organic compounds
N,N-diisopropyldithiocarbamate
of 4-(2,2-dimethylpropanamido)pyridin-3-ylaCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cCriminal Evidence, Ministry of Interior, Riyadh 11632, PO Box 86985, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.s, kariukib@cardiff.ac.uk
In the title compound, C17H27N3OS2, the amide group is approximately coplanar with the pyridine ring [dihedral angle = 1.6 (1)°], whereas the dithiocarbamate group is nearly perpendicular to the pyridine ring [dihedral angle = 76.7 (1)°]. In the crystal, pairs of weak C—H⋯O hydrogen bonds link the molecules into inversion dimers.
CCDC reference: 1021242
1. Related literature
For background to pyridine derivatives, see: Joule & Mills (2000); Smith et al. (1999). For the synthesis of the title compound, see: Smith et al. (1988). For spectroscopic data for this compound, see: Smith et al. (1994). For routes to modify the pyridine ring, see: El-Hiti (2003); Turner (1983). For crystal structures of related compounds, see: El-Hiti et al. (2014); Koch et al. (2008); Mazik & Sicking (2004).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1021242
10.1107/S1600536814019321/xu5816sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814019321/xu5816Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814019321/xu5816Isup3.cml
Pyridine derivatives are important compounds (Joule & Mills, 2000) and various substituted derivatives can be synthesized via lithiation and subsequent reaction with electrophiles (Turner, 1983). During research focused on synthesis of novel substituted pyridines (El-Hiti, 2003; Smith et al., 1999) we have synthesized the title compound in high yield. For the X-ray structures for related compounds, see: El-Hiti et al., 2014; Koch et al., 2008; Mazik & Sicking, 2004.
In the molecule of the title compound, C17H27N3OS2, (Fig. 1), the pyridine group is almost co-planar (1.6 (1)o) to the amide group whereas the angle to the carbamodithioate is 76.7 (1)o. No strong hydrogen bonding interactions occur, with pairs of molecules being linked by pairs of C—H..O contacts (Fig. 2). The molecular pairs are stacked along [010] leading to a structure in which the t-butyl groups form bilayers parallel to the ab plane.
4-Pivalamidopyridin-3-yl diisopropylcarbamodithioate was obtained in 93% yield from double lithiation of 4-(pivaloylamino)pyridin-3-yl with n-butyllithium at –78 to 0°C in anhydrous THF under nitrogen followed by reaction with tetraisopropylthiuram disulfide (Smith et al., 1988, 1994). Crystallization from ethyl acetate gave colorless crystals of the title compound. The spectroscopic data of the title compound, including NMR and low and high resolution mass spectra, were consistent with those reported (Smith et al., 1994).
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).C17H27N3OS2 | Z = 2 |
Mr = 353.53 | F(000) = 380 |
Triclinic, P1 | Dx = 1.203 Mg m−3 |
a = 7.9776 (7) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.5412 (9) Å | Cell parameters from 3458 reflections |
c = 13.0541 (14) Å | θ = 4.7–73.3° |
α = 83.099 (8)° | µ = 2.52 mm−1 |
β = 83.227 (8)° | T = 293 K |
γ = 84.608 (7)° | Block, colourless |
V = 976.33 (17) Å3 | 0.36 × 0.24 × 0.19 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 3391 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube | Rint = 0.021 |
ω scans | θmax = 73.5°, θmin = 4.7° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −9→9 |
Tmin = 0.662, Tmax = 1.000 | k = −11→11 |
6616 measured reflections | l = −11→16 |
3779 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.211 | w = 1/[σ2(Fo2) + (0.1014P)2 + 0.897P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
3779 reflections | Δρmax = 0.39 e Å−3 |
215 parameters | Δρmin = −0.29 e Å−3 |
C17H27N3OS2 | γ = 84.608 (7)° |
Mr = 353.53 | V = 976.33 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9776 (7) Å | Cu Kα radiation |
b = 9.5412 (9) Å | µ = 2.52 mm−1 |
c = 13.0541 (14) Å | T = 293 K |
α = 83.099 (8)° | 0.36 × 0.24 × 0.19 mm |
β = 83.227 (8)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 3779 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 3391 reflections with I > 2σ(I) |
Tmin = 0.662, Tmax = 1.000 | Rint = 0.021 |
6616 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.211 | H-atom parameters constrained |
S = 1.16 | Δρmax = 0.39 e Å−3 |
3779 reflections | Δρmin = −0.29 e Å−3 |
215 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0193 (4) | 0.7422 (4) | 0.4668 (2) | 0.0459 (7) | |
C2 | 0.1318 (4) | 0.6291 (3) | 0.4352 (2) | 0.0452 (7) | |
C3 | 0.2680 (5) | 0.5875 (4) | 0.4929 (3) | 0.0537 (8) | |
H3 | 0.3449 | 0.5121 | 0.4759 | 0.064* | |
C4 | 0.2866 (5) | 0.6596 (5) | 0.5752 (3) | 0.0635 (10) | |
H4 | 0.3792 | 0.6311 | 0.6120 | 0.076* | |
C5 | 0.0505 (5) | 0.8057 (4) | 0.5520 (3) | 0.0565 (8) | |
H5 | −0.0253 | 0.8798 | 0.5727 | 0.068* | |
C6 | −0.1194 (4) | 0.8903 (3) | 0.2919 (2) | 0.0419 (6) | |
C7 | −0.2165 (5) | 1.0250 (5) | 0.1370 (3) | 0.0658 (10) | |
H7 | −0.0963 | 1.0426 | 0.1293 | 0.079* | |
C8 | −0.3150 (9) | 1.1680 (6) | 0.1370 (5) | 0.0960 (17) | |
H8A | −0.4341 | 1.1560 | 0.1441 | 0.144* | |
H8B | −0.2847 | 1.2250 | 0.0729 | 0.144* | |
H8C | −0.2889 | 1.2141 | 0.1939 | 0.144* | |
C9 | −0.2421 (9) | 0.9459 (7) | 0.0484 (4) | 0.1004 (18) | |
H9A | −0.1624 | 0.8641 | 0.0467 | 0.151* | |
H9B | −0.2250 | 1.0063 | −0.0156 | 0.151* | |
H9C | −0.3552 | 0.9165 | 0.0573 | 0.151* | |
C10 | −0.4303 (4) | 0.9068 (4) | 0.2679 (3) | 0.0534 (8) | |
H10 | −0.4906 | 0.9553 | 0.2108 | 0.064* | |
C11 | −0.4589 (6) | 0.7522 (5) | 0.2694 (4) | 0.0733 (12) | |
H11A | −0.4032 | 0.7174 | 0.2071 | 0.110* | |
H11B | −0.5781 | 0.7418 | 0.2736 | 0.110* | |
H11C | −0.4135 | 0.6990 | 0.3285 | 0.110* | |
C12 | −0.5115 (5) | 0.9746 (5) | 0.3641 (3) | 0.0704 (11) | |
H12A | −0.4714 | 0.9220 | 0.4250 | 0.106* | |
H12B | −0.6324 | 0.9739 | 0.3684 | 0.106* | |
H12C | −0.4816 | 1.0705 | 0.3592 | 0.106* | |
C13 | 0.2026 (5) | 0.4709 (4) | 0.2956 (3) | 0.0554 (8) | |
C14 | 0.1560 (6) | 0.4522 (4) | 0.1882 (3) | 0.0613 (9) | |
C15 | −0.0198 (8) | 0.5172 (7) | 0.1668 (4) | 0.0987 (18) | |
H15A | −0.1028 | 0.4767 | 0.2183 | 0.148* | |
H15B | −0.0419 | 0.4983 | 0.0992 | 0.148* | |
H15C | −0.0255 | 0.6177 | 0.1693 | 0.148* | |
C16 | 0.2920 (10) | 0.5217 (8) | 0.1114 (4) | 0.113 (2) | |
H16A | 0.2806 | 0.5005 | 0.0427 | 0.169* | |
H16B | 0.4020 | 0.4859 | 0.1301 | 0.169* | |
H16C | 0.2785 | 0.6225 | 0.1134 | 0.169* | |
C17 | 0.1623 (8) | 0.2942 (5) | 0.1788 (4) | 0.0875 (15) | |
H17A | 0.0784 | 0.2520 | 0.2289 | 0.131* | |
H17B | 0.2725 | 0.2507 | 0.1914 | 0.131* | |
H17C | 0.1399 | 0.2803 | 0.1102 | 0.131* | |
N1 | 0.1823 (5) | 0.7673 (4) | 0.6064 (3) | 0.0678 (9) | |
N2 | 0.1026 (4) | 0.5683 (3) | 0.3481 (2) | 0.0523 (7) | |
H2 | 0.0079 | 0.5961 | 0.3239 | 0.063* | |
N3 | −0.2495 (3) | 0.9371 (3) | 0.2384 (2) | 0.0467 (6) | |
O2 | 0.3244 (5) | 0.4055 (4) | 0.3306 (3) | 0.0946 (12) | |
S1 | −0.17473 (10) | 0.79230 (10) | 0.41574 (6) | 0.0518 (3) | |
S2 | 0.08414 (10) | 0.91374 (10) | 0.25296 (7) | 0.0535 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0432 (16) | 0.0523 (17) | 0.0417 (15) | −0.0037 (13) | −0.0063 (12) | −0.0018 (13) |
C2 | 0.0450 (17) | 0.0487 (17) | 0.0425 (15) | −0.0054 (13) | −0.0070 (13) | −0.0038 (12) |
C3 | 0.0479 (19) | 0.061 (2) | 0.0522 (18) | 0.0012 (15) | −0.0112 (15) | −0.0045 (15) |
C4 | 0.055 (2) | 0.083 (3) | 0.055 (2) | −0.0003 (19) | −0.0214 (17) | −0.0078 (18) |
C5 | 0.058 (2) | 0.064 (2) | 0.0489 (18) | 0.0016 (16) | −0.0091 (15) | −0.0113 (15) |
C6 | 0.0387 (15) | 0.0442 (15) | 0.0439 (15) | −0.0038 (12) | −0.0051 (12) | −0.0079 (12) |
C7 | 0.053 (2) | 0.087 (3) | 0.055 (2) | −0.0067 (19) | −0.0119 (16) | 0.0123 (19) |
C8 | 0.117 (5) | 0.075 (3) | 0.093 (4) | −0.006 (3) | −0.029 (3) | 0.017 (3) |
C9 | 0.125 (5) | 0.124 (5) | 0.048 (2) | 0.006 (4) | −0.005 (3) | −0.007 (3) |
C10 | 0.0340 (16) | 0.072 (2) | 0.0564 (19) | −0.0040 (15) | −0.0084 (14) | −0.0128 (16) |
C11 | 0.054 (2) | 0.082 (3) | 0.090 (3) | −0.021 (2) | −0.011 (2) | −0.019 (2) |
C12 | 0.046 (2) | 0.097 (3) | 0.070 (2) | 0.007 (2) | −0.0047 (17) | −0.025 (2) |
C13 | 0.056 (2) | 0.0511 (18) | 0.061 (2) | 0.0001 (15) | −0.0111 (16) | −0.0131 (15) |
C14 | 0.072 (2) | 0.059 (2) | 0.055 (2) | −0.0088 (18) | −0.0056 (18) | −0.0155 (16) |
C15 | 0.111 (4) | 0.120 (4) | 0.076 (3) | 0.014 (3) | −0.046 (3) | −0.040 (3) |
C16 | 0.142 (6) | 0.136 (5) | 0.066 (3) | −0.069 (5) | 0.002 (3) | −0.005 (3) |
C17 | 0.111 (4) | 0.071 (3) | 0.087 (3) | −0.011 (3) | −0.009 (3) | −0.033 (2) |
N1 | 0.068 (2) | 0.084 (2) | 0.0559 (18) | −0.0008 (18) | −0.0189 (16) | −0.0206 (16) |
N2 | 0.0496 (16) | 0.0579 (16) | 0.0520 (15) | 0.0043 (13) | −0.0158 (12) | −0.0134 (13) |
N3 | 0.0377 (13) | 0.0586 (16) | 0.0447 (14) | −0.0029 (11) | −0.0089 (11) | −0.0055 (11) |
O2 | 0.090 (2) | 0.098 (2) | 0.102 (2) | 0.042 (2) | −0.041 (2) | −0.045 (2) |
S1 | 0.0388 (4) | 0.0662 (5) | 0.0473 (5) | −0.0015 (3) | −0.0035 (3) | 0.0026 (4) |
S2 | 0.0376 (4) | 0.0614 (5) | 0.0600 (5) | −0.0087 (3) | −0.0049 (3) | 0.0029 (4) |
C1—C5 | 1.386 (5) | C10—C11 | 1.511 (6) |
C1—C2 | 1.406 (5) | C10—C12 | 1.530 (5) |
C1—S1 | 1.760 (3) | C10—H10 | 0.9800 |
C2—N2 | 1.390 (4) | C11—H11A | 0.9600 |
C2—C3 | 1.395 (5) | C11—H11B | 0.9600 |
C3—C4 | 1.373 (5) | C11—H11C | 0.9600 |
C3—H3 | 0.9300 | C12—H12A | 0.9600 |
C4—N1 | 1.332 (5) | C12—H12B | 0.9600 |
C4—H4 | 0.9300 | C12—H12C | 0.9600 |
C5—N1 | 1.336 (5) | C13—O2 | 1.210 (5) |
C5—H5 | 0.9300 | C13—N2 | 1.361 (5) |
C6—N3 | 1.331 (4) | C13—C14 | 1.527 (5) |
C6—S2 | 1.671 (3) | C14—C15 | 1.522 (7) |
C6—S1 | 1.797 (3) | C14—C17 | 1.523 (6) |
C7—N3 | 1.489 (5) | C14—C16 | 1.530 (7) |
C7—C9 | 1.498 (7) | C15—H15A | 0.9600 |
C7—C8 | 1.509 (7) | C15—H15B | 0.9600 |
C7—H7 | 0.9800 | C15—H15C | 0.9600 |
C8—H8A | 0.9600 | C16—H16A | 0.9600 |
C8—H8B | 0.9600 | C16—H16B | 0.9600 |
C8—H8C | 0.9600 | C16—H16C | 0.9600 |
C9—H9A | 0.9600 | C17—H17A | 0.9600 |
C9—H9B | 0.9600 | C17—H17B | 0.9600 |
C9—H9C | 0.9600 | C17—H17C | 0.9600 |
C10—N3 | 1.494 (4) | N2—H2 | 0.8600 |
C5—C1—C2 | 118.5 (3) | C10—C11—H11C | 109.5 |
C5—C1—S1 | 117.4 (3) | H11A—C11—H11C | 109.5 |
C2—C1—S1 | 123.5 (2) | H11B—C11—H11C | 109.5 |
N2—C2—C3 | 124.4 (3) | C10—C12—H12A | 109.5 |
N2—C2—C1 | 118.3 (3) | C10—C12—H12B | 109.5 |
C3—C2—C1 | 117.3 (3) | H12A—C12—H12B | 109.5 |
C4—C3—C2 | 118.8 (3) | C10—C12—H12C | 109.5 |
C4—C3—H3 | 120.6 | H12A—C12—H12C | 109.5 |
C2—C3—H3 | 120.6 | H12B—C12—H12C | 109.5 |
N1—C4—C3 | 125.0 (3) | O2—C13—N2 | 122.1 (4) |
N1—C4—H4 | 117.5 | O2—C13—C14 | 121.6 (4) |
C3—C4—H4 | 117.5 | N2—C13—C14 | 116.2 (3) |
N1—C5—C1 | 124.3 (4) | C15—C14—C17 | 107.8 (4) |
N1—C5—H5 | 117.9 | C15—C14—C13 | 114.1 (3) |
C1—C5—H5 | 117.9 | C17—C14—C13 | 108.3 (4) |
N3—C6—S2 | 125.8 (2) | C15—C14—C16 | 110.6 (5) |
N3—C6—S1 | 115.0 (2) | C17—C14—C16 | 110.7 (4) |
S2—C6—S1 | 119.17 (18) | C13—C14—C16 | 105.3 (4) |
N3—C7—C9 | 111.2 (4) | C14—C15—H15A | 109.5 |
N3—C7—C8 | 111.3 (4) | C14—C15—H15B | 109.5 |
C9—C7—C8 | 114.1 (4) | H15A—C15—H15B | 109.5 |
N3—C7—H7 | 106.6 | C14—C15—H15C | 109.5 |
C9—C7—H7 | 106.6 | H15A—C15—H15C | 109.5 |
C8—C7—H7 | 106.6 | H15B—C15—H15C | 109.5 |
C7—C8—H8A | 109.5 | C14—C16—H16A | 109.5 |
C7—C8—H8B | 109.5 | C14—C16—H16B | 109.5 |
H8A—C8—H8B | 109.5 | H16A—C16—H16B | 109.5 |
C7—C8—H8C | 109.5 | C14—C16—H16C | 109.5 |
H8A—C8—H8C | 109.5 | H16A—C16—H16C | 109.5 |
H8B—C8—H8C | 109.5 | H16B—C16—H16C | 109.5 |
C7—C9—H9A | 109.5 | C14—C17—H17A | 109.5 |
C7—C9—H9B | 109.5 | C14—C17—H17B | 109.5 |
H9A—C9—H9B | 109.5 | H17A—C17—H17B | 109.5 |
C7—C9—H9C | 109.5 | C14—C17—H17C | 109.5 |
H9A—C9—H9C | 109.5 | H17A—C17—H17C | 109.5 |
H9B—C9—H9C | 109.5 | H17B—C17—H17C | 109.5 |
N3—C10—C11 | 113.1 (3) | C4—N1—C5 | 116.0 (3) |
N3—C10—C12 | 113.3 (3) | C13—N2—C2 | 129.2 (3) |
C11—C10—C12 | 114.6 (4) | C13—N2—H2 | 115.4 |
N3—C10—H10 | 104.9 | C2—N2—H2 | 115.4 |
C11—C10—H10 | 104.9 | C6—N3—C7 | 118.8 (3) |
C12—C10—H10 | 104.9 | C6—N3—C10 | 126.5 (3) |
C10—C11—H11A | 109.5 | C7—N3—C10 | 114.7 (3) |
C10—C11—H11B | 109.5 | C1—S1—C6 | 104.98 (15) |
H11A—C11—H11B | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.54 | 3.447 (5) | 164 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.54 | 3.447 (5) | 164 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors would like to extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841. CAS Google Scholar
El-Hiti, G. A., Smith, K., Balakit, A. A., Hegazy, A. S. & Kariuki, B. M. (2014). Acta Cryst. E70, o351–o352. CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Joule, J. A. & Mills, K. (2000). Heterocycl. Chem. 4th ed. England: Blackwell Science Publishers. Google Scholar
Koch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117–3121. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, K., El-Hiti, G. A., Pritchard, G. J. & Hamilton, A. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2299–2303. Web of Science CrossRef Google Scholar
Smith, K., Lindsay, C. M. & Morris, I. K. (1988). Chem. Ind. (London), pp. 302–303. Google Scholar
Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216. CAS Google Scholar
Turner, J. A. (1983). J. Org. Chem. 48, 3401–3408. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.