metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2,4-di-tert-butyl-6-{[(6,6′-di­methyl-2′-oxido-1,1′-bi­phenyl-2-yl)imino]methyl}phenolato-κ3O,N,O′)bis­(propan-2-olato-κO)titanium(IV)

aDepartment of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, and bShanghai Tianshan High School, Shanghai 200336, People's Republic of China
*Correspondence e-mail: dengxuebin@bnu.edu.cn

Edited by G. Smith, Queensland University of Technology, Australia (Received 8 July 2014; accepted 13 August 2014; online 16 August 2014)

In the mononuclear TiIV title complex, [Ti(C29H33NO2)(C3H6O)2], the TiNO4 coordination polyhedron comprises an N-atom and two O-atom donors from the dianionic Schiff base ligand and two O-atom donors from monodentate isopropoxide anions. The stereochemistry is distorted trigonal–bipyramidal with the N-donor in an elongated axial site [Ti—N = 2.2540 (17) Å], the O-donors having normal Ti—O bond lengths [1.7937 (14) Å (axial)–1.8690 (14) Å]. In the crystal, C—H⋯π inter­actions link mol­ecules into centrosymmetric dimers.

1. Related literature

For background information, see: Zi (2011[Zi, G. (2011). J. Organomet. Chem. 696, 68-75.]). For a similar structure, see: Chen et al. (2013[Chen, L., Zhao, L., Wang, Q., Hou, G., Song, H. & Zi, G. (2013). Inorg. Chim. Acta, 402, 140-155.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ti(C29H33NO2)(C3H6O)2]

  • Mr = 593.64

  • Triclinic, [P \overline 1]

  • a = 11.5511 (11) Å

  • b = 11.9083 (10) Å

  • c = 12.6336 (11) Å

  • α = 80.941 (2)°

  • β = 72.869 (1)°

  • γ = 87.253 (2)°

  • V = 1640.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 110 K

  • 0.50 × 0.49 × 0.21 mm

2.2. Data collection

  • Bruker CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.940

  • 8299 measured reflections

  • 5896 independent reflections

  • 4914 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.05

  • 5896 reflections

  • 382 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C16–C18, C23, C24, C29 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20ACg1i 0.98 2.74 3.659 (3) 156
Symmetry code: (i) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Titanium complexes containing Schiff-base ligands are important catalysts with many applications such as the hydro­amination of alkenes (Zi, 2011). Titanium complexes derived from chiral 2-amino-2'-hy­droxy-6,6'-di­methyl-1,1'-bi­phenyl have been extensively studied (Zi, 2011; Chen et al., 2013). The aim of our ongoing research on titanium complexes is to synthesize the titanium complexes with tridentate Schiff-base ligand. Herein, the synthesis and crystal structure of the title mononuclear TiIV complex with 2-(3,5-di-tert-butyl-2-oxyl­benzyl­idene­amino)-2'-oxy-6,6'-δi­methyl-1,1'-bi­phenyl and iso-propoxide, C35H47NO4Ti is reported.

Structural commentary top

In the structure of the title complex (Fig. 1) the TiNO4 coordination polyhedron comprises a nitro­gen and two oxygen donors from the dianionic Schiff base and two O-atom donors from monodentate isopropoxide anions. The stereochemistry is distorted trigonal-bipyramidal with the N-donor in an elongated axial site [Ti—N = 2.2540 (17) Å], the O-donors with normal Ti—O bond lengths [1.7937 (14) Å (axial)–1.8690 (14) Å]. In the crystal, no inter­molecular inter­actions are found. For a related structure, see: Chen et al. (2013).

Synthesis and crystallization top

A toluene solution (10 mL) of the Schiff base ligand racemic-2-(3,5-di-tert-butyl-2-hydroxyl­benzyl­idene­amino)-2'-hy­droxy-6,6'-di­methyl-1,1'-bi­phenyl (0.43 g, 1.0 mmol) was slowly added to a toluene solution (10 mL) of Ti(OPr)4 (0.28 g, 1.0 mmol) with stirring at room temperature for one day, after which the solution was filtered. The filtrate was concentrated to about 2 mL under vacuum. Yellow crystals of the title complex were isolated from this solution after three days standing at room temperature. Yield: 0.44 g (74%).

Refinement details top

The hydrogen atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C) (aromatic) and 1.5 times Ueq(C) (methyl).

Related literature top

For background information, see: Zi (2011). For a similar structure, see: Chen et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the title complex, with displacenemt ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity.
(2,4-Di-tert-butyl-6-{[(6,6'-dimethyl-2'-oxido-1,1'-biphenyl-2-yl)imino]methyl}phenolato-κ3O,N,O')bis(propan-2-olato-κO)titanium(IV) top
Crystal data top
[Ti(C29H33NO2)(C3H6O)2]Z = 2
Mr = 593.64F(000) = 636
Triclinic, P1Dx = 1.202 Mg m3
a = 11.5511 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9083 (10) ÅCell parameters from 2631 reflections
c = 12.6336 (11) Åθ = 2.5–27.5°
α = 80.941 (2)°µ = 0.30 mm1
β = 72.869 (1)°T = 110 K
γ = 87.253 (2)°Block, yellow
V = 1640.0 (3) Å30.50 × 0.49 × 0.21 mm
Data collection top
Bruker CCD area-detector
diffractometer
5896 independent reflections
Radiation source: fine-focus sealed tube4914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.865, Tmax = 0.940k = 148
8299 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.734P]
where P = (Fo2 + 2Fc2)/3
5896 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ti(C29H33NO2)(C3H6O)2]γ = 87.253 (2)°
Mr = 593.64V = 1640.0 (3) Å3
Triclinic, P1Z = 2
a = 11.5511 (11) ÅMo Kα radiation
b = 11.9083 (10) ŵ = 0.30 mm1
c = 12.6336 (11) ÅT = 110 K
α = 80.941 (2)°0.50 × 0.49 × 0.21 mm
β = 72.869 (1)°
Data collection top
Bruker CCD area-detector
diffractometer
5896 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4914 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.940Rint = 0.022
8299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
5896 reflectionsΔρmin = 0.36 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89718 (19)0.39500 (17)0.31293 (18)0.0163 (5)
C20.9400 (2)0.47051 (18)0.21368 (19)0.0209 (5)
H20.88480.51380.18090.025*
C31.0631 (2)0.48184 (19)0.16355 (19)0.0228 (5)
H31.09270.53420.09680.027*
C41.1440 (2)0.41738 (19)0.20996 (19)0.0221 (5)
H41.22860.42610.17450.027*
C51.10305 (19)0.33986 (18)0.30798 (18)0.0183 (5)
C61.1933 (2)0.2638 (2)0.3499 (2)0.0256 (5)
H6A1.20540.29030.41540.038*
H6B1.27060.26590.29060.038*
H6C1.16250.18560.37080.038*
C70.97797 (19)0.32988 (17)0.36211 (17)0.0161 (4)
C80.92889 (18)0.24700 (18)0.46638 (17)0.0156 (4)
C90.95336 (19)0.25498 (19)0.56798 (18)0.0192 (5)
C101.0207 (2)0.3548 (2)0.5828 (2)0.0284 (6)
H10A0.96540.39890.63590.043*
H10B1.05190.40340.51040.043*
H10C1.08830.32670.61170.043*
C110.9101 (2)0.17051 (19)0.65958 (18)0.0216 (5)
H110.92550.17630.72840.026*
C120.8451 (2)0.07806 (19)0.65295 (18)0.0210 (5)
H120.81980.01980.71550.025*
C130.81742 (19)0.07125 (18)0.55509 (18)0.0181 (5)
H130.77100.00940.55060.022*
C140.85797 (18)0.15552 (17)0.46314 (17)0.0141 (4)
C150.84517 (18)0.06836 (17)0.31359 (17)0.0141 (4)
H150.89750.01280.33780.017*
C160.80417 (18)0.04914 (17)0.22034 (17)0.0135 (4)
C170.84835 (18)0.04704 (17)0.16927 (17)0.0149 (4)
H170.90130.09750.19880.018*
C180.81747 (18)0.07072 (17)0.07782 (16)0.0131 (4)
C190.86198 (19)0.17752 (18)0.02330 (17)0.0161 (5)
C200.9828 (2)0.21997 (19)0.04188 (19)0.0207 (5)
H20A1.04140.15750.01730.031*
H20B1.01360.28200.00150.031*
H20C0.97060.24760.12170.031*
C210.7667 (2)0.27189 (18)0.07538 (19)0.0214 (5)
H21A0.75680.29020.15590.032*
H21B0.79330.33990.03990.032*
H21C0.68910.24570.06350.032*
C220.8794 (2)0.15392 (19)0.10353 (18)0.0196 (5)
H22A0.80010.14290.11730.029*
H22B0.92070.21860.13810.029*
H22C0.92830.08520.13610.029*
C230.73944 (18)0.00725 (17)0.03697 (17)0.0145 (4)
H230.71700.00750.02600.017*
C240.69319 (18)0.10452 (17)0.08298 (17)0.0135 (4)
C250.61332 (19)0.18978 (18)0.03097 (17)0.0167 (5)
C260.6777 (2)0.30584 (18)0.00721 (19)0.0228 (5)
H26A0.69510.33120.05660.034*
H26B0.62520.36160.03640.034*
H26C0.75370.29850.06610.034*
C270.48872 (19)0.2012 (2)0.11651 (19)0.0226 (5)
H27A0.49920.23090.18120.034*
H27B0.44980.12640.14130.034*
H27C0.43780.25350.08150.034*
C280.5921 (2)0.15316 (19)0.07287 (18)0.0204 (5)
H28A0.54050.20930.10280.031*
H28B0.55230.07880.05220.031*
H28C0.67010.14800.12990.031*
C290.72460 (18)0.12414 (17)0.17848 (17)0.0138 (4)
C300.47315 (19)0.1931 (2)0.57092 (18)0.0218 (5)
H300.45010.27380.57990.026*
C310.4867 (2)0.1302 (3)0.6798 (2)0.0376 (7)
H31A0.50880.05090.67150.056*
H31B0.40980.13260.73890.056*
H31C0.55020.16610.69990.056*
C320.3789 (2)0.1398 (2)0.5329 (2)0.0318 (6)
H32A0.37950.17810.45810.048*
H32B0.29860.14790.58570.048*
H32C0.39740.05900.53010.048*
C330.5158 (2)0.49464 (19)0.3183 (2)0.0261 (5)
H330.57670.54330.33180.031*
C340.3926 (2)0.5180 (2)0.3958 (3)0.0422 (7)
H34A0.33180.47000.38460.063*
H34B0.37150.59820.37910.063*
H34C0.39450.50090.47370.063*
C350.5221 (3)0.5202 (2)0.1965 (2)0.0408 (7)
H35A0.60420.50500.15080.061*
H35B0.50190.60040.17810.061*
H35C0.46430.47200.18120.061*
N10.81686 (15)0.15436 (14)0.36679 (14)0.0130 (4)
O10.77580 (13)0.38487 (12)0.36190 (12)0.0176 (3)
O20.68068 (13)0.21507 (12)0.22757 (12)0.0165 (3)
O30.58760 (13)0.19059 (12)0.48732 (12)0.0184 (3)
O40.54740 (13)0.37846 (12)0.34436 (12)0.0188 (3)
Ti10.66465 (3)0.27775 (3)0.35782 (3)0.01328 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0181 (11)0.0137 (11)0.0200 (11)0.0000 (8)0.0070 (9)0.0087 (9)
C20.0284 (13)0.0129 (11)0.0229 (12)0.0010 (9)0.0104 (10)0.0019 (9)
C30.0301 (13)0.0175 (12)0.0185 (12)0.0056 (10)0.0039 (10)0.0001 (9)
C40.0188 (11)0.0226 (12)0.0243 (12)0.0028 (9)0.0028 (9)0.0076 (10)
C50.0197 (11)0.0165 (11)0.0210 (12)0.0012 (9)0.0072 (9)0.0077 (9)
C60.0201 (12)0.0273 (13)0.0312 (14)0.0019 (10)0.0098 (10)0.0061 (11)
C70.0203 (11)0.0142 (11)0.0160 (11)0.0001 (9)0.0062 (9)0.0068 (9)
C80.0144 (10)0.0165 (11)0.0167 (11)0.0061 (8)0.0053 (8)0.0048 (9)
C90.0191 (11)0.0210 (12)0.0207 (12)0.0055 (9)0.0088 (9)0.0083 (9)
C100.0395 (15)0.0258 (13)0.0271 (13)0.0011 (11)0.0177 (11)0.0103 (11)
C110.0245 (12)0.0288 (13)0.0154 (11)0.0076 (10)0.0112 (9)0.0063 (10)
C120.0247 (12)0.0233 (12)0.0144 (11)0.0021 (10)0.0074 (9)0.0019 (9)
C130.0192 (11)0.0181 (11)0.0171 (11)0.0005 (9)0.0060 (9)0.0019 (9)
C140.0137 (10)0.0166 (11)0.0123 (10)0.0063 (8)0.0037 (8)0.0052 (8)
C150.0126 (10)0.0143 (11)0.0136 (10)0.0010 (8)0.0030 (8)0.0016 (8)
C160.0133 (10)0.0143 (11)0.0121 (10)0.0002 (8)0.0026 (8)0.0017 (8)
C170.0138 (10)0.0153 (11)0.0147 (11)0.0023 (8)0.0040 (8)0.0004 (8)
C180.0130 (10)0.0131 (10)0.0117 (10)0.0019 (8)0.0008 (8)0.0022 (8)
C190.0170 (11)0.0149 (11)0.0164 (11)0.0018 (8)0.0041 (9)0.0042 (9)
C200.0205 (12)0.0214 (12)0.0226 (12)0.0052 (9)0.0078 (9)0.0090 (9)
C210.0222 (12)0.0166 (11)0.0250 (12)0.0013 (9)0.0055 (10)0.0036 (9)
C220.0224 (12)0.0197 (12)0.0172 (11)0.0037 (9)0.0056 (9)0.0060 (9)
C230.0146 (10)0.0176 (11)0.0116 (10)0.0016 (8)0.0044 (8)0.0016 (8)
C240.0109 (10)0.0156 (11)0.0128 (10)0.0009 (8)0.0022 (8)0.0002 (8)
C250.0175 (11)0.0176 (11)0.0163 (11)0.0038 (9)0.0073 (9)0.0028 (9)
C260.0311 (13)0.0172 (12)0.0239 (12)0.0025 (10)0.0161 (10)0.0004 (9)
C270.0179 (11)0.0302 (13)0.0227 (12)0.0075 (10)0.0089 (10)0.0086 (10)
C280.0238 (12)0.0215 (12)0.0186 (12)0.0041 (9)0.0109 (9)0.0029 (9)
C290.0129 (10)0.0134 (10)0.0133 (10)0.0007 (8)0.0011 (8)0.0022 (8)
C300.0164 (11)0.0249 (12)0.0200 (12)0.0023 (9)0.0022 (9)0.0060 (10)
C310.0250 (13)0.070 (2)0.0160 (12)0.0107 (13)0.0032 (10)0.0022 (12)
C320.0221 (13)0.0433 (16)0.0285 (14)0.0048 (11)0.0090 (11)0.0041 (12)
C330.0287 (13)0.0171 (12)0.0368 (14)0.0058 (10)0.0158 (11)0.0067 (10)
C340.0365 (16)0.0381 (16)0.0537 (19)0.0175 (13)0.0125 (14)0.0188 (14)
C350.0546 (18)0.0239 (14)0.0435 (17)0.0006 (13)0.0211 (14)0.0090 (12)
N10.0130 (9)0.0142 (9)0.0116 (9)0.0018 (7)0.0033 (7)0.0010 (7)
O10.0170 (8)0.0134 (8)0.0232 (8)0.0016 (6)0.0070 (6)0.0032 (6)
O20.0189 (8)0.0169 (8)0.0158 (8)0.0062 (6)0.0075 (6)0.0059 (6)
O30.0152 (8)0.0217 (8)0.0157 (8)0.0019 (6)0.0017 (6)0.0014 (6)
O40.0190 (8)0.0162 (8)0.0227 (8)0.0046 (6)0.0081 (6)0.0044 (6)
Ti10.0134 (2)0.0140 (2)0.0128 (2)0.00237 (14)0.00424 (15)0.00290 (15)
Geometric parameters (Å, º) top
C1—O11.358 (3)C21—H21C0.9800
C1—C21.396 (3)C22—H22A0.9800
C1—C71.407 (3)C22—H22B0.9800
C2—C31.379 (3)C22—H22C0.9800
C2—H20.9500C23—C241.391 (3)
C3—C41.385 (3)C23—H230.9500
C3—H30.9500C24—C291.413 (3)
C4—C51.395 (3)C24—C251.540 (3)
C4—H40.9500C25—C281.533 (3)
C5—C71.406 (3)C25—C271.539 (3)
C5—C61.507 (3)C25—C261.540 (3)
C6—H6A0.9800C26—H26A0.9800
C6—H6B0.9800C26—H26B0.9800
C6—H6C0.9800C26—H26C0.9800
C7—C81.495 (3)C27—H27A0.9800
C8—C141.407 (3)C27—H27B0.9800
C8—C91.411 (3)C27—H27C0.9800
C9—C111.393 (3)C28—H28A0.9800
C9—C101.516 (3)C28—H28B0.9800
C10—H10A0.9800C28—H28C0.9800
C10—H10B0.9800C29—O21.337 (2)
C10—H10C0.9800C30—O31.431 (2)
C11—C121.389 (3)C30—C311.506 (3)
C11—H110.9500C30—C321.513 (3)
C12—C131.380 (3)C30—H301.0000
C12—H120.9500C31—H31A0.9800
C13—C141.390 (3)C31—H31B0.9800
C13—H130.9500C31—H31C0.9800
C14—N11.433 (3)C32—H32A0.9800
C15—N11.290 (3)C32—H32B0.9800
C15—C161.445 (3)C32—H32C0.9800
C15—H150.9500C33—O41.426 (3)
C16—C171.404 (3)C33—C351.500 (4)
C16—C291.408 (3)C33—C341.513 (3)
C17—C181.377 (3)C33—H331.0000
C17—H170.9500C34—H34A0.9800
C18—C231.408 (3)C34—H34B0.9800
C18—C191.536 (3)C34—H34C0.9800
C19—C201.532 (3)C35—H35A0.9800
C19—C221.536 (3)C35—H35B0.9800
C19—C211.539 (3)C35—H35C0.9800
C20—H20A0.9800N1—Ti12.2540 (17)
C20—H20B0.9800O1—Ti11.8695 (15)
C20—H20C0.9800O2—Ti11.8690 (14)
C21—H21A0.9800O3—Ti11.8005 (15)
C21—H21B0.9800O4—Ti11.7937 (14)
O1—C1—C2119.10 (19)C24—C23—H23117.9
O1—C1—C7120.08 (19)C18—C23—H23117.9
C2—C1—C7120.8 (2)C23—C24—C29117.44 (18)
C3—C2—C1119.6 (2)C23—C24—C25121.79 (18)
C3—C2—H2120.2C29—C24—C25120.75 (18)
C1—C2—H2120.2C28—C25—C27107.77 (18)
C2—C3—C4120.4 (2)C28—C25—C24112.19 (17)
C2—C3—H3119.8C27—C25—C24110.32 (17)
C4—C3—H3119.8C28—C25—C26106.95 (17)
C3—C4—C5120.9 (2)C27—C25—C26110.45 (18)
C3—C4—H4119.5C24—C25—C26109.11 (17)
C5—C4—H4119.5C25—C26—H26A109.5
C4—C5—C7119.4 (2)C25—C26—H26B109.5
C4—C5—C6119.2 (2)H26A—C26—H26B109.5
C7—C5—C6121.3 (2)C25—C26—H26C109.5
C5—C6—H6A109.5H26A—C26—H26C109.5
C5—C6—H6B109.5H26B—C26—H26C109.5
H6A—C6—H6B109.5C25—C27—H27A109.5
C5—C6—H6C109.5C25—C27—H27B109.5
H6A—C6—H6C109.5H27A—C27—H27B109.5
H6B—C6—H6C109.5C25—C27—H27C109.5
C5—C7—C1118.85 (19)H27A—C27—H27C109.5
C5—C7—C8121.64 (19)H27B—C27—H27C109.5
C1—C7—C8119.41 (18)C25—C28—H28A109.5
C14—C8—C9118.26 (19)C25—C28—H28B109.5
C14—C8—C7119.12 (18)H28A—C28—H28B109.5
C9—C8—C7122.60 (19)C25—C28—H28C109.5
C11—C9—C8119.0 (2)H28A—C28—H28C109.5
C11—C9—C10118.6 (2)H28B—C28—H28C109.5
C8—C9—C10122.4 (2)O2—C29—C16120.11 (18)
C9—C10—H10A109.5O2—C29—C24120.00 (18)
C9—C10—H10B109.5C16—C29—C24119.87 (18)
H10A—C10—H10B109.5O3—C30—C31108.02 (18)
C9—C10—H10C109.5O3—C30—C32108.65 (18)
H10A—C10—H10C109.5C31—C30—C32112.3 (2)
H10B—C10—H10C109.5O3—C30—H30109.3
C12—C11—C9121.7 (2)C31—C30—H30109.3
C12—C11—H11119.1C32—C30—H30109.3
C9—C11—H11119.1C30—C31—H31A109.5
C13—C12—C11119.7 (2)C30—C31—H31B109.5
C13—C12—H12120.1H31A—C31—H31B109.5
C11—C12—H12120.1C30—C31—H31C109.5
C12—C13—C14119.5 (2)H31A—C31—H31C109.5
C12—C13—H13120.2H31B—C31—H31C109.5
C14—C13—H13120.2C30—C32—H32A109.5
C13—C14—C8121.63 (19)C30—C32—H32B109.5
C13—C14—N1118.78 (19)H32A—C32—H32B109.5
C8—C14—N1119.33 (18)C30—C32—H32C109.5
N1—C15—C16125.63 (18)H32A—C32—H32C109.5
N1—C15—H15117.2H32B—C32—H32C109.5
C16—C15—H15117.2O4—C33—C35109.34 (19)
C17—C16—C29119.69 (19)O4—C33—C34109.3 (2)
C17—C16—C15117.90 (18)C35—C33—C34113.3 (2)
C29—C16—C15122.40 (18)O4—C33—H33108.3
C18—C17—C16122.20 (18)C35—C33—H33108.3
C18—C17—H17118.9C34—C33—H33108.3
C16—C17—H17118.9C33—C34—H34A109.5
C17—C18—C23116.56 (19)C33—C34—H34B109.5
C17—C18—C19122.77 (18)H34A—C34—H34B109.5
C23—C18—C19120.66 (18)C33—C34—H34C109.5
C20—C19—C18111.47 (17)H34A—C34—H34C109.5
C20—C19—C22108.10 (17)H34B—C34—H34C109.5
C18—C19—C22111.13 (17)C33—C35—H35A109.5
C20—C19—C21108.87 (17)C33—C35—H35B109.5
C18—C19—C21108.82 (17)H35A—C35—H35B109.5
C22—C19—C21108.38 (18)C33—C35—H35C109.5
C19—C20—H20A109.5H35A—C35—H35C109.5
C19—C20—H20B109.5H35B—C35—H35C109.5
H20A—C20—H20B109.5C15—N1—C14118.25 (17)
C19—C20—H20C109.5C15—N1—Ti1125.66 (14)
H20A—C20—H20C109.5C14—N1—Ti1113.45 (12)
H20B—C20—H20C109.5C1—O1—Ti1131.40 (13)
C19—C21—H21A109.5C29—O2—Ti1141.98 (13)
C19—C21—H21B109.5C30—O3—Ti1136.19 (13)
H21A—C21—H21B109.5C33—O4—Ti1147.12 (14)
C19—C21—H21C109.5O4—Ti1—O3100.22 (7)
H21A—C21—H21C109.5O4—Ti1—O297.72 (6)
H21B—C21—H21C109.5O3—Ti1—O2115.76 (7)
C19—C22—H22A109.5O4—Ti1—O195.75 (7)
C19—C22—H22B109.5O3—Ti1—O1117.90 (7)
H22A—C22—H22B109.5O2—Ti1—O1120.82 (7)
C19—C22—H22C109.5O4—Ti1—N1177.41 (7)
H22A—C22—H22C109.5O3—Ti1—N182.33 (6)
H22B—C22—H22C109.5O2—Ti1—N180.70 (6)
C24—C23—C18124.19 (19)O1—Ti1—N183.37 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C18, C23, C24, C29 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20A···Cg1i0.982.743.659 (3)156
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C18, C23, C24, C29 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20A···Cg1i0.982.743.659 (3)156
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

We thank Professor Guofu Zi for providing the Schiff base ligand and for helpful discussions.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Zhao, L., Wang, Q., Hou, G., Song, H. & Zi, G. (2013). Inorg. Chim. Acta, 402, 140–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZi, G. (2011). J. Organomet. Chem. 696, 68–75.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds