83 | 3.6763 (17) | 148 |
Symmetry code: (i) x−1/2, −y+1/2, z−1/2. |
Cg1 is the centroid of the C3–C8 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cg1i | 0.96 | 2.83 | 3.6763 (17) | 148 |
Symmetry code: (i) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The work was supported by the National Natural Science Foundation of China (grant Nos. 21271004 and 51372003) and the Natural Science Foundation of Anhui Province, China (grant No. 1208085MB22).
References
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Costa, J. & Santos, L. (2013). J. Phys. Chem. C, 117, 10919–10928. Web of Science CrossRef CAS Google Scholar
Gudeika, D., Michaleviciute, A., Lygaitis, R., Grigalevicius, S., Miasojedovas, A., Jursenas, S. & Sini, G. (2012). J. Phys. Chem. C, 116, 14811–14819. Web of Science CrossRef CAS Google Scholar
Liu, B., Zhang, Q., Ding, H.-J., Du, Y.-J., Wang, C.-K., Wu, J.-Y., Li, S.-L., Zhou, H.-P., Yang, J.-X. & Tian, Y.-P. (2012). Dyes Pigm. 95, 149–160. Web of Science CSD CrossRef CAS Google Scholar
Metri, N., Sallenave, X., Plesse, C., Beouch, L., Aubert, P. H., Goubard, F., Chevrot, C. & Sini, G. (2012). J. Phys. Chem. C, 116, 3765–3772. Web of Science CrossRef CAS Google Scholar
Pina, J., Seixas de Melo, J. S., Batista, R. M., Costa, S. P. & Raposo, M. M. (2013). J. Org. Chem. 78, 11389–11395. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-M., Jin, F., Chen, Z.-G., Liu, S.-Q., Wang, X.-H., Duan, X.-M., Tao, X.-T. & Jiang, M.-H. (2011). J. Phys. Chem. C, 115, 776–784. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tripheylamine derivatives catch considerable interest and attention in application of OLEDs and efficient optical chemosensors due to useful properties in electrical conductivity and electroluminescence (Pina et al., 2013; Liu et al., 2012). Much effort has been made to explore the relationship between their structures and properties. The ethoxyl groups as donors in the title compound have enhanced the properties in several optical applications, its special structure also contributes to its transport properties when used to those areas (Costa & Santos, 2013 and Metri et al., 2012). In the molecule, the two ethoxybenzene rings are oriented with respect to the phenyl ring at 61.77 (8) and 84.77 (8)°, and they are twisted to each other with a dihedral angle of 80.37 (7)°. In the crystal, weak C—H···π interaction links the molecules into the supramolecular chains propagated along the [101] direction.