organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1045-o1046

Crystal structure of (E)-1(anthracen-9-ylmethyl­idene)[2-(morpholin-4-yl)eth­yl]amine

aİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 18 August 2014; accepted 19 August 2014; online 23 August 2014)

The title compound, C21H22N2O, crystallizes with two independent mol­ecules in the asymmetric unit. In both mol­ecules, the anthracene ring systems are almost planar, with maximum deviations of 0.071 (8) and 0.028 (7) Å, and make dihedral angles of 73.4 (2) and 73.3 (2)° with the least-squares planes formed by the four C atoms of the morpholine rings, which adopt a chair conformation. An intra­molecular C—H⋯π inter­action occurs. In the crystal, the packing is stabilized by weak C—H⋯O hydrogen bonds, which connect pairs of molecules into parallel to the c axis, and C—H⋯π inter­actions.

1. Related literature

For background to the importance of Schiff bases and their uses, see: Dhar & Taploo (1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]); Witkop & Ramachandran (1964[Witkop, B. & Ramachandran, L. K. (1964). Metabolism, 13, 1016-1025.]); Solomon & Lowery (1993[Solomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575-1581.]); Gerdemann et al. (2002[Gerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183-191.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H22N2O

  • Mr = 318.41

  • Monoclinic, P 21

  • a = 6.0451 (3) Å

  • b = 17.8151 (10) Å

  • c = 16.8627 (8) Å

  • β = 99.690 (4)°

  • V = 1790.10 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.43 × 0.23 × 0.12 mm

2.2. Data collection

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.980, Tmax = 0.993

  • 22689 measured reflections

  • 7325 independent reflections

  • 2245 reflections with I > 2σ(I)

  • Rint = 0.116

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.076

  • S = 0.71

  • 7325 reflections

  • 433 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg11 are the centroids of the C8/C9/C14–C16/C21 and C37–C42 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯O1i 0.93 2.59 3.344 (12) 138
C13—H13⋯Cg11ii 0.93 2.73 3.567 (7) 150
C38—H38⋯Cg2 0.93 2.79 3.548 (6) 139
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are usually formed by the condensation of a primary amine with an active carbonyl. They are used as pigments and dyes, catalysts, intermediates in organic synthesis, and as polymer stabilisers (Dhar & Taploo, 1982). Schiff bases form an important class of organic compounds with a wide variety of biological properties (Witkop & Ramachandran, 1964). Many studies have been reported regarding the biological activities of Schiff bases, including their anticancer (Solomon & Lowery, 1993), antibacterial (Gerdemann et al., 2002), antifungal, and herbicidal activities. Therefore, Schiff base (I) was synthesized and its X-ray structure is reported here.

As shown in Fig. 1, the asymmetric unit of the title compound (I) consists of two independent molecules (A, B). The anthracene ring systems (C8–C21 and C29–C42) of the both molecules (A, B) are almostly planar [maximum deviations = 0.069 (9) Å for C19 and 0.071 (8) Å for C12 in molecule A, and 0.028 (7) Å for C39 and C30 in molecule B]. They make dihedral angles of 73.4 (2) and 73.3 (2)°, respectively, with the least-squares planes formed by the four C atoms of the morpholine rings (C1–C4/N1/O1 and C22–C25/N3/O2), which adopts a chair conformation. The puckering parameters of the morpholine rings are QT = 0.575 (9) Å, θ = 1.4 (9) °, ϕ = 142 (64) ° for molecule A, and QT = 0.569 (8) Å, θ = 0.0 (8) °, ϕ = 223 (34) ° for molecule B, respectively.

The (C5–C6–N2–C7 and C26–C27–N4–C28) torsion angles of the bridge –C–C–N–C– groups is -103.0 (7) ° for molecule A and 101.1 (6)° for molecule B. The bond lengths and angles in both molecules (A, B) may be regarded as normal, and they are similar with each other.

In the crystal structure, weak C—H···O hydrogen bonds (Table 1, Fig. 2) which connect pairs of molecules into parallel to the c axis, further stabilize the packing supported by C–H···π interactions (Table 1).

Related literature top

For background to the importance of Schiff bases and their uses, see: Dhar & Taploo (1982); Witkop & Ramachandran (1964); Solomon & Lowery (1993); Gerdemann et al. (2002).

Experimental top

Reaction of anthracene-9-carbaldehyde (1.00 mmol) with 2-morpholinoethanamine (1.00 mmol) in refluxing ethanol gave the title compound (I). Recrystallization from ethanol gave yellow crystals in 85% yield. Mp: 381–383 K. IR (KBr) cm-1:1643 (C=N). 1H-NMR (250 MHz, CDCl3), δ (p.p.m.): 2.58 (CH2—N morpholine, t, 4H, J=5 Hz), 2.84 (morpholine-CH2—CH2, t, 2H, J=7.5 Hz), 3.73 (CH2—O morpholine, t, 4H, J=5 Hz), 4.00 (morpholine-CH2—CH2, t, 2H, J=5 Hz), 7.37–7.94 (aromatic H, m, 9H), 8.45 (HC=N, s, 1H). 13CNMR (62.9 MHz, CDCl3), δ (p.p.m): 53.9 (CH2—N morpholine), 58.9 and 59.6 (N—CH2—CH2—N), 67.0 (CH2—O morpholin), 124.9–131.2 (aromatic carbons), 161.4 (C=N).

Refinement top

H atoms were located geometrically with C—H = 0.93 and 0.97 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C) for the aromatic and methylene H atoms. The crystal quality and data was not good enough so a sufficient fraction of the unique data is above the 2 sigma level. A total of 749 estimated Friedel pairs were merged before refinement and not used as independent data. The Flack parameter was found to be meaningless and was omitted.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the two molecules (A, B) of the title compound in the asymmetric unit with the atom-labelling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Hydrogen bonds are indicated by broken lines. H atoms not participating in hydrogen bonding have been omitted for clarity.
(E)-(Anthracen-9-ylmethylidene)[2-(morpholin-4-yl)ethyl]amine top
Crystal data top
C21H22N2OF(000) = 680
Mr = 318.41Dx = 1.181 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 10759 reflections
a = 6.0451 (3) Åθ = 1.7–27.1°
b = 17.8151 (10) ŵ = 0.07 mm1
c = 16.8627 (8) ÅT = 296 K
β = 99.690 (4)°Needle, yellow
V = 1790.10 (16) Å30.43 × 0.23 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
7325 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2245 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.116
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.7°
ω scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2222
Tmin = 0.980, Tmax = 0.993l = 2121
22689 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0001P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.71(Δ/σ)max = 0.001
7325 reflectionsΔρmax = 0.12 e Å3
433 parametersΔρmin = 0.10 e Å3
Crystal data top
C21H22N2OV = 1790.10 (16) Å3
Mr = 318.41Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.0451 (3) ŵ = 0.07 mm1
b = 17.8151 (10) ÅT = 296 K
c = 16.8627 (8) Å0.43 × 0.23 × 0.12 mm
β = 99.690 (4)°
Data collection top
Stoe IPDS 2
diffractometer
7325 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2245 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.993Rint = 0.116
22689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.076H-atom parameters constrained
S = 0.71Δρmax = 0.12 e Å3
7325 reflectionsΔρmin = 0.10 e Å3
433 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5030 (14)1.1304 (3)0.8402 (4)0.151 (3)
N10.6844 (9)1.0984 (3)0.6979 (4)0.091 (3)
N20.9321 (9)1.0010 (3)0.5933 (3)0.083 (2)
C10.4497 (12)1.0827 (4)0.7044 (5)0.125 (4)
C20.4292 (17)1.0681 (5)0.7902 (6)0.165 (5)
C30.7314 (19)1.1459 (5)0.8339 (6)0.155 (6)
C40.7548 (14)1.1610 (3)0.7501 (6)0.121 (4)
C50.7151 (11)1.1119 (3)0.6140 (4)0.102 (3)
C60.7207 (12)1.0390 (4)0.5671 (4)0.103 (3)
C70.9286 (11)0.9462 (4)0.6392 (4)0.083 (3)
C81.1260 (11)0.9000 (3)0.6682 (5)0.075 (3)
C91.2703 (12)0.8691 (3)0.6193 (4)0.069 (3)
C101.2220 (11)0.8797 (3)0.5362 (5)0.095 (3)
C111.3547 (14)0.8477 (4)0.4871 (4)0.103 (3)
C121.5368 (14)0.8018 (4)0.5200 (5)0.112 (4)
C131.5893 (12)0.7909 (3)0.5997 (5)0.094 (3)
C141.4558 (13)0.8241 (3)0.6516 (5)0.079 (3)
C151.4988 (12)0.8134 (4)0.7345 (5)0.089 (3)
C161.3580 (16)0.8435 (4)0.7827 (4)0.089 (4)
C171.4078 (14)0.8284 (4)0.8665 (6)0.119 (4)
C181.2768 (16)0.8546 (5)0.9180 (5)0.131 (5)
C191.0911 (18)0.8962 (5)0.8894 (6)0.120 (4)
C201.0344 (12)0.9135 (4)0.8089 (5)0.097 (4)
C211.1684 (13)0.8875 (4)0.7520 (5)0.082 (3)
O20.0218 (13)0.3492 (4)0.9153 (4)0.143 (3)
N30.1892 (9)0.3720 (2)0.7801 (3)0.075 (2)
N40.4442 (8)0.4611 (3)0.6707 (3)0.086 (2)
C220.2622 (11)0.3138 (3)0.8388 (5)0.104 (3)
C230.2071 (17)0.3359 (5)0.9198 (5)0.147 (5)
C240.0968 (13)0.4068 (4)0.8585 (5)0.122 (4)
C250.0489 (11)0.3848 (3)0.7777 (4)0.094 (3)
C260.2383 (11)0.3506 (3)0.6997 (5)0.096 (3)
C270.2407 (11)0.4180 (3)0.6453 (4)0.091 (3)
C280.4249 (10)0.5193 (3)0.7114 (4)0.078 (3)
C290.6164 (11)0.5675 (3)0.7442 (4)0.071 (3)
C300.6443 (13)0.5896 (3)0.8261 (4)0.075 (3)
C310.4994 (12)0.5602 (4)0.8772 (5)0.105 (4)
C320.5272 (15)0.5804 (5)0.9561 (5)0.122 (4)
C330.7021 (18)0.6295 (4)0.9876 (5)0.123 (4)
C340.8488 (14)0.6564 (4)0.9425 (5)0.110 (4)
C350.8258 (13)0.6379 (3)0.8593 (5)0.079 (3)
C360.9658 (13)0.6628 (3)0.8079 (5)0.087 (3)
C370.9342 (13)0.6426 (4)0.7280 (5)0.079 (3)
C381.0851 (13)0.6725 (3)0.6783 (5)0.098 (4)
C391.0621 (14)0.6555 (4)0.5994 (5)0.096 (4)
C400.8943 (14)0.6070 (4)0.5655 (5)0.099 (3)
C410.7469 (11)0.5766 (3)0.6099 (4)0.076 (3)
C420.7638 (11)0.5937 (3)0.6937 (4)0.070 (3)
H1A0.397601.039200.671900.1490*
H1B0.356501.125200.684300.1490*
H2A0.273801.057400.793600.1980*
H2B0.517901.024400.809300.1980*
H3A0.824301.103300.853900.1850*
H3B0.783201.189100.866900.1850*
H4A0.665601.204700.731000.1450*
H4B0.910501.172500.747800.1450*
H5A0.854301.139000.614100.1220*
H5B0.593201.143000.587400.1220*
H6A0.597601.006900.575900.1230*
H6B0.703401.049900.510000.1230*
H70.793900.934000.655700.0990*
H101.099000.908600.514000.1140*
H111.324400.856300.432000.1230*
H121.622000.778700.486000.1340*
H131.712800.761700.620700.1130*
H151.623600.785700.757600.1080*
H171.533600.799900.886500.1420*
H181.313100.844200.972700.1570*
H191.000600.913300.925100.1440*
H200.907700.942500.791300.1160*
H22A0.422700.306400.843100.1250*
H22B0.187800.267000.821300.1250*
H23A0.253300.296000.958200.1760*
H23B0.290200.380800.938800.1760*
H24A0.020600.453400.875500.1470*
H24B0.256800.414500.855700.1470*
H25A0.131200.339400.759900.1130*
H25B0.099500.424200.739200.1130*
H26A0.125500.315300.674700.1150*
H26B0.383000.325800.706200.1150*
H27A0.234500.401500.590100.1090*
H27B0.110500.449200.647700.1090*
H280.283100.532500.721200.0930*
H310.385500.527000.856500.1270*
H320.430800.561900.989000.1460*
H330.717200.643901.041300.1480*
H340.965900.687200.966000.1330*
H361.085100.694200.828000.1040*
H381.200800.704200.701100.1170*
H391.158800.676400.568000.1150*
H400.881300.594700.511300.1190*
H410.634500.544500.585400.0910*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.189 (7)0.123 (4)0.161 (6)0.003 (5)0.085 (5)0.019 (4)
N10.086 (5)0.067 (3)0.122 (5)0.005 (3)0.022 (4)0.006 (3)
N20.075 (4)0.098 (4)0.077 (4)0.005 (3)0.012 (3)0.012 (3)
C10.085 (6)0.114 (5)0.184 (9)0.032 (4)0.049 (7)0.019 (5)
C20.210 (11)0.141 (8)0.178 (9)0.054 (7)0.127 (9)0.034 (7)
C30.194 (13)0.161 (9)0.115 (9)0.002 (8)0.044 (9)0.033 (6)
C40.113 (7)0.075 (5)0.171 (9)0.012 (4)0.017 (6)0.023 (5)
C50.093 (6)0.102 (5)0.110 (6)0.004 (4)0.018 (5)0.029 (5)
C60.101 (6)0.124 (5)0.079 (5)0.002 (5)0.001 (5)0.015 (4)
C70.083 (5)0.096 (5)0.070 (5)0.019 (4)0.014 (4)0.007 (4)
C80.060 (5)0.075 (4)0.086 (6)0.024 (4)0.002 (5)0.011 (4)
C90.082 (5)0.073 (4)0.056 (5)0.018 (4)0.023 (4)0.004 (4)
C100.095 (6)0.097 (5)0.098 (6)0.001 (4)0.030 (5)0.003 (4)
C110.120 (7)0.109 (6)0.076 (5)0.010 (5)0.009 (5)0.008 (4)
C120.127 (8)0.105 (5)0.112 (7)0.001 (5)0.044 (6)0.004 (5)
C130.092 (6)0.092 (5)0.105 (6)0.008 (4)0.037 (6)0.004 (5)
C140.081 (6)0.062 (4)0.095 (6)0.004 (4)0.014 (5)0.019 (4)
C150.090 (6)0.090 (5)0.082 (6)0.007 (4)0.002 (5)0.012 (5)
C160.122 (8)0.093 (5)0.054 (5)0.027 (5)0.021 (5)0.005 (4)
C170.100 (7)0.146 (7)0.111 (8)0.003 (5)0.021 (6)0.011 (6)
C180.110 (8)0.175 (9)0.097 (7)0.017 (6)0.011 (6)0.020 (6)
C190.145 (9)0.152 (8)0.068 (6)0.016 (6)0.034 (6)0.020 (5)
C200.084 (6)0.111 (6)0.097 (7)0.007 (4)0.021 (5)0.007 (5)
C210.070 (5)0.082 (5)0.088 (6)0.005 (4)0.000 (5)0.001 (4)
O20.181 (6)0.148 (5)0.107 (5)0.012 (5)0.042 (5)0.041 (4)
N30.068 (4)0.072 (3)0.083 (4)0.010 (3)0.006 (3)0.003 (3)
N40.076 (4)0.094 (3)0.086 (4)0.010 (3)0.009 (3)0.013 (3)
C220.088 (6)0.079 (4)0.137 (7)0.004 (4)0.007 (6)0.021 (5)
C230.159 (10)0.148 (7)0.113 (8)0.007 (8)0.037 (8)0.040 (6)
C240.134 (8)0.104 (6)0.138 (8)0.000 (5)0.049 (6)0.010 (6)
C250.085 (6)0.086 (5)0.112 (6)0.005 (4)0.018 (5)0.001 (4)
C260.084 (5)0.071 (4)0.133 (7)0.015 (4)0.016 (5)0.028 (4)
C270.091 (6)0.105 (5)0.078 (5)0.011 (4)0.014 (4)0.011 (4)
C280.079 (5)0.078 (4)0.078 (5)0.001 (4)0.020 (4)0.004 (4)
C290.075 (5)0.050 (3)0.086 (6)0.001 (3)0.009 (5)0.003 (4)
C300.089 (6)0.067 (4)0.070 (5)0.012 (4)0.018 (5)0.007 (4)
C310.116 (7)0.115 (6)0.088 (6)0.005 (5)0.025 (6)0.004 (5)
C320.136 (8)0.152 (8)0.082 (7)0.023 (6)0.029 (6)0.023 (5)
C330.184 (10)0.117 (6)0.072 (6)0.002 (6)0.032 (6)0.009 (5)
C340.145 (8)0.106 (5)0.077 (6)0.010 (5)0.010 (5)0.033 (4)
C350.093 (6)0.062 (4)0.082 (6)0.004 (4)0.011 (5)0.011 (4)
C360.087 (6)0.089 (5)0.084 (6)0.010 (4)0.016 (5)0.008 (4)
C370.088 (6)0.068 (4)0.088 (6)0.002 (4)0.032 (5)0.012 (4)
C380.105 (7)0.074 (4)0.112 (7)0.003 (4)0.014 (6)0.015 (5)
C390.096 (6)0.078 (5)0.120 (8)0.013 (4)0.037 (6)0.001 (4)
C400.108 (6)0.100 (5)0.101 (6)0.002 (5)0.050 (6)0.012 (5)
C410.082 (5)0.086 (4)0.059 (5)0.010 (3)0.010 (4)0.003 (3)
C420.066 (5)0.048 (3)0.094 (6)0.003 (3)0.009 (5)0.006 (4)
Geometric parameters (Å, º) top
O1—C21.420 (11)C12—H120.9300
O1—C31.429 (14)C13—H130.9300
O2—C231.393 (13)C15—H150.9300
O2—C241.425 (10)C17—H170.9300
N1—C11.468 (9)C18—H180.9300
N1—C51.477 (9)C19—H190.9300
N1—C41.440 (10)C20—H200.9300
N2—C71.248 (9)C22—C231.512 (12)
N2—C61.448 (9)C24—C251.492 (11)
N3—C261.486 (9)C26—C271.513 (9)
N3—C221.450 (8)C28—C291.472 (9)
N3—C251.451 (9)C29—C301.419 (9)
N4—C281.260 (8)C29—C421.412 (9)
N4—C271.452 (8)C30—C311.428 (11)
C1—C21.496 (13)C30—C351.432 (10)
C3—C41.469 (14)C31—C321.361 (12)
C5—C61.524 (9)C32—C331.406 (13)
C7—C81.464 (10)C33—C341.350 (13)
C8—C91.409 (10)C34—C351.425 (12)
C8—C211.411 (12)C35—C361.383 (11)
C9—C101.395 (11)C36—C371.377 (12)
C9—C141.411 (10)C37—C381.441 (11)
C10—C111.370 (11)C37—C421.398 (10)
C11—C121.408 (11)C38—C391.349 (12)
C12—C131.342 (12)C39—C401.381 (11)
C13—C141.416 (11)C40—C411.368 (11)
C14—C151.391 (12)C41—C421.432 (9)
C15—C161.380 (11)C22—H22A0.9700
C16—C211.413 (12)C22—H22B0.9700
C16—C171.420 (12)C23—H23A0.9700
C17—C181.353 (13)C23—H23B0.9700
C18—C191.364 (14)C24—H24A0.9700
C19—C201.378 (13)C24—H24B0.9700
C20—C211.433 (11)C25—H25A0.9700
C1—H1A0.9700C25—H25B0.9700
C1—H1B0.9700C26—H26A0.9700
C2—H2A0.9700C26—H26B0.9700
C2—H2B0.9700C27—H27A0.9700
C3—H3A0.9700C27—H27B0.9700
C3—H3B0.9700C28—H280.9300
C4—H4A0.9700C31—H310.9300
C4—H4B0.9700C32—H320.9300
C5—H5B0.9700C33—H330.9300
C5—H5A0.9700C34—H340.9300
C6—H6A0.9700C36—H360.9300
C6—H6B0.9700C38—H380.9300
C7—H70.9300C39—H390.9300
C10—H100.9300C40—H400.9300
C11—H110.9300C41—H410.9300
C2—O1—C3108.5 (7)C19—C18—H18120.00
C23—O2—C24111.1 (7)C20—C19—H19119.00
C1—N1—C5112.4 (6)C18—C19—H19119.00
C4—N1—C5112.8 (5)C21—C20—H20120.00
C1—N1—C4107.0 (6)C19—C20—H20120.00
C6—N2—C7116.7 (6)N3—C22—C23110.0 (5)
C22—N3—C25108.5 (5)O2—C23—C22111.3 (7)
C22—N3—C26110.8 (5)O2—C24—C25109.6 (6)
C25—N3—C26111.4 (5)N3—C25—C24111.1 (6)
C27—N4—C28116.4 (5)N3—C26—C27111.9 (5)
N1—C1—C2110.1 (7)N4—C27—C26109.6 (5)
O1—C2—C1111.7 (7)N4—C28—C29123.1 (6)
O1—C3—C4111.0 (8)C28—C29—C30119.0 (6)
N1—C4—C3112.3 (6)C28—C29—C42120.2 (6)
N1—C5—C6112.1 (5)C30—C29—C42120.8 (6)
N2—C6—C5109.6 (5)C29—C30—C31120.1 (6)
N2—C7—C8123.3 (6)C29—C30—C35120.3 (7)
C9—C8—C21119.9 (6)C31—C30—C35119.5 (6)
C7—C8—C21115.1 (6)C30—C31—C32120.4 (7)
C7—C8—C9125.0 (7)C31—C32—C33119.7 (8)
C8—C9—C10119.3 (6)C32—C33—C34122.1 (8)
C10—C9—C14118.9 (6)C33—C34—C35120.5 (7)
C8—C9—C14121.7 (7)C30—C35—C34117.7 (7)
C9—C10—C11120.4 (6)C30—C35—C36117.2 (7)
C10—C11—C12120.1 (7)C34—C35—C36125.1 (7)
C11—C12—C13121.1 (7)C35—C36—C37122.1 (7)
C12—C13—C14119.7 (7)C36—C37—C38118.4 (7)
C9—C14—C13119.8 (7)C36—C37—C42122.6 (7)
C13—C14—C15122.3 (7)C38—C37—C42119.0 (7)
C9—C14—C15117.9 (7)C37—C38—C39121.4 (7)
C14—C15—C16120.6 (7)C38—C39—C40119.7 (8)
C15—C16—C21122.8 (7)C39—C40—C41121.5 (7)
C17—C16—C21119.5 (8)C40—C41—C42120.7 (6)
C15—C16—C17117.6 (8)C29—C42—C37116.9 (6)
C16—C17—C18121.6 (8)C29—C42—C41125.3 (6)
C17—C18—C19119.8 (8)C37—C42—C41117.8 (6)
C18—C19—C20121.6 (9)N3—C22—H22A110.00
C19—C20—C21120.8 (8)N3—C22—H22B110.00
C8—C21—C20126.3 (7)C23—C22—H22A110.00
C16—C21—C20116.7 (7)C23—C22—H22B110.00
C8—C21—C16117.0 (7)H22A—C22—H22B108.00
C2—C1—H1A110.00O2—C23—H23A109.00
C2—C1—H1B110.00O2—C23—H23B109.00
N1—C1—H1A110.00C22—C23—H23A109.00
N1—C1—H1B110.00C22—C23—H23B109.00
H1A—C1—H1B108.00H23A—C23—H23B108.00
O1—C2—H2A109.00O2—C24—H24A110.00
O1—C2—H2B109.00O2—C24—H24B110.00
H2A—C2—H2B108.00C25—C24—H24A110.00
C1—C2—H2B109.00C25—C24—H24B110.00
C1—C2—H2A109.00H24A—C24—H24B108.00
O1—C3—H3B109.00N3—C25—H25A109.00
O1—C3—H3A109.00N3—C25—H25B109.00
C4—C3—H3B109.00C24—C25—H25A109.00
H3A—C3—H3B108.00C24—C25—H25B109.00
C4—C3—H3A110.00H25A—C25—H25B108.00
C3—C4—H4A109.00N3—C26—H26A109.00
C3—C4—H4B109.00N3—C26—H26B109.00
N1—C4—H4A109.00C27—C26—H26A109.00
N1—C4—H4B109.00C27—C26—H26B109.00
H4A—C4—H4B108.00H26A—C26—H26B108.00
H5A—C5—H5B108.00N4—C27—H27A110.00
N1—C5—H5A109.00N4—C27—H27B110.00
N1—C5—H5B109.00C26—C27—H27A110.00
C6—C5—H5B109.00C26—C27—H27B110.00
C6—C5—H5A109.00H27A—C27—H27B108.00
N2—C6—H6B110.00N4—C28—H28119.00
C5—C6—H6A110.00C29—C28—H28118.00
N2—C6—H6A110.00C30—C31—H31120.00
H6A—C6—H6B108.00C32—C31—H31120.00
C5—C6—H6B110.00C31—C32—H32120.00
N2—C7—H7118.00C33—C32—H32120.00
C8—C7—H7118.00C32—C33—H33119.00
C11—C10—H10120.00C34—C33—H33119.00
C9—C10—H10120.00C33—C34—H34120.00
C10—C11—H11120.00C35—C34—H34120.00
C12—C11—H11120.00C35—C36—H36119.00
C11—C12—H12119.00C37—C36—H36119.00
C13—C12—H12119.00C37—C38—H38119.00
C14—C13—H13120.00C39—C38—H38119.00
C12—C13—H13120.00C38—C39—H39120.00
C16—C15—H15120.00C40—C39—H39120.00
C14—C15—H15120.00C39—C40—H40119.00
C16—C17—H17119.00C41—C40—H40119.00
C18—C17—H17119.00C40—C41—H41120.00
C17—C18—H18120.00C42—C41—H41120.00
C3—O1—C2—C158.4 (9)C15—C16—C21—C80.1 (11)
C2—O1—C3—C457.9 (9)C15—C16—C17—C18178.9 (8)
C23—O2—C24—C2558.5 (8)C17—C16—C21—C8179.4 (7)
C24—O2—C23—C2258.3 (9)C21—C16—C17—C180.6 (12)
C4—N1—C5—C6159.8 (6)C15—C16—C21—C20178.5 (7)
C5—N1—C1—C2179.0 (6)C16—C17—C18—C190.4 (13)
C1—N1—C5—C679.2 (7)C17—C18—C19—C201.1 (14)
C4—N1—C1—C256.7 (8)C18—C19—C20—C210.7 (13)
C1—N1—C4—C358.0 (9)C19—C20—C21—C160.4 (11)
C5—N1—C4—C3177.9 (7)C19—C20—C21—C8178.6 (8)
C6—N2—C7—C8177.3 (6)N3—C22—C23—O257.7 (8)
C7—N2—C6—C5103.0 (7)O2—C24—C25—N358.8 (7)
C26—N3—C25—C24179.6 (5)N3—C26—C27—N474.0 (7)
C26—N3—C22—C23179.0 (6)N4—C28—C29—C30131.7 (7)
C25—N3—C26—C2778.9 (6)N4—C28—C29—C4251.0 (9)
C25—N3—C22—C2356.4 (7)C28—C29—C30—C315.2 (9)
C22—N3—C26—C27160.2 (5)C28—C29—C30—C35178.5 (6)
C22—N3—C25—C2458.2 (6)C42—C29—C30—C31177.5 (6)
C28—N4—C27—C26101.1 (6)C42—C29—C30—C351.2 (9)
C27—N4—C28—C29177.7 (6)C28—C29—C42—C37176.5 (6)
N1—C1—C2—O159.5 (9)C28—C29—C42—C410.9 (9)
O1—C3—C4—N160.2 (9)C30—C29—C42—C370.8 (9)
N1—C5—C6—N273.5 (7)C30—C29—C42—C41178.2 (6)
N2—C7—C8—C949.0 (10)C29—C30—C31—C32179.1 (7)
N2—C7—C8—C21130.6 (7)C35—C30—C31—C322.8 (11)
C21—C8—C9—C10177.8 (6)C29—C30—C35—C34178.2 (6)
C7—C8—C9—C14179.0 (6)C29—C30—C35—C361.6 (9)
C7—C8—C21—C202.1 (10)C31—C30—C35—C342.0 (9)
C7—C8—C21—C16179.7 (6)C31—C30—C35—C36177.8 (6)
C9—C8—C21—C20178.3 (7)C30—C31—C32—C331.1 (12)
C7—C8—C9—C102.6 (9)C31—C32—C33—C341.6 (13)
C21—C8—C9—C141.4 (9)C32—C33—C34—C352.4 (13)
C9—C8—C21—C160.1 (10)C33—C34—C35—C300.6 (11)
C10—C9—C14—C15179.1 (6)C33—C34—C35—C36179.6 (7)
C14—C9—C10—C110.9 (9)C30—C35—C36—C370.1 (10)
C8—C9—C14—C13176.6 (6)C34—C35—C36—C37179.9 (7)
C10—C9—C14—C130.2 (9)C35—C36—C37—C38178.6 (6)
C8—C9—C10—C11177.4 (6)C35—C36—C37—C422.2 (11)
C8—C9—C14—C152.7 (9)C36—C37—C38—C39179.4 (7)
C9—C10—C11—C122.1 (10)C42—C37—C38—C391.4 (10)
C10—C11—C12—C132.7 (11)C36—C37—C42—C292.5 (10)
C11—C12—C13—C142.0 (11)C36—C37—C42—C41180.0 (6)
C12—C13—C14—C15178.5 (7)C38—C37—C42—C29178.3 (6)
C12—C13—C14—C90.8 (10)C38—C37—C42—C410.8 (9)
C13—C14—C15—C16176.6 (7)C37—C38—C39—C401.6 (11)
C9—C14—C15—C162.6 (10)C38—C39—C40—C411.3 (12)
C14—C15—C16—C17178.0 (7)C39—C40—C41—C420.7 (11)
C14—C15—C16—C211.4 (12)C40—C41—C42—C29177.7 (6)
C17—C16—C21—C200.9 (11)C40—C41—C42—C370.4 (9)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg11 are the centroids of the C8/C9/C14–C16/C21 and C37–C42 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···N20.932.443.039 (8)122
C33—H33···O1i0.932.593.344 (12)138
C41—H41···N40.932.483.044 (8)119
C13—H13···Cg11ii0.932.733.567 (7)150
C38—H38···Cg20.932.793.548 (6)139
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg11 are the centroids of the C8/C9/C14–C16/C21 and C37–C42 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C33—H33···O1i0.932.593.344 (12)138
C13—H13···Cg11ii0.932.733.567 (7)150
C38—H38···Cg20.932.793.548 (6)139
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ and MMC thank the Shiraz University Research Council for financial support (grant No. 93-GR—SC-23).

References

First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183–191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575–1581.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWitkop, B. & Ramachandran, L. K. (1964). Metabolism, 13, 1016–1025.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1045-o1046
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds