organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o991-o992

Crystal structure of 5-chloro-2-(3-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by O. Blacque, University of Zürich, Switzerland (Received 24 July 2014; accepted 5 August 2014; online 9 August 2014)

In the title compound, C15H10ClFO2S, the dihedral angle between the plane of the benzo­furan ring system [r.m.s. deviation = 0.013 (1) Å] and that of the 3-fluoro­phenyl ring [r.m.s. deviation = 0.005 (1) Å] is 31.36 (5)°. In the crystal, mol­ecules are linked by two different pairs of C—H⋯O hydrogen bonds, forming inversion dimers.

1. Related literature

For the pharmaceutical properties of compounds containing the benzo­furan moiety, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Choi et al. (2003[Choi, H. D., Seo, P. J., Son, B. W. & Kang, B. W. (2003). Arch. Pharm. Res. 26, 985-989.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]); Ono et al. (2002[Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633-642.]). For natural products with a benzo­furan ring, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the synthesis of the starting material 5-chloro-2-(3-fluoro­phen­yl)-3-methyl­sulf­an­yl-1-benzo­furan, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]). For a related structure, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2649.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H10ClFO2S

  • Mr = 308.74

  • Triclinic, [P \overline 1]

  • a = 8.0038 (1) Å

  • b = 8.4322 (1) Å

  • c = 10.6782 (2) Å

  • α = 88.933 (1)°

  • β = 81.008 (1)°

  • γ = 66.859 (1)°

  • V = 653.81 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 173 K

  • 0.47 × 0.34 × 0.33 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.863

  • 11737 measured reflections

  • 3124 independent reflections

  • 2887 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.07

  • 3124 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2i 0.95 2.57 3.3470 (18) 139
C14—H14⋯O2ii 0.95 2.59 3.4884 (17) 157
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, a number of benzofuran compounds have drawn much attention owing to their interesting pharmaceutical properties such as antibacterial and antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al. 2009; Galal et al., 2009; Khan et al., 2005), and potential inhibitors of β-amyloid formation (Choi et al., 2003, Ono et al., 2002). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing project of 2-aryl-5-chloro-3-methylsulfinyl-1-benzofuran derivatives containing 4-fluorophenyl substituent in 2-position (Choi et al., 2009), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The 3-fluorophenyl ring is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 3-fluorophenyl ring is 31.36 (5)°. In the crystal structure (Fig. 2), molecules are linked by two different pairs of C—H···O hydrogen bonds (Table 1), forming inversion dimers.

Related literature top

For the pharmaceutical properties of compounds containing a benzofuran unit, see: Aslam et al. (2009); Choi et al. (2003); Galal et al. (2009); Khan et al. (2005); Ono et al. (2002). For natural products with a benzofuran ring, see: Akgul & Anil (2003); Soekamto et al. (2003). For the synthesis of the starting material 5-chloro-2-(3-fluorophenyl)-3-methylsulfanyl-1-benzofuran, see: Choi et al. (1999). For a related structure, see: Choi et al. (2009).

Experimental top

The starting material 5-chloro-2-(3-fluorophenyl)-3-methylsulfanyl-1-benzofuran was prepared by literature method (Choi et al. 1999). 3-Chloroperoxybenzoic acid (77%, 269 mg, 1.2 mmol) was added in small portions to a stirred solution of the starting material (322 mg, 1.1 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 6h, the mixture was washed with saturated sodium bicarbonate solution (2 X 20 mL) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 73% (248 mg); m.p. 483–484 K; Rf = 0.48 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (120 mg) in acetone (20 mL) at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms.The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity [symmetry codes: (i) - x, - y + 1, - z + 1; (ii) - x + 1, - y, - z + 1].
5-Chloro-2-(3-fluorophenyl)-3-methylsulfinyl-1- benzofuran top
Crystal data top
C15H10ClFO2SZ = 2
Mr = 308.74F(000) = 316
Triclinic, P1Dx = 1.568 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0038 (1) ÅCell parameters from 6836 reflections
b = 8.4322 (1) Åθ = 2.6–28.5°
c = 10.6782 (2) ŵ = 0.46 mm1
α = 88.933 (1)°T = 173 K
β = 81.008 (1)°Block, colourless
γ = 66.859 (1)°0.47 × 0.34 × 0.33 mm
V = 653.81 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3124 independent reflections
Radiation source: rotating anode2887 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.022
Detector resolution: 10.0 pixels mm-1θmax = 28.0°, θmin = 1.9°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.813, Tmax = 0.863l = 1413
11737 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.086H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.2424P]
where P = (Fo2 + 2Fc2)/3
3124 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C15H10ClFO2Sγ = 66.859 (1)°
Mr = 308.74V = 653.81 (2) Å3
Triclinic, P1Z = 2
a = 8.0038 (1) ÅMo Kα radiation
b = 8.4322 (1) ŵ = 0.46 mm1
c = 10.6782 (2) ÅT = 173 K
α = 88.933 (1)°0.47 × 0.34 × 0.33 mm
β = 81.008 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3124 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2887 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.863Rint = 0.022
11737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
3124 reflectionsΔρmin = 0.44 e Å3
182 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 8.23 (d, J = 2.04 Hz, 1H), 7.62 (d, J = 7.88 Hz, 1H), 7.54-7.58 (m, 1H), 7.45-7.52 (m, 2H), 7.38 (dd, J = 8.88 and 2.04 Hz, 1H), 7.16-7.22 (m, 1H), 3.11 (s, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.82187 (5)0.13963 (5)0.02027 (3)0.03515 (11)
S10.21038 (4)0.30346 (4)0.39543 (3)0.02300 (10)
F10.53226 (14)0.29209 (13)0.95736 (8)0.0395 (2)
O10.70635 (13)0.13881 (12)0.49383 (9)0.0234 (2)
O20.17787 (15)0.16956 (13)0.32625 (11)0.0325 (2)
C10.44633 (17)0.21871 (16)0.40865 (12)0.0210 (3)
C20.59652 (17)0.10631 (16)0.31628 (12)0.0210 (3)
C30.61509 (18)0.04393 (17)0.19238 (13)0.0231 (3)
H30.51200.07190.14990.028*
C40.79058 (19)0.06027 (18)0.13484 (13)0.0252 (3)
C50.94567 (19)0.10505 (18)0.19490 (14)0.0275 (3)
H51.06350.17750.15100.033*
C60.92781 (19)0.04413 (18)0.31773 (14)0.0265 (3)
H61.03080.07280.36050.032*
C70.75209 (18)0.06058 (16)0.37470 (13)0.0221 (3)
C80.51944 (17)0.23358 (16)0.51261 (13)0.0214 (3)
C90.44315 (18)0.32961 (17)0.63441 (12)0.0216 (3)
C100.29269 (19)0.48798 (18)0.64645 (13)0.0256 (3)
H100.23830.53490.57400.031*
C110.2218 (2)0.57761 (18)0.76298 (14)0.0281 (3)
H110.11820.68460.77030.034*
C120.3016 (2)0.51149 (19)0.86908 (14)0.0296 (3)
H120.25420.57170.94950.036*
C130.4517 (2)0.35607 (19)0.85427 (13)0.0270 (3)
C140.52576 (18)0.26207 (17)0.74107 (13)0.0235 (3)
H140.62930.15510.73500.028*
C150.2148 (2)0.4624 (2)0.28245 (17)0.0365 (4)
H15A0.30530.40620.20700.055*
H15B0.24880.54810.32050.055*
H15C0.09270.51990.25810.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0340 (2)0.0413 (2)0.02564 (19)0.01237 (16)0.00258 (14)0.00911 (14)
S10.01657 (16)0.02380 (17)0.02762 (18)0.00635 (12)0.00525 (12)0.00218 (12)
F10.0448 (6)0.0467 (5)0.0251 (4)0.0123 (4)0.0156 (4)0.0027 (4)
O10.0190 (4)0.0254 (5)0.0236 (5)0.0056 (4)0.0057 (4)0.0006 (4)
O20.0296 (5)0.0282 (5)0.0451 (6)0.0133 (4)0.0166 (5)0.0030 (4)
C10.0169 (6)0.0214 (6)0.0233 (6)0.0058 (5)0.0038 (5)0.0009 (5)
C20.0181 (6)0.0204 (6)0.0238 (6)0.0069 (5)0.0034 (5)0.0025 (5)
C30.0220 (6)0.0244 (6)0.0232 (6)0.0091 (5)0.0048 (5)0.0016 (5)
C40.0268 (7)0.0245 (6)0.0236 (6)0.0104 (5)0.0008 (5)0.0017 (5)
C50.0206 (6)0.0255 (6)0.0316 (7)0.0058 (5)0.0007 (5)0.0016 (5)
C60.0189 (6)0.0257 (6)0.0326 (7)0.0058 (5)0.0057 (5)0.0008 (5)
C70.0213 (6)0.0213 (6)0.0233 (6)0.0077 (5)0.0045 (5)0.0009 (5)
C80.0178 (6)0.0201 (6)0.0248 (6)0.0058 (5)0.0039 (5)0.0021 (5)
C90.0205 (6)0.0231 (6)0.0226 (6)0.0099 (5)0.0044 (5)0.0005 (5)
C100.0248 (7)0.0250 (6)0.0265 (7)0.0082 (5)0.0067 (5)0.0018 (5)
C110.0252 (7)0.0249 (6)0.0306 (7)0.0065 (5)0.0026 (5)0.0036 (5)
C120.0303 (7)0.0326 (7)0.0259 (7)0.0132 (6)0.0019 (6)0.0052 (5)
C130.0296 (7)0.0330 (7)0.0231 (7)0.0155 (6)0.0095 (5)0.0040 (5)
C140.0214 (6)0.0246 (6)0.0258 (7)0.0096 (5)0.0055 (5)0.0017 (5)
C150.0326 (8)0.0312 (7)0.0499 (10)0.0138 (6)0.0176 (7)0.0173 (7)
Geometric parameters (Å, º) top
Cl1—C41.7418 (14)C6—C71.3800 (19)
S1—O21.4866 (11)C6—H60.9500
S1—C11.7652 (13)C8—C91.4568 (18)
S1—C151.7937 (15)C9—C101.3943 (18)
F1—C131.3584 (16)C9—C141.4049 (18)
O1—C71.3724 (16)C10—C111.385 (2)
O1—C81.3745 (15)C10—H100.9500
C1—C81.3625 (18)C11—C121.388 (2)
C1—C21.4439 (17)C11—H110.9500
C2—C71.3945 (18)C12—C131.377 (2)
C2—C31.3972 (18)C12—H120.9500
C3—C41.3794 (19)C13—C141.372 (2)
C3—H30.9500C14—H140.9500
C4—C51.402 (2)C15—H15A0.9800
C5—C61.383 (2)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
O2—S1—C1107.08 (6)C1—C8—C9133.92 (12)
O2—S1—C15105.95 (7)O1—C8—C9115.20 (11)
C1—S1—C1597.48 (7)C10—C9—C14119.61 (12)
C7—O1—C8106.62 (10)C10—C9—C8121.37 (12)
C8—C1—C2106.92 (11)C14—C9—C8119.01 (12)
C8—C1—S1126.40 (10)C11—C10—C9120.64 (13)
C2—C1—S1126.42 (10)C11—C10—H10119.7
C7—C2—C3119.41 (12)C9—C10—H10119.7
C7—C2—C1105.03 (11)C10—C11—C12120.19 (13)
C3—C2—C1135.54 (12)C10—C11—H11119.9
C4—C3—C2116.67 (12)C12—C11—H11119.9
C4—C3—H3121.7C13—C12—C11118.02 (13)
C2—C3—H3121.7C13—C12—H12121.0
C3—C4—C5123.22 (13)C11—C12—H12121.0
C3—C4—Cl1118.56 (11)F1—C13—C14117.86 (13)
C5—C4—Cl1118.22 (11)F1—C13—C12118.28 (13)
C6—C5—C4120.30 (13)C14—C13—C12123.86 (13)
C6—C5—H5119.8C13—C14—C9117.67 (12)
C4—C5—H5119.8C13—C14—H14121.2
C7—C6—C5116.25 (12)C9—C14—H14121.2
C7—C6—H6121.9S1—C15—H15A109.5
C5—C6—H6121.9S1—C15—H15B109.5
O1—C7—C6125.27 (12)H15A—C15—H15B109.5
O1—C7—C2110.56 (11)S1—C15—H15C109.5
C6—C7—C2124.14 (13)H15A—C15—H15C109.5
C1—C8—O1110.86 (11)H15B—C15—H15C109.5
O2—S1—C1—C8138.71 (12)C1—C2—C7—C6178.69 (13)
C15—S1—C1—C8112.01 (13)C2—C1—C8—O10.06 (15)
O2—S1—C1—C234.63 (13)S1—C1—C8—O1174.46 (9)
C15—S1—C1—C274.66 (13)C2—C1—C8—C9178.33 (14)
C8—C1—C2—C70.43 (14)S1—C1—C8—C97.3 (2)
S1—C1—C2—C7173.96 (10)C7—O1—C8—C10.54 (14)
C8—C1—C2—C3178.15 (15)C7—O1—C8—C9179.16 (11)
S1—C1—C2—C37.5 (2)C1—C8—C9—C1030.9 (2)
C7—C2—C3—C40.39 (19)O1—C8—C9—C10147.27 (12)
C1—C2—C3—C4178.04 (14)C1—C8—C9—C14150.28 (15)
C2—C3—C4—C50.4 (2)O1—C8—C9—C1431.51 (17)
C2—C3—C4—Cl1179.30 (10)C14—C9—C10—C111.3 (2)
C3—C4—C5—C60.2 (2)C8—C9—C10—C11179.97 (13)
Cl1—C4—C5—C6179.54 (11)C9—C10—C11—C120.9 (2)
C4—C5—C6—C70.1 (2)C10—C11—C12—C130.1 (2)
C8—O1—C7—C6178.70 (13)C11—C12—C13—F1178.95 (13)
C8—O1—C7—C20.83 (14)C11—C12—C13—C140.6 (2)
C5—C6—C7—O1177.52 (12)F1—C13—C14—C9179.35 (12)
C5—C6—C7—C20.1 (2)C12—C13—C14—C90.2 (2)
C3—C2—C7—O1178.08 (11)C10—C9—C14—C130.7 (2)
C1—C2—C7—O10.78 (15)C8—C9—C14—C13179.52 (12)
C3—C2—C7—C60.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.952.573.3470 (18)139
C14—H14···O2ii0.952.593.4884 (17)157
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.952.573.3470 (18)138.9
C14—H14···O2ii0.952.593.4884 (17)156.8
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Kang, B. W. (2003). Arch. Pharm. Res. 26, 985–989.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o991-o992
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds