organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1075-o1076

Crystal structure of 5-[bis­­(4-eth­­oxy­phenyl)amino]­thio­phene-2-carbaldehyde

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 August 2014; accepted 22 August 2014; online 30 August 2014)

In the title compound, C21H21NO3S, the planes of the two benzene rings are nearly perpendicular to one another [dihedral angle = 84.50 (10)°] and they are oriented with respect to the plane of the thio­phene ring at dihedral angles of 59.15 (9) and 66.61 (9)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the b-axis direction.

1. Related literature

For applications of thio­phene derivatives, see: Justin Thomas et al. (2008[Justin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830-1840.]); Hansel et al. (2003[Hansel, H., Zettl, H., Krausch, G., Kisselev, R., Thelakkat, M. & Schmidt, H. W. (2003). Adv. Mater. 15, 2056-2060.]); Mazzeo et al. (2003[Mazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060-2063.]); Zhan et al. (2007[Zhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246-7247.]); Bedworth et al. (1996[Bedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, o2242-o2246.]); Raposo et al. (2011[Raposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigm. 91, 62-73.]); Takekuma et al. (2005[Takekuma, S. I., Takahashi, K., Sakaguchi, A., Shibata, Y., Sasaki, M., Minematsu, T. & Takekuma, H. (2005). Tetrahedron, 61, 10349-10362.]); Wurthner et al. (2002[Wurthner, F., Yao, S., Debaerdemaeker, T. & Wortmann, R. (2002). J. Am. Chem. Soc. 124, 9431-9447.]). For a related structure, see: Li et al. (2013[Li, R., Li, D.-D. & Wu, J.-Y. (2013). Acta Cryst. E69, o1405.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H21NO3S

  • Mr = 367.45

  • Monoclinic, P 21 /c

  • a = 11.101 (3) Å

  • b = 10.457 (3) Å

  • c = 17.326 (5) Å

  • β = 104.473 (4)°

  • V = 1947.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

2.1.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.964

  • 13574 measured reflections

  • 3430 independent reflections

  • 2596 reflections with I > 2σ(I)

  • Rint = 0.031

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.134

  • S = 0.93

  • 3430 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.97 2.55 3.470 (3) 159
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to the outstanding electronic tenability and considerable chemical and environmental stability, thiophene derivatives have been widely used in solar cells (Justin Thomas et al., 2008; Hansel et al., 2003), organic light-emitting diodes (OLEDs) (Mazzeo et al., 2003), organic field-effect transistors (OFETs) (Zhan et al., 2007) and NLO devices (Bedworth et al., 1996; Raposo et al., 2011). Among them, the research of thiophene carboxaldehyde, which is an extremely important intermediate, is abundant (Takekuma et al., 2005; Wurthner et al., 2002). In this paper, a novel thiophene carboxaldehyde derivative, 5-(bis(4-ethoxyphenyl)amino)thiophene-2-carbaldehyde (Fig.1), was synthesized.

It possesses typical propeller structure, just the same with other triarylamine. The carbonyl group is coplanar with the thiophene ring, which indicates well conjugation. As shown in Fig.2, for the existence of intermolecular C2—H2A···O3 hydrogen bond, the one-dimensional linear chain structure was formed along b axis.

Related literature top

For applications of thiophene derivatives, see: Justin Thomas et al. (2008); Hansel et al. (2003); Mazzeo et al. (2003); Zhan et al. (2007); Bedworth et al. (1996); Raposo et al. (2011); Takekuma et al. (2005); Wurthner et al. (2002). For a related structure, see: Li et al. (2013).

Experimental top

The intermediate bis(4-ethoxyphenyl)amine was synthesized according to following procedure. Cuprous iodide (0.95 g, 5 mmol), L-Proline (1.15 g, 10 mmol) and anhydrous potassium carbonate (13.8 g, 100 mmol) were placed in an oven-dried 250 ml Schlenk flask. The reaction vessel was evacuated and filled with prepurified argon, a process which was repeated three times. Then refined dimethylsulfoxide (100 ml) was added with a syringe under a counterflow of argon. After that, 4-Iodophenetole (12.5 g, 50 mmol), Phenetidine (8.23 g, 60 mmol) and a particle of 18-Crown-6 (0.1981 g, 0.75 mmol) were added. The reaction was stirred at 90 degrees celsius for 24 h. Upon completion of the reaction, the mixture was cooled to room temperature. The mixture was filtered through a Buchner funnel to remove the deposition. Then diluted with water (500 ml) and stirred for one day. A kind of grey educt were obtained after separate the water by a Buchner funnel again. Purification of the residue by column chromatography on silica gel (petroleum ether/ethyl acetate = 40:1) gave bis(4-ethoxyphenyl)amine as white powder, with yield of 41.3%. M.p.= 89 degrees celsius. 1H NMR: (400 MHz, DMSO-d6), d(p.p.m.): 1.33 (t, 6H), 3.93 (q,4H), 5.61 (s, 1H), 6.80 (d, 4H), 6.96 (d, 4H).

The synthesis of the title compound. Phenanthroline (0.45 g, 2.3 mmol), cuprous iodide (0.46 g, 2.4 mmol), anhydrous potassium carbonate (5.00 g, 36 mmol) and bis(4-ethoxyphenyl)amine (3.09 g, 12 mmol) were placed in an oven-dried 250 ml Schlenk flask. The reaction vessel was evacuated and filled with prepurified argon, a process which was repeated three times. Then refined dimethylsulfoxide (120 ml) and 1.90 g 5-Bromo-2-thiophenecarbalde-hyde (10 mmol) were added with a syringe under a counterflow of argon. At last, a particle of 18-Crown-6 (0.0396 g, 0.15 mmol) and two drops of Aliquat336 (0.0200 g, 0.05 mmol) were added. The reaction was stirred at 90 degrees celsius for 48 h. Upon completion of the reaction, the mixture was cooled to room temperature. The mixture was filtered through a Buchner funnel to remove the deposition. Then diluted with water (500 ml) and stirred for one day. A kind of yellowish-brown educt were obtained after separate the water by a Buchner funnel again. Purification of the residue by column chromatography on silica gel (Petroleum/Ethyl Acetate = 20:1) gave title compound as yellowish-brown particle, with yield of 45%. m.p.= 101 degrees celsius. 1H NMR: (400 MHz, d-chloroform), d(p.p.m.): 1.42 (t, 6H), 4.04 (q, 4H), 6.17 (d,1H), 6.88 (d, 4H), 7.22 (d, 4H), 7.41 (d, 1H), 9.53 (s, 1H). 13C NMR(150 MHz, d6-acetone): d(p.p.m.): 14.81, 63.77, 109.09, 115.54, 127.17, 127.99, 128.55, 138.71, 157.39, 166.42, 180.95. IR (KBr, cm-1): 3058 (w), 2976 (m), 2931 (w), 2895 (w), 2790 (w), 1627 (s), 1508 (s), 1443 (vs), 1420 (m), 1392 (m), 1353 (m), 1244 (s), 1175 (m), 1054 (m), 824 (m).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å, Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms
[Figure 2] Fig. 2. The infinite one-dimensional linear chain structure.
5-[Bis(4-Ethoxyphenyl)amino]thiophene-2-carbaldehyde top
Crystal data top
C21H21NO3SF(000) = 776
Mr = 367.45Dx = 1.253 Mg m3
Monoclinic, P21/cMelting point: 374 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.101 (3) ÅCell parameters from 3509 reflections
b = 10.457 (3) Åθ = 2.3–24.1°
c = 17.326 (5) ŵ = 0.19 mm1
β = 104.473 (4)°T = 296 K
V = 1947.5 (10) Å3Block, brown
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3430 independent reflections
Radiation source: fine-focus sealed tube2596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: ψ scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.946, Tmax = 0.964k = 1212
13574 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3430 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H21NO3SV = 1947.5 (10) Å3
Mr = 367.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.101 (3) ŵ = 0.19 mm1
b = 10.457 (3) ÅT = 296 K
c = 17.326 (5) Å0.30 × 0.20 × 0.20 mm
β = 104.473 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3430 independent reflections
Absorption correction: ψ scan
(SADABS; Bruker, 2002)
2596 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.964Rint = 0.031
13574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 0.93Δρmax = 0.15 e Å3
3430 reflectionsΔρmin = 0.21 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4645 (2)0.2539 (2)0.07326 (14)0.0795 (8)
H1A0.38750.21640.10230.119*
H1B0.52940.19100.06520.119*
H1C0.48510.32450.10300.119*
C20.4511 (2)0.3002 (2)0.00542 (12)0.0613 (6)
H2A0.43530.22880.03730.074*
H2B0.52690.34250.03410.074*
C30.32106 (17)0.44336 (17)0.05611 (10)0.0441 (4)
C40.22779 (19)0.53578 (19)0.04076 (11)0.0528 (5)
H40.18750.55580.01160.063*
C50.19465 (19)0.59780 (19)0.10249 (11)0.0507 (5)
H50.13140.65850.09190.061*
C60.37954 (18)0.41280 (18)0.13421 (10)0.0455 (5)
H60.44090.35020.14510.055*
C70.34628 (16)0.47574 (18)0.19585 (10)0.0430 (4)
H70.38530.45470.24830.052*
C80.25621 (17)0.56915 (17)0.18073 (10)0.0412 (4)
C90.0530 (2)0.2588 (2)0.59350 (13)0.0724 (7)
H9A0.03140.28830.58400.109*
H9B0.09080.25920.64970.109*
H9C0.05370.17330.57330.109*
C100.1249 (2)0.3460 (2)0.55176 (12)0.0575 (6)
H10A0.12630.43230.57250.069*
H10B0.21000.31630.56020.069*
C110.11284 (18)0.4174 (2)0.41918 (11)0.0499 (5)
C120.21873 (17)0.49193 (19)0.44138 (11)0.0514 (5)
H120.26380.49420.49440.062*
C130.25766 (17)0.56310 (19)0.38494 (11)0.0486 (5)
H130.33010.61150.40000.058*
C140.0478 (2)0.4155 (2)0.34026 (12)0.0660 (7)
H140.02250.36420.32450.079*
C150.08529 (19)0.4883 (2)0.28423 (11)0.0586 (6)
H150.03960.48700.23130.070*
C160.19027 (17)0.56314 (18)0.30648 (10)0.0427 (5)
C170.25459 (15)0.76413 (19)0.25697 (9)0.0397 (4)
C180.22906 (18)0.84674 (18)0.31280 (11)0.0460 (5)
H180.19030.82220.35220.055*
C190.26784 (18)0.97091 (18)0.30347 (11)0.0499 (5)
H190.25771.03790.33660.060*
C200.32226 (17)0.98624 (18)0.24143 (10)0.0462 (5)
C210.3744 (2)1.0975 (2)0.21472 (12)0.0575 (5)
H210.36851.17410.24080.069*
N10.22787 (14)0.63697 (15)0.24656 (8)0.0450 (4)
O10.34853 (14)0.38830 (14)0.00900 (7)0.0573 (4)
O20.06415 (13)0.34394 (14)0.46905 (8)0.0646 (4)
O30.42616 (15)1.09978 (15)0.16028 (9)0.0707 (5)
S10.32839 (5)0.84196 (5)0.19335 (3)0.0468 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.109 (2)0.0737 (17)0.0733 (15)0.0184 (15)0.0560 (15)0.0055 (13)
C20.0756 (15)0.0578 (13)0.0612 (13)0.0155 (12)0.0369 (11)0.0063 (11)
C30.0560 (12)0.0403 (10)0.0406 (9)0.0024 (9)0.0208 (9)0.0021 (8)
C40.0657 (13)0.0565 (13)0.0369 (9)0.0115 (10)0.0142 (9)0.0030 (9)
C50.0577 (12)0.0504 (12)0.0446 (10)0.0109 (10)0.0143 (9)0.0024 (9)
C60.0505 (11)0.0409 (11)0.0479 (11)0.0044 (9)0.0176 (9)0.0057 (8)
C70.0510 (11)0.0421 (11)0.0377 (9)0.0011 (9)0.0143 (8)0.0033 (8)
C80.0492 (11)0.0393 (10)0.0394 (9)0.0047 (8)0.0192 (8)0.0039 (8)
C90.0796 (16)0.0772 (17)0.0695 (15)0.0054 (13)0.0353 (13)0.0250 (13)
C100.0575 (13)0.0674 (15)0.0503 (12)0.0064 (11)0.0184 (10)0.0179 (10)
C110.0493 (12)0.0556 (13)0.0482 (11)0.0079 (9)0.0186 (9)0.0051 (9)
C120.0481 (11)0.0600 (13)0.0435 (10)0.0046 (10)0.0066 (9)0.0085 (9)
C130.0437 (11)0.0526 (12)0.0490 (11)0.0091 (9)0.0108 (9)0.0030 (9)
C140.0627 (14)0.0834 (18)0.0522 (12)0.0346 (12)0.0149 (10)0.0007 (11)
C150.0595 (13)0.0761 (15)0.0400 (10)0.0205 (11)0.0120 (9)0.0005 (10)
C160.0483 (11)0.0436 (11)0.0406 (9)0.0028 (8)0.0192 (8)0.0010 (8)
C170.0399 (10)0.0442 (11)0.0361 (9)0.0000 (8)0.0118 (8)0.0005 (8)
C180.0537 (12)0.0484 (12)0.0404 (10)0.0014 (9)0.0201 (9)0.0033 (8)
C190.0617 (13)0.0432 (11)0.0459 (10)0.0005 (9)0.0154 (9)0.0083 (9)
C200.0526 (11)0.0420 (11)0.0436 (10)0.0004 (9)0.0113 (9)0.0017 (8)
C210.0712 (14)0.0447 (12)0.0538 (12)0.0011 (10)0.0105 (11)0.0070 (10)
N10.0576 (10)0.0412 (9)0.0430 (9)0.0053 (7)0.0254 (8)0.0027 (7)
O10.0763 (10)0.0586 (9)0.0431 (7)0.0152 (8)0.0264 (7)0.0011 (6)
O20.0617 (10)0.0802 (11)0.0531 (9)0.0194 (8)0.0167 (7)0.0158 (7)
O30.0902 (12)0.0585 (10)0.0688 (10)0.0028 (8)0.0300 (9)0.0201 (8)
S10.0575 (3)0.0437 (3)0.0457 (3)0.0001 (2)0.0254 (2)0.0024 (2)
Geometric parameters (Å, º) top
C1—C21.488 (3)C10—H10B0.9700
C1—H1A0.9600C11—O21.364 (2)
C1—H1B0.9600C11—C141.378 (3)
C1—H1C0.9600C11—C121.383 (3)
C2—O11.437 (2)C12—C131.381 (2)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C161.378 (2)
C3—O11.367 (2)C13—H130.9300
C3—C61.384 (2)C14—C151.378 (3)
C3—C41.393 (3)C14—H140.9300
C4—C51.377 (2)C15—C161.376 (3)
C4—H40.9300C15—H150.9300
C5—C81.390 (2)C16—N11.437 (2)
C5—H50.9300C17—N11.364 (3)
C6—C71.381 (2)C17—C181.378 (2)
C6—H60.9300C17—S11.7321 (17)
C7—C81.375 (3)C18—C191.390 (3)
C7—H70.9300C18—H180.9300
C8—N11.443 (2)C19—C201.368 (2)
C9—C101.510 (3)C19—H190.9300
C9—H9A0.9600C20—C211.427 (3)
C9—H9B0.9600C20—S11.7330 (19)
C9—H9C0.9600C21—O31.221 (2)
C10—O21.423 (2)C21—H210.9300
C10—H10A0.9700
C2—C1—H1A109.5H10A—C10—H10B108.5
C2—C1—H1B109.5O2—C11—C14115.37 (17)
H1A—C1—H1B109.5O2—C11—C12125.80 (17)
C2—C1—H1C109.5C14—C11—C12118.83 (17)
H1A—C1—H1C109.5C13—C12—C11120.11 (17)
H1B—C1—H1C109.5C13—C12—H12119.9
O1—C2—C1107.78 (18)C11—C12—H12119.9
O1—C2—H2A110.2C16—C13—C12120.64 (17)
C1—C2—H2A110.2C16—C13—H13119.7
O1—C2—H2B110.2C12—C13—H13119.7
C1—C2—H2B110.2C15—C14—C11121.07 (19)
H2A—C2—H2B108.5C15—C14—H14119.5
O1—C3—C6124.24 (17)C11—C14—H14119.5
O1—C3—C4116.30 (16)C16—C15—C14120.04 (18)
C6—C3—C4119.45 (16)C16—C15—H15120.0
C5—C4—C3120.57 (17)C14—C15—H15120.0
C5—C4—H4119.7C15—C16—C13119.28 (17)
C3—C4—H4119.7C15—C16—N1118.78 (16)
C4—C5—C8119.62 (18)C13—C16—N1121.92 (16)
C4—C5—H5120.2N1—C17—C18128.87 (16)
C8—C5—H5120.2N1—C17—S1119.71 (13)
C7—C6—C3119.69 (17)C18—C17—S1111.41 (15)
C7—C6—H6120.2C17—C18—C19112.33 (17)
C3—C6—H6120.2C17—C18—H18123.8
C8—C7—C6120.89 (16)C19—C18—H18123.8
C8—C7—H7119.6C20—C19—C18114.29 (17)
C6—C7—H7119.6C20—C19—H19122.9
C7—C8—C5119.72 (16)C18—C19—H19122.9
C7—C8—N1119.36 (15)C19—C20—C21130.17 (19)
C5—C8—N1120.92 (17)C19—C20—S1110.73 (14)
C10—C9—H9A109.5C21—C20—S1119.08 (15)
C10—C9—H9B109.5O3—C21—C20125.0 (2)
H9A—C9—H9B109.5O3—C21—H21117.5
C10—C9—H9C109.5C20—C21—H21117.5
H9A—C9—H9C109.5C17—N1—C16121.39 (14)
H9B—C9—H9C109.5C17—N1—C8120.02 (14)
O2—C10—C9107.39 (18)C16—N1—C8117.85 (15)
O2—C10—H10A110.2C3—O1—C2117.19 (15)
C9—C10—H10A110.2C11—O2—C10117.79 (15)
O2—C10—H10B110.2C17—S1—C2091.23 (9)
C9—C10—H10B110.2
O1—C3—C4—C5179.17 (18)C19—C20—C21—O3176.6 (2)
C6—C3—C4—C50.8 (3)S1—C20—C21—O31.2 (3)
C3—C4—C5—C81.0 (3)C18—C17—N1—C1613.9 (3)
O1—C3—C6—C7178.88 (17)S1—C17—N1—C16167.25 (13)
C4—C3—C6—C71.1 (3)C18—C17—N1—C8176.16 (18)
C3—C6—C7—C80.4 (3)S1—C17—N1—C82.7 (2)
C6—C7—C8—C52.2 (3)C15—C16—N1—C17130.0 (2)
C6—C7—C8—N1177.18 (16)C13—C16—N1—C1751.4 (3)
C4—C5—C8—C72.5 (3)C15—C16—N1—C859.9 (2)
C4—C5—C8—N1176.91 (17)C13—C16—N1—C8118.7 (2)
O2—C11—C12—C13179.35 (19)C7—C8—N1—C17113.3 (2)
C14—C11—C12—C130.1 (3)C5—C8—N1—C1766.1 (2)
C11—C12—C13—C161.5 (3)C7—C8—N1—C1657.0 (2)
O2—C11—C14—C15178.1 (2)C5—C8—N1—C16123.60 (19)
C12—C11—C14—C151.4 (4)C6—C3—O1—C24.8 (3)
C11—C14—C15—C161.0 (4)C4—C3—O1—C2175.18 (17)
C14—C15—C16—C130.7 (3)C1—C2—O1—C3179.38 (18)
C14—C15—C16—N1179.3 (2)C14—C11—O2—C10177.71 (19)
C12—C13—C16—C151.9 (3)C12—C11—O2—C101.8 (3)
C12—C13—C16—N1179.50 (18)C9—C10—O2—C11179.51 (18)
N1—C17—C18—C19178.39 (18)N1—C17—S1—C20178.13 (15)
S1—C17—C18—C190.5 (2)C18—C17—S1—C200.88 (14)
C17—C18—C19—C200.3 (3)C19—C20—S1—C171.03 (15)
C18—C19—C20—C21178.9 (2)C21—C20—S1—C17179.24 (16)
C18—C19—C20—S11.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.553.470 (3)159
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.553.470 (3)159
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant Nos. 21271004 and 51372003) and the Natural Science Foundation of Anhui Province (grant No. 1208085MB22).

References

First citationBedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, o2242–o2246.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHansel, H., Zettl, H., Krausch, G., Kisselev, R., Thelakkat, M. & Schmidt, H. W. (2003). Adv. Mater. 15, 2056–2060.  Google Scholar
First citationJustin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830–1840.  Web of Science CrossRef Google Scholar
First citationLi, R., Li, D.-D. & Wu, J.-Y. (2013). Acta Cryst. E69, o1405.  CSD CrossRef IUCr Journals Google Scholar
First citationMazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060–2063.  Web of Science CrossRef CAS Google Scholar
First citationRaposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigm. 91, 62–73.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakekuma, S. I., Takahashi, K., Sakaguchi, A., Shibata, Y., Sasaki, M., Minematsu, T. & Takekuma, H. (2005). Tetrahedron, 61, 10349–10362.  Web of Science CSD CrossRef CAS Google Scholar
First citationWurthner, F., Yao, S., Debaerdemaeker, T. & Wortmann, R. (2002). J. Am. Chem. Soc. 124, 9431–9447.  Web of Science PubMed Google Scholar
First citationZhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246–7247.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1075-o1076
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds