organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1069-o1070

Crystal structure of 4-(2,2-di­methyl­propanamido)­pyridin-3-yl N,N-diiso­propyl­di­thio­carbamate

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cCriminal Evidence, Ministry of Interior, Riyadh 11632, PO Box 86985, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.s, kariukib@cardiff.ac.uk

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 20 August 2014; accepted 26 August 2014; online 30 August 2014)

In the title compound, C17H27N3OS2, the amide group is approximately coplanar with the pyridine ring [dihedral angle = 1.6 (1)°], whereas the di­thio­carbamate group is nearly perpendicular to the pyridine ring [dihedral angle = 76.7 (1)°]. In the crystal, pairs of weak C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

1. Related literature

For background to pyridine derivatives, see: Joule & Mills (2000[Joule, J. A. & Mills, K. (2000). Heterocycl. Chem. 4th ed. England: Blackwell Science Publishers.]); Smith et al. (1999[Smith, K., El-Hiti, G. A., Pritchard, G. J. & Hamilton, A. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2299-2303.]). For the synthesis of the title compound, see: Smith et al. (1988[Smith, K., Lindsay, C. M. & Morris, I. K. (1988). Chem. Ind. (London), pp. 302-303.]). For spectroscopic data for this compound, see: Smith et al. (1994[Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197-216.]). For routes to modify the pyridine ring, see: El-Hiti (2003[El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837-841.]); Turner (1983[Turner, J. A. (1983). J. Org. Chem. 48, 3401-3408.]). For crystal structures of related compounds, see: El-Hiti et al. (2014[El-Hiti, G. A., Smith, K., Balakit, A. A., Hegazy, A. S. & Kariuki, B. M. (2014). Acta Cryst. E70, o351-o352.]); Koch et al. (2008[Koch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216.]); Mazik & Sicking (2004[Mazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117-3121.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H27N3OS2

  • Mr = 353.53

  • Triclinic, [P \overline 1]

  • a = 7.9776 (7) Å

  • b = 9.5412 (9) Å

  • c = 13.0541 (14) Å

  • α = 83.099 (8)°

  • β = 83.227 (8)°

  • γ = 84.608 (7)°

  • V = 976.33 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.52 mm−1

  • T = 293 K

  • 0.36 × 0.24 × 0.19 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.662, Tmax = 1.000

  • 6616 measured reflections

  • 3779 independent reflections

  • 3391 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.211

  • S = 1.16

  • 3779 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.54 3.447 (5) 164
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Pyridine derivatives are important compounds (Joule & Mills, 2000) and various substituted derivatives can be synthesized via li­thia­tion and subsequent reaction with electrophiles (Turner, 1983). During research focused on synthesis of novel substituted pyridines (El-Hiti, 2003; Smith et al., 1999) we have synthesized the title compound in high yield. For the X-ray structures for related compounds, see: El-Hiti et al., 2014; Koch et al., 2008; Mazik & Sicking, 2004.

Structural commentary top

In the molecule of the title compound, C17H27N3OS2, (Fig. 1), the pyridine group is almost co-planar (1.6 (1)o) to the amide group whereas the angle to the carbamodi­thio­ate is 76.7 (1)o. No strong hydrogen bonding inter­actions occur, with pairs of molecules being linked by pairs of C—H..O contacts (Fig. 2). The molecular pairs are stacked along [010] leading to a structure in which the t-butyl groups form bilayers parallel to the ab plane.

Synthesis and crystallization top

4-Pivalamido­pyridin-3-yl diiso­propyl­carbamodi­thio­ate was obtained in 93% yield from double li­thia­tion of 4-(pivaloyl­amino)­pyridin-3-yl with n-butyl­lithium at –78 to 0°C in anhydrous THF under nitro­gen followed by reaction with tetra­iso­propyl­thiuram di­sulfide (Smith et al., 1988, 1994). Crystallization from ethyl acetate gave colorless crystals of the title compound. The spectroscopic data of the title compound, including NMR and low and high resolution mass spectra, were consistent with those reported (Smith et al., 1994).

Refinement details top

H atoms were positioned geometrically and refined using a riding model, with Uiso(H) constrained to be 1.2 times Ueq for the bonded atom except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

Related literature top

For background to pyridine derivatives, see: Joule & Mills (2000); Smith et al. (1999). For the synthesis of the title compound, see: Smith et al. (1988). For spectroscopic data for this compound, see: Smith et al. (1994). For routes to modify the pyridine ring, see: El-Hiti (2003); Turner (1983). For crystal structures of related compounds, see: El-Hiti et al. (2014); Koch et al. (2008); Mazik & Sicking (2004).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. The symmetric unit of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing in the crystal structure showing C—H···O contacts as dotted lines with hydrogen atoms omitted for clarity.
4-(2,2-Dimethylpropanamido)pyridin-3-yl N,N-diisopropyldithiocarbamate top
Crystal data top
C17H27N3OS2Z = 2
Mr = 353.53F(000) = 380
Triclinic, P1Dx = 1.203 Mg m3
a = 7.9776 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.5412 (9) ÅCell parameters from 3458 reflections
c = 13.0541 (14) Åθ = 4.7–73.3°
α = 83.099 (8)°µ = 2.52 mm1
β = 83.227 (8)°T = 293 K
γ = 84.608 (7)°Block, colourless
V = 976.33 (17) Å30.36 × 0.24 × 0.19 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3391 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.021
ω scansθmax = 73.5°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 99
Tmin = 0.662, Tmax = 1.000k = 1111
6616 measured reflectionsl = 1116
3779 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.1014P)2 + 0.897P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
3779 reflectionsΔρmax = 0.39 e Å3
215 parametersΔρmin = 0.29 e Å3
Crystal data top
C17H27N3OS2γ = 84.608 (7)°
Mr = 353.53V = 976.33 (17) Å3
Triclinic, P1Z = 2
a = 7.9776 (7) ÅCu Kα radiation
b = 9.5412 (9) ŵ = 2.52 mm1
c = 13.0541 (14) ÅT = 293 K
α = 83.099 (8)°0.36 × 0.24 × 0.19 mm
β = 83.227 (8)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3779 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3391 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 1.000Rint = 0.021
6616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.16Δρmax = 0.39 e Å3
3779 reflectionsΔρmin = 0.29 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0193 (4)0.7422 (4)0.4668 (2)0.0459 (7)
C20.1318 (4)0.6291 (3)0.4352 (2)0.0452 (7)
C30.2680 (5)0.5875 (4)0.4929 (3)0.0537 (8)
H30.34490.51210.47590.064*
C40.2866 (5)0.6596 (5)0.5752 (3)0.0635 (10)
H40.37920.63110.61200.076*
C50.0505 (5)0.8057 (4)0.5520 (3)0.0565 (8)
H50.02530.87980.57270.068*
C60.1194 (4)0.8903 (3)0.2919 (2)0.0419 (6)
C70.2165 (5)1.0250 (5)0.1370 (3)0.0658 (10)
H70.09631.04260.12930.079*
C80.3150 (9)1.1680 (6)0.1370 (5)0.0960 (17)
H8A0.43411.15600.14410.144*
H8B0.28471.22500.07290.144*
H8C0.28891.21410.19390.144*
C90.2421 (9)0.9459 (7)0.0484 (4)0.1004 (18)
H9A0.16240.86410.04670.151*
H9B0.22501.00630.01560.151*
H9C0.35520.91650.05730.151*
C100.4303 (4)0.9068 (4)0.2679 (3)0.0534 (8)
H100.49060.95530.21080.064*
C110.4589 (6)0.7522 (5)0.2694 (4)0.0733 (12)
H11A0.40320.71740.20710.110*
H11B0.57810.74180.27360.110*
H11C0.41350.69900.32850.110*
C120.5115 (5)0.9746 (5)0.3641 (3)0.0704 (11)
H12A0.47140.92200.42500.106*
H12B0.63240.97390.36840.106*
H12C0.48161.07050.35920.106*
C130.2026 (5)0.4709 (4)0.2956 (3)0.0554 (8)
C140.1560 (6)0.4522 (4)0.1882 (3)0.0613 (9)
C150.0198 (8)0.5172 (7)0.1668 (4)0.0987 (18)
H15A0.10280.47670.21830.148*
H15B0.04190.49830.09920.148*
H15C0.02550.61770.16930.148*
C160.2920 (10)0.5217 (8)0.1114 (4)0.113 (2)
H16A0.28060.50050.04270.169*
H16B0.40200.48590.13010.169*
H16C0.27850.62250.11340.169*
C170.1623 (8)0.2942 (5)0.1788 (4)0.0875 (15)
H17A0.07840.25200.22890.131*
H17B0.27250.25070.19140.131*
H17C0.13990.28030.11020.131*
N10.1823 (5)0.7673 (4)0.6064 (3)0.0678 (9)
N20.1026 (4)0.5683 (3)0.3481 (2)0.0523 (7)
H20.00790.59610.32390.063*
N30.2495 (3)0.9371 (3)0.2384 (2)0.0467 (6)
O20.3244 (5)0.4055 (4)0.3306 (3)0.0946 (12)
S10.17473 (10)0.79230 (10)0.41574 (6)0.0518 (3)
S20.08414 (10)0.91374 (10)0.25296 (7)0.0535 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (16)0.0523 (17)0.0417 (15)0.0037 (13)0.0063 (12)0.0018 (13)
C20.0450 (17)0.0487 (17)0.0425 (15)0.0054 (13)0.0070 (13)0.0038 (12)
C30.0479 (19)0.061 (2)0.0522 (18)0.0012 (15)0.0112 (15)0.0045 (15)
C40.055 (2)0.083 (3)0.055 (2)0.0003 (19)0.0214 (17)0.0078 (18)
C50.058 (2)0.064 (2)0.0489 (18)0.0016 (16)0.0091 (15)0.0113 (15)
C60.0387 (15)0.0442 (15)0.0439 (15)0.0038 (12)0.0051 (12)0.0079 (12)
C70.053 (2)0.087 (3)0.055 (2)0.0067 (19)0.0119 (16)0.0123 (19)
C80.117 (5)0.075 (3)0.093 (4)0.006 (3)0.029 (3)0.017 (3)
C90.125 (5)0.124 (5)0.048 (2)0.006 (4)0.005 (3)0.007 (3)
C100.0340 (16)0.072 (2)0.0564 (19)0.0040 (15)0.0084 (14)0.0128 (16)
C110.054 (2)0.082 (3)0.090 (3)0.021 (2)0.011 (2)0.019 (2)
C120.046 (2)0.097 (3)0.070 (2)0.007 (2)0.0047 (17)0.025 (2)
C130.056 (2)0.0511 (18)0.061 (2)0.0001 (15)0.0111 (16)0.0131 (15)
C140.072 (2)0.059 (2)0.055 (2)0.0088 (18)0.0056 (18)0.0155 (16)
C150.111 (4)0.120 (4)0.076 (3)0.014 (3)0.046 (3)0.040 (3)
C160.142 (6)0.136 (5)0.066 (3)0.069 (5)0.002 (3)0.005 (3)
C170.111 (4)0.071 (3)0.087 (3)0.011 (3)0.009 (3)0.033 (2)
N10.068 (2)0.084 (2)0.0559 (18)0.0008 (18)0.0189 (16)0.0206 (16)
N20.0496 (16)0.0579 (16)0.0520 (15)0.0043 (13)0.0158 (12)0.0134 (13)
N30.0377 (13)0.0586 (16)0.0447 (14)0.0029 (11)0.0089 (11)0.0055 (11)
O20.090 (2)0.098 (2)0.102 (2)0.042 (2)0.041 (2)0.045 (2)
S10.0388 (4)0.0662 (5)0.0473 (5)0.0015 (3)0.0035 (3)0.0026 (4)
S20.0376 (4)0.0614 (5)0.0600 (5)0.0087 (3)0.0049 (3)0.0029 (4)
Geometric parameters (Å, º) top
C1—C51.386 (5)C10—C111.511 (6)
C1—C21.406 (5)C10—C121.530 (5)
C1—S11.760 (3)C10—H100.9800
C2—N21.390 (4)C11—H11A0.9600
C2—C31.395 (5)C11—H11B0.9600
C3—C41.373 (5)C11—H11C0.9600
C3—H30.9300C12—H12A0.9600
C4—N11.332 (5)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—N11.336 (5)C13—O21.210 (5)
C5—H50.9300C13—N21.361 (5)
C6—N31.331 (4)C13—C141.527 (5)
C6—S21.671 (3)C14—C151.522 (7)
C6—S11.797 (3)C14—C171.523 (6)
C7—N31.489 (5)C14—C161.530 (7)
C7—C91.498 (7)C15—H15A0.9600
C7—C81.509 (7)C15—H15B0.9600
C7—H70.9800C15—H15C0.9600
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
C9—H9A0.9600C17—H17A0.9600
C9—H9B0.9600C17—H17B0.9600
C9—H9C0.9600C17—H17C0.9600
C10—N31.494 (4)N2—H20.8600
C5—C1—C2118.5 (3)C10—C11—H11C109.5
C5—C1—S1117.4 (3)H11A—C11—H11C109.5
C2—C1—S1123.5 (2)H11B—C11—H11C109.5
N2—C2—C3124.4 (3)C10—C12—H12A109.5
N2—C2—C1118.3 (3)C10—C12—H12B109.5
C3—C2—C1117.3 (3)H12A—C12—H12B109.5
C4—C3—C2118.8 (3)C10—C12—H12C109.5
C4—C3—H3120.6H12A—C12—H12C109.5
C2—C3—H3120.6H12B—C12—H12C109.5
N1—C4—C3125.0 (3)O2—C13—N2122.1 (4)
N1—C4—H4117.5O2—C13—C14121.6 (4)
C3—C4—H4117.5N2—C13—C14116.2 (3)
N1—C5—C1124.3 (4)C15—C14—C17107.8 (4)
N1—C5—H5117.9C15—C14—C13114.1 (3)
C1—C5—H5117.9C17—C14—C13108.3 (4)
N3—C6—S2125.8 (2)C15—C14—C16110.6 (5)
N3—C6—S1115.0 (2)C17—C14—C16110.7 (4)
S2—C6—S1119.17 (18)C13—C14—C16105.3 (4)
N3—C7—C9111.2 (4)C14—C15—H15A109.5
N3—C7—C8111.3 (4)C14—C15—H15B109.5
C9—C7—C8114.1 (4)H15A—C15—H15B109.5
N3—C7—H7106.6C14—C15—H15C109.5
C9—C7—H7106.6H15A—C15—H15C109.5
C8—C7—H7106.6H15B—C15—H15C109.5
C7—C8—H8A109.5C14—C16—H16A109.5
C7—C8—H8B109.5C14—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
C7—C8—H8C109.5C14—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
C7—C9—H9A109.5C14—C17—H17A109.5
C7—C9—H9B109.5C14—C17—H17B109.5
H9A—C9—H9B109.5H17A—C17—H17B109.5
C7—C9—H9C109.5C14—C17—H17C109.5
H9A—C9—H9C109.5H17A—C17—H17C109.5
H9B—C9—H9C109.5H17B—C17—H17C109.5
N3—C10—C11113.1 (3)C4—N1—C5116.0 (3)
N3—C10—C12113.3 (3)C13—N2—C2129.2 (3)
C11—C10—C12114.6 (4)C13—N2—H2115.4
N3—C10—H10104.9C2—N2—H2115.4
C11—C10—H10104.9C6—N3—C7118.8 (3)
C12—C10—H10104.9C6—N3—C10126.5 (3)
C10—C11—H11A109.5C7—N3—C10114.7 (3)
C10—C11—H11B109.5C1—S1—C6104.98 (15)
H11A—C11—H11B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.543.447 (5)164
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.543.447 (5)164
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationEl-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841.  CAS Google Scholar
First citationEl-Hiti, G. A., Smith, K., Balakit, A. A., Hegazy, A. S. & Kariuki, B. M. (2014). Acta Cryst. E70, o351–o352.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoule, J. A. & Mills, K. (2000). Heterocycl. Chem. 4th ed. England: Blackwell Science Publishers.  Google Scholar
First citationKoch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117–3121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A., Pritchard, G. J. & Hamilton, A. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2299–2303.  Web of Science CrossRef Google Scholar
First citationSmith, K., Lindsay, C. M. & Morris, I. K. (1988). Chem. Ind. (London), pp. 302–303.  Google Scholar
First citationSmith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216.  CAS Google Scholar
First citationTurner, J. A. (1983). J. Org. Chem. 48, 3401–3408.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1069-o1070
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds