organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-tert-butyl-1,3-thia­zolo[4,5-b]pyridine

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by G. Smith, Queensland University of Technology, Australia (Received 2 July 2014; accepted 14 July 2014; online 1 August 2014)

The title compound, C10H12N2S, does not contain any strong hydrogen-bond donors but two long C—H⋯N contacts are observed in the crystal structure, with the most linear inter­action linking mol­ecules along [010]. The ellipsoids of the tert-butyl group indicate large librational motion.

1. Related literature

For the synthesis of substituted thiazolopyridines, see: Smith et al. (1994[Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197-216.], 1995[Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79-95.]); El-Hiti (2003[El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837-841.]); Johnson et al. (2006[Johnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853-4856.]); Rao et al. (2009[Rao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176-6180.]); Sahasrabudhe et al. (2009[Sahasrabudhe, K. P., Estiarte, M. A., Tan, D., Zipfel, S., Cox, M., O'Mahony, D. J. R., Edwards, W. T. & Duncton, M. A. J. (2009). J. Heterocycl. Chem. 46, 1125-1131.]); Lee et al. (2010[Lee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Combin. Chem. 12, 95-99.]); Chaban et al. (2013[Chaban, T. I., Ogurtsov, V. V., Chaban, I. G., Klenina, O. V. & Komarytsia, J. D. (2013). Phosphorus Sulfur Silicon Relat. Elem. 188, 1611-1620.]). For the crystal structure of a related compound, see: Yu et al. (2007[Yu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, o968-o969.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H12N2S

  • Mr = 192.28

  • Orthorhombic, P 21 21 21

  • a = 9.4606 (3) Å

  • b = 9.7999 (3) Å

  • c = 11.1155 (4) Å

  • V = 1030.55 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.42 mm−1

  • T = 296 K

  • 0.40 × 0.29 × 0.14 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.721, Tmax = 1.000

  • 3395 measured reflections

  • 1996 independent reflections

  • 1951 reflections with I > 2σ(I)

  • Rint = 0.016

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.12

  • 1996 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack x determined using 791 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

  • Absolute structure parameter: 0.027 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1i 0.93 2.81 3.564 (3) 138
C6—H6⋯N1ii 0.93 2.72 3.620 (3) 164
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CHEMDRAW ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Structural commentary top

Various methods have been reported for the synthesis of substituted thia­zolo­pyridines (Smith et al., 1994, 1995; El-Hiti, 2003; Johnson et al., 2006; Rao et al., 2009; Sahasrabudhe et al., 2009; Lee et al., 2010; Chaban et al., 2013). In a continuation of our research focused on new synthetic routes towards substituted heterocycles we have synthesized the title compound 2-tert-butyl­thia­zolo[4,5-b]pyridine in high yield (Smith et al., 1995; El-Hiti, 2003) and now report its X-ray crystal structure. The X-ray structure for a related compound has been reported previously (Yu et al., 2007). In the title compound (Fig. 1), the ellipsoids of the methyl groups of the tert-butyl group are large which is consistent with librational motion of the group. Assumption of a disordered model did not show significant improvement in the refinement. The molecule does not contain strong hydrogen bond donors. In the crystal, two long C—H···N contacts are observed, the most linear of which links the molecules in chains along [010] (Fig. 2).

Synthesis and crystallization top

2-tert-Butyl­thia­zolo[4,5-b]pyridine was obtained in 97% yield from acid hydrolysis of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(pivalamido)­pyridine under reflux (Smith et al., 1995). The compound may also be synthesized in 66% yield from reaction of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-amino­pyridine with 2,2-di­methyl­propionic acid in the presence of phospho­rus oxychloride under reflux (El-Hiti, 2003). Crystallization from a mixture of ethyl acetate and di­ethyl ether (1:3 by volume) gave the title compound as colourless crystals. The NMR and low and high resolution mass spectra for the title compound were consistent with those previously reported (Smith et al., 1995).

Refinement top

Crystal data, data collection and structure refinement details are summarized in the crystal data table. The hydrogen atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 times Ueq for the atom to which they are bonded in the case of aromatic rings, NH and CH2 groups and 1.5 times Ueq for the methyl hydrogens. Crystal data, data collection and structure refinement details are summarized in Table 1. The Flack parameter (Parsons et al., 2013) was 0.027 (7) but is not of any structural relevance with this compound.

Related literature top

For related structures, see: Smith et al. (1994, 1995); El-Hiti (2003); Johnson et al. (2006); Rao et al. (2009); Sahasrabudhe et al. (2009); Lee et al. (2010); Chaban et al. (2013). For the X-ray crystal structure for a related compound, see: Yu et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014; data reduction: CrysAlis PRO (Agilent, 2014; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008, 2013); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008, 2013); molecular graphics: CHEMDRAW ultra (Cambridge Soft, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecule of the title compound showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal structure packing with the long linear C—H···N contacts shown as dashed lines.
2-tert-Butyl-1,3-thiazolo[4,5-b]pyridine top
Crystal data top
C10H12N2SDx = 1.239 Mg m3
Mr = 192.28Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 1951 reflections
a = 9.4606 (3) Åθ = 6.0–73.4°
b = 9.7999 (3) ŵ = 2.42 mm1
c = 11.1155 (4) ÅT = 296 K
V = 1030.55 (6) Å3Plate, colourless
Z = 40.40 × 0.29 × 0.14 mm
F(000) = 408
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
1951 reflections with I > 2σ(I)
Radiation source: SuperNova (Cu) X-ray SourceRint = 0.016
ω scansθmax = 73.4°, θmin = 6.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 711
Tmin = 0.721, Tmax = 1.000k = 1112
3395 measured reflectionsl = 1310
1996 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.0815P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.16 e Å3
1996 reflectionsΔρmin = 0.22 e Å3
121 parametersAbsolute structure: Flack x determined using 791 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 restraintsAbsolute structure parameter: 0.027 (7)
Crystal data top
C10H12N2SV = 1030.55 (6) Å3
Mr = 192.28Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.4606 (3) ŵ = 2.42 mm1
b = 9.7999 (3) ÅT = 296 K
c = 11.1155 (4) Å0.40 × 0.29 × 0.14 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
1996 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1951 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 1.000Rint = 0.016
3395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.16 e Å3
S = 1.12Δρmin = 0.22 e Å3
1996 reflectionsAbsolute structure: Flack x determined using 791 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
121 parametersAbsolute structure parameter: 0.027 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8245 (2)0.2846 (2)0.37042 (19)0.0458 (5)
C20.6967 (2)0.4685 (2)0.33748 (19)0.0435 (5)
C30.7716 (2)0.5154 (3)0.4378 (2)0.0483 (5)
C40.7455 (3)0.6454 (3)0.4822 (3)0.0645 (6)
H40.79240.67890.54960.077*
C50.6470 (3)0.7218 (3)0.4218 (3)0.0677 (7)
H50.62600.80970.44770.081*
C60.5791 (3)0.6682 (3)0.3225 (3)0.0656 (7)
H60.51380.72340.28330.079*
C70.8831 (3)0.1417 (2)0.3577 (2)0.0556 (6)
C80.8599 (5)0.0641 (4)0.4747 (3)0.0938 (11)
H8A0.90960.10900.53870.141*
H8B0.89480.02740.46620.141*
H8C0.76080.06170.49290.141*
C91.0411 (4)0.1506 (5)0.3319 (5)0.1151 (16)
H9A1.05600.19830.25750.173*
H9B1.07980.06030.32600.173*
H9C1.08710.19900.39610.173*
C100.8067 (6)0.0657 (4)0.2577 (4)0.124 (2)
H10A0.70760.06140.27580.186*
H10B0.84400.02510.25130.186*
H10C0.82030.11290.18290.186*
N10.72864 (19)0.3364 (2)0.30173 (16)0.0453 (4)
N20.6004 (2)0.5424 (2)0.2787 (2)0.0576 (5)
S10.88585 (7)0.39028 (7)0.48644 (5)0.0607 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0431 (10)0.0571 (12)0.0371 (10)0.0007 (10)0.0013 (8)0.0016 (9)
C20.0423 (10)0.0483 (11)0.0398 (10)0.0043 (9)0.0022 (8)0.0053 (9)
C30.0443 (11)0.0550 (12)0.0457 (11)0.0048 (9)0.0022 (9)0.0035 (9)
C40.0664 (15)0.0611 (14)0.0661 (15)0.0075 (11)0.0034 (13)0.0160 (13)
C50.0707 (17)0.0500 (13)0.0823 (19)0.0008 (12)0.0129 (15)0.0023 (13)
C60.0686 (16)0.0542 (13)0.0740 (17)0.0102 (12)0.0041 (14)0.0157 (13)
C70.0564 (12)0.0560 (13)0.0544 (12)0.0118 (11)0.0010 (11)0.0012 (10)
C80.122 (3)0.078 (2)0.081 (2)0.0248 (19)0.009 (2)0.0219 (17)
C90.074 (2)0.097 (3)0.174 (5)0.0241 (19)0.044 (3)0.007 (3)
C100.187 (5)0.073 (2)0.112 (3)0.052 (3)0.072 (3)0.034 (2)
N10.0468 (9)0.0492 (9)0.0401 (9)0.0001 (8)0.0045 (8)0.0005 (8)
N20.0588 (11)0.0570 (11)0.0570 (12)0.0070 (10)0.0078 (10)0.0101 (9)
S10.0568 (3)0.0761 (4)0.0493 (3)0.0096 (3)0.0161 (3)0.0112 (3)
Geometric parameters (Å, º) top
C1—N11.290 (3)C6—H60.9300
C1—C71.512 (3)C7—C101.521 (4)
C1—S11.753 (2)C7—C81.522 (4)
C2—N21.335 (3)C7—C91.524 (4)
C2—N11.387 (3)C8—H8A0.9600
C2—C31.399 (3)C8—H8B0.9600
C3—C41.389 (4)C8—H8C0.9600
C3—S11.722 (3)C9—H9A0.9600
C4—C51.371 (4)C9—H9B0.9600
C4—H40.9300C9—H9C0.9600
C5—C61.380 (4)C10—H10A0.9600
C5—H50.9300C10—H10B0.9600
C6—N21.341 (4)C10—H10C0.9600
N1—C1—C7124.6 (2)C8—C7—C9109.3 (3)
N1—C1—S1115.80 (18)C7—C8—H8A109.5
C7—C1—S1119.64 (17)C7—C8—H8B109.5
N2—C2—N1121.0 (2)H8A—C8—H8B109.5
N2—C2—C3123.9 (2)C7—C8—H8C109.5
N1—C2—C3115.1 (2)H8A—C8—H8C109.5
C4—C3—C2119.7 (2)H8B—C8—H8C109.5
C4—C3—S1130.8 (2)C7—C9—H9A109.5
C2—C3—S1109.55 (18)C7—C9—H9B109.5
C5—C4—C3116.6 (3)H9A—C9—H9B109.5
C5—C4—H4121.7C7—C9—H9C109.5
C3—C4—H4121.7H9A—C9—H9C109.5
C4—C5—C6120.0 (3)H9B—C9—H9C109.5
C4—C5—H5120.0C7—C10—H10A109.5
C6—C5—H5120.0C7—C10—H10B109.5
N2—C6—C5124.8 (3)H10A—C10—H10B109.5
N2—C6—H6117.6C7—C10—H10C109.5
C5—C6—H6117.6H10A—C10—H10C109.5
C1—C7—C10110.3 (2)H10B—C10—H10C109.5
C1—C7—C8109.3 (2)C1—N1—C2110.6 (2)
C10—C7—C8108.1 (3)C2—N2—C6115.0 (2)
C1—C7—C9108.9 (3)C3—S1—C188.96 (11)
C10—C7—C9110.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.932.813.564 (3)138
C6—H6···N1ii0.932.723.620 (3)164
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.932.813.564 (3)138
C6—H6···N1ii0.932.723.620 (3)164
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChaban, T. I., Ogurtsov, V. V., Chaban, I. G., Klenina, O. V. & Komarytsia, J. D. (2013). Phosphorus Sulfur Silicon Relat. Elem. 188, 1611–1620.  Web of Science CrossRef CAS Google Scholar
First citationEl-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841.  CAS Google Scholar
First citationJohnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853–4856.  Web of Science CrossRef CAS Google Scholar
First citationLee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Combin. Chem. 12, 95–99.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176–6180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSahasrabudhe, K. P., Estiarte, M. A., Tan, D., Zipfel, S., Cox, M., O'Mahony, D. J. R., Edwards, W. T. & Duncton, M. A. J. (2009). J. Heterocycl. Chem. 46, 1125–1131.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79–95.  CAS Google Scholar
First citationSmith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216.  CAS Google Scholar
First citationYu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, o968–o969.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds