organic compounds
tert-butyl-1,3-thiazolo[4,5-b]pyridine
of 2-aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk
The title compound, C10H12N2S, does not contain any strong hydrogen-bond donors but two long C—H⋯N contacts are observed in the with the most linear interaction linking molecules along [010]. The ellipsoids of the tert-butyl group indicate large librational motion.
Keywords: crystal structure; C—H⋯N contacts; 1,3-thiazolo[4,5-b]pyridine.
CCDC reference: 1013859
1. Related literature
For the synthesis of substituted thiazolopyridines, see: Smith et al. (1994, 1995); El-Hiti (2003); Johnson et al. (2006); Rao et al. (2009); Sahasrabudhe et al. (2009); Lee et al. (2010); Chaban et al. (2013). For the of a related compound, see: Yu et al. (2007).
2. Experimental
2.1. Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CHEMDRAW ultra (Cambridge Soft, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 1013859
10.1107/S160053681401633X/zs2307sup1.cif
contains datablocks I, shelx. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681401633X/zs2307Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681401633X/zs2307Isup3.cml
Various methods have been reported for the synthesis of substituted thiazolopyridines (Smith et al., 1994, 1995; El-Hiti, 2003; Johnson et al., 2006; Rao et al., 2009; Sahasrabudhe et al., 2009; Lee et al., 2010; Chaban et al., 2013). In a continuation of our research focused on new synthetic routes towards substituted heterocycles we have synthesized the title compound 2-tert-butylthiazolo[4,5-b]pyridine in high yield (Smith et al., 1995; El-Hiti, 2003) and now report its X-ray
The X-ray structure for a related compound has been reported previously (Yu et al., 2007). In the title compound (Fig. 1), the ellipsoids of the methyl groups of the tert-butyl group are large which is consistent with librational motion of the group. Assumption of a disordered model did not show significant improvement in the The molecule does not contain strong hydrogen bond donors. In the crystal, two long C—H···N contacts are observed, the most linear of which links the molecules in chains along [010] (Fig. 2).2-tert-Butylthiazolo[4,5-b]pyridine was obtained in 97% yield from acid hydrolysis of 3-(diisopropylaminothiocarbonylthio)-2-(pivalamido)pyridine under reflux (Smith et al., 1995). The compound may also be synthesized in 66% yield from reaction of 3-(diisopropylaminothiocarbonylthio)-2-aminopyridine with 2,2-dimethylpropionic acid in the presence of phosphorus oxychloride under reflux (El-Hiti, 2003). Crystallization from a mixture of ethyl acetate and diethyl ether (1:3 by volume) gave the title compound as colourless crystals. The NMR and low and high resolution mass spectra for the title compound were consistent with those previously reported (Smith et al., 1995).
Crystal data, data collection and structure
details are summarized in the crystal data table. The hydrogen atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 times Ueq for the atom to which they are bonded in the case of aromatic rings, NH and CH2 groups and 1.5 times Ueq for the methyl hydrogens. Crystal data, data collection and structure details are summarized in Table 1. The (Parsons et al., 2013) was 0.027 (7) but is not of any structural relevance with this compound.Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014; data reduction: CrysAlis PRO (Agilent, 2014; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008, 2013); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008, 2013); molecular graphics: CHEMDRAW ultra (Cambridge Soft, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H12N2S | Dx = 1.239 Mg m−3 |
Mr = 192.28 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 1951 reflections |
a = 9.4606 (3) Å | θ = 6.0–73.4° |
b = 9.7999 (3) Å | µ = 2.42 mm−1 |
c = 11.1155 (4) Å | T = 296 K |
V = 1030.55 (6) Å3 | Plate, colourless |
Z = 4 | 0.40 × 0.29 × 0.14 mm |
F(000) = 408 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 1951 reflections with I > 2σ(I) |
Radiation source: SuperNova (Cu) X-ray Source | Rint = 0.016 |
ω scans | θmax = 73.4°, θmin = 6.0° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −7→11 |
Tmin = 0.721, Tmax = 1.000 | k = −11→12 |
3395 measured reflections | l = −13→10 |
1996 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0513P)2 + 0.0815P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max < 0.001 |
S = 1.12 | Δρmax = 0.16 e Å−3 |
1996 reflections | Δρmin = −0.22 e Å−3 |
121 parameters | Absolute structure: Flack x determined using 791 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
0 restraints | Absolute structure parameter: 0.027 (7) |
C10H12N2S | V = 1030.55 (6) Å3 |
Mr = 192.28 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 9.4606 (3) Å | µ = 2.42 mm−1 |
b = 9.7999 (3) Å | T = 296 K |
c = 11.1155 (4) Å | 0.40 × 0.29 × 0.14 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 1996 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 1951 reflections with I > 2σ(I) |
Tmin = 0.721, Tmax = 1.000 | Rint = 0.016 |
3395 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.090 | Δρmax = 0.16 e Å−3 |
S = 1.12 | Δρmin = −0.22 e Å−3 |
1996 reflections | Absolute structure: Flack x determined using 791 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
121 parameters | Absolute structure parameter: 0.027 (7) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8245 (2) | 0.2846 (2) | 0.37042 (19) | 0.0458 (5) | |
C2 | 0.6967 (2) | 0.4685 (2) | 0.33748 (19) | 0.0435 (5) | |
C3 | 0.7716 (2) | 0.5154 (3) | 0.4378 (2) | 0.0483 (5) | |
C4 | 0.7455 (3) | 0.6454 (3) | 0.4822 (3) | 0.0645 (6) | |
H4 | 0.7924 | 0.6789 | 0.5496 | 0.077* | |
C5 | 0.6470 (3) | 0.7218 (3) | 0.4218 (3) | 0.0677 (7) | |
H5 | 0.6260 | 0.8097 | 0.4477 | 0.081* | |
C6 | 0.5791 (3) | 0.6682 (3) | 0.3225 (3) | 0.0656 (7) | |
H6 | 0.5138 | 0.7234 | 0.2833 | 0.079* | |
C7 | 0.8831 (3) | 0.1417 (2) | 0.3577 (2) | 0.0556 (6) | |
C8 | 0.8599 (5) | 0.0641 (4) | 0.4747 (3) | 0.0938 (11) | |
H8A | 0.9096 | 0.1090 | 0.5387 | 0.141* | |
H8B | 0.8948 | −0.0274 | 0.4662 | 0.141* | |
H8C | 0.7608 | 0.0617 | 0.4929 | 0.141* | |
C9 | 1.0411 (4) | 0.1506 (5) | 0.3319 (5) | 0.1151 (16) | |
H9A | 1.0560 | 0.1983 | 0.2575 | 0.173* | |
H9B | 1.0798 | 0.0603 | 0.3260 | 0.173* | |
H9C | 1.0871 | 0.1990 | 0.3961 | 0.173* | |
C10 | 0.8067 (6) | 0.0657 (4) | 0.2577 (4) | 0.124 (2) | |
H10A | 0.7076 | 0.0614 | 0.2758 | 0.186* | |
H10B | 0.8440 | −0.0251 | 0.2513 | 0.186* | |
H10C | 0.8203 | 0.1129 | 0.1829 | 0.186* | |
N1 | 0.72864 (19) | 0.3364 (2) | 0.30173 (16) | 0.0453 (4) | |
N2 | 0.6004 (2) | 0.5424 (2) | 0.2787 (2) | 0.0576 (5) | |
S1 | 0.88585 (7) | 0.39028 (7) | 0.48644 (5) | 0.0607 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0431 (10) | 0.0571 (12) | 0.0371 (10) | 0.0007 (10) | −0.0013 (8) | 0.0016 (9) |
C2 | 0.0423 (10) | 0.0483 (11) | 0.0398 (10) | −0.0043 (9) | 0.0022 (8) | 0.0053 (9) |
C3 | 0.0443 (11) | 0.0550 (12) | 0.0457 (11) | −0.0048 (9) | 0.0022 (9) | −0.0035 (9) |
C4 | 0.0664 (15) | 0.0611 (14) | 0.0661 (15) | −0.0075 (11) | 0.0034 (13) | −0.0160 (13) |
C5 | 0.0707 (17) | 0.0500 (13) | 0.0823 (19) | −0.0008 (12) | 0.0129 (15) | −0.0023 (13) |
C6 | 0.0686 (16) | 0.0542 (13) | 0.0740 (17) | 0.0102 (12) | 0.0041 (14) | 0.0157 (13) |
C7 | 0.0564 (12) | 0.0560 (13) | 0.0544 (12) | 0.0118 (11) | −0.0010 (11) | 0.0012 (10) |
C8 | 0.122 (3) | 0.078 (2) | 0.081 (2) | 0.0248 (19) | 0.009 (2) | 0.0219 (17) |
C9 | 0.074 (2) | 0.097 (3) | 0.174 (5) | 0.0241 (19) | 0.044 (3) | −0.007 (3) |
C10 | 0.187 (5) | 0.073 (2) | 0.112 (3) | 0.052 (3) | −0.072 (3) | −0.034 (2) |
N1 | 0.0468 (9) | 0.0492 (9) | 0.0401 (9) | 0.0001 (8) | −0.0045 (8) | 0.0005 (8) |
N2 | 0.0588 (11) | 0.0570 (11) | 0.0570 (12) | 0.0070 (10) | −0.0078 (10) | 0.0101 (9) |
S1 | 0.0568 (3) | 0.0761 (4) | 0.0493 (3) | 0.0096 (3) | −0.0161 (3) | −0.0112 (3) |
C1—N1 | 1.290 (3) | C6—H6 | 0.9300 |
C1—C7 | 1.512 (3) | C7—C10 | 1.521 (4) |
C1—S1 | 1.753 (2) | C7—C8 | 1.522 (4) |
C2—N2 | 1.335 (3) | C7—C9 | 1.524 (4) |
C2—N1 | 1.387 (3) | C8—H8A | 0.9600 |
C2—C3 | 1.399 (3) | C8—H8B | 0.9600 |
C3—C4 | 1.389 (4) | C8—H8C | 0.9600 |
C3—S1 | 1.722 (3) | C9—H9A | 0.9600 |
C4—C5 | 1.371 (4) | C9—H9B | 0.9600 |
C4—H4 | 0.9300 | C9—H9C | 0.9600 |
C5—C6 | 1.380 (4) | C10—H10A | 0.9600 |
C5—H5 | 0.9300 | C10—H10B | 0.9600 |
C6—N2 | 1.341 (4) | C10—H10C | 0.9600 |
N1—C1—C7 | 124.6 (2) | C8—C7—C9 | 109.3 (3) |
N1—C1—S1 | 115.80 (18) | C7—C8—H8A | 109.5 |
C7—C1—S1 | 119.64 (17) | C7—C8—H8B | 109.5 |
N2—C2—N1 | 121.0 (2) | H8A—C8—H8B | 109.5 |
N2—C2—C3 | 123.9 (2) | C7—C8—H8C | 109.5 |
N1—C2—C3 | 115.1 (2) | H8A—C8—H8C | 109.5 |
C4—C3—C2 | 119.7 (2) | H8B—C8—H8C | 109.5 |
C4—C3—S1 | 130.8 (2) | C7—C9—H9A | 109.5 |
C2—C3—S1 | 109.55 (18) | C7—C9—H9B | 109.5 |
C5—C4—C3 | 116.6 (3) | H9A—C9—H9B | 109.5 |
C5—C4—H4 | 121.7 | C7—C9—H9C | 109.5 |
C3—C4—H4 | 121.7 | H9A—C9—H9C | 109.5 |
C4—C5—C6 | 120.0 (3) | H9B—C9—H9C | 109.5 |
C4—C5—H5 | 120.0 | C7—C10—H10A | 109.5 |
C6—C5—H5 | 120.0 | C7—C10—H10B | 109.5 |
N2—C6—C5 | 124.8 (3) | H10A—C10—H10B | 109.5 |
N2—C6—H6 | 117.6 | C7—C10—H10C | 109.5 |
C5—C6—H6 | 117.6 | H10A—C10—H10C | 109.5 |
C1—C7—C10 | 110.3 (2) | H10B—C10—H10C | 109.5 |
C1—C7—C8 | 109.3 (2) | C1—N1—C2 | 110.6 (2) |
C10—C7—C8 | 108.1 (3) | C2—N2—C6 | 115.0 (2) |
C1—C7—C9 | 108.9 (3) | C3—S1—C1 | 88.96 (11) |
C10—C7—C9 | 110.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N1i | 0.93 | 2.81 | 3.564 (3) | 138 |
C6—H6···N1ii | 0.93 | 2.72 | 3.620 (3) | 164 |
Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N1i | 0.93 | 2.81 | 3.564 (3) | 138 |
C6—H6···N1ii | 0.93 | 2.72 | 3.620 (3) | 164 |
Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA. Google Scholar
Chaban, T. I., Ogurtsov, V. V., Chaban, I. G., Klenina, O. V. & Komarytsia, J. D. (2013). Phosphorus Sulfur Silicon Relat. Elem. 188, 1611–1620. Web of Science CrossRef CAS Google Scholar
El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841. CAS Google Scholar
Johnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853–4856. Web of Science CrossRef CAS Google Scholar
Lee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Combin. Chem. 12, 95–99. Web of Science CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176–6180. Web of Science CrossRef PubMed CAS Google Scholar
Sahasrabudhe, K. P., Estiarte, M. A., Tan, D., Zipfel, S., Cox, M., O'Mahony, D. J. R., Edwards, W. T. & Duncton, M. A. J. (2009). J. Heterocycl. Chem. 46, 1125–1131. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79–95. CAS Google Scholar
Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216. CAS Google Scholar
Yu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, o968–o969. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.