organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of triclopyr

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by G. Smith, Queensland University of Technology, Australia (Received 9 July 2014; accepted 21 July 2014; online 1 August 2014)

In the title compound {systematic name: 2-[(3,5,6-tri­chloro­pyridin-2-yl)­oxy]acetic acid}, the herbicide triclopyr, C7H4Cl3NO3, the asymmetric unit comprises two independent mol­ecules in which the dihedral angles between the mean plane of the carb­oxy­lic acid group and the pyridyl ring plane are 79.3 (6) and 83.8 (5)°. In the crystal, pairs of inter­molecular O—H⋯O hydrogen bonds form dimers through an R22(8) ring motif and are extended into chains along [100] by weak ππ inter­actions [ring centroid separations = 3.799 (4) and 3.810 (4) Å]. In addition, short inter­molecular Cl⋯Cl contacts [3.458 (2) Å] connect the chains, yielding a two-dimensional architecture extending parallel to (020). The crystal studied was found to be non-merohedrally twinned with the minor component being 0.175 (4).

1. Related literature

For information on the toxicity and herbicidal properties of the title compound, see: McMullin et al. (2011[McMullin, R. T., Bell, F. W. & Newmaster, S. G. (2011). For. Ecol. Manage. 264, 90-97.]); Carney et al. (2007[Carney, E. W., Billington, R. & Barlow, S. M. (2007). Reprod. Toxicol. 23, 165-174.]). For a related crystal structure, see: Smith et al. (1976[Smith, G., Kennard, C. H. L. & White, A. H. (1976). Aust. J. Chem. 29, 2727-2730.]). Non-merohedral twinning in the crystal was identified usinTwinRotMat within PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H4Cl3NO3

  • Mr = 256.46

  • Monoclinic, P 21 /c

  • a = 7.5771 (9) Å

  • b = 25.409 (3) Å

  • c = 10.1668 (12) Å

  • β = 106.261 (8)°

  • V = 1879.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 173 K

  • 0.50 × 0.09 × 0.06 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.648, Tmax = 0.945

  • 3699 measured reflections

  • 3699 independent reflections

  • 3080 reflections with I > 2σ(I)

  • Rint = 0.000

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.096

  • S = 1.12

  • 3699 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O6 0.84 1.85 2.688 (3) 174
O5—H5O⋯O2 0.84 1.84 2.671 (3) 172

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triclopyr, C7H4Cl3NO3, is a herbicide used extensively in the control of woody plants and broadleaf weeds (McMullin et al., 2011; Carney et al., 2007), and its crystal structure is reported herein. In this compound (Scheme 1, Fig. 1). The asymmetric unit is composed of two independent molecules (Molecule A and Molecule B). The dihedral angles between the mean plane of the carboxyl groups and the pyridyl ring systems are 79.3 (6)° and 83.8 (5)° for Molecule A and Molecule B, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Smith et al., 1976).

In the crystal structure (Fig. 2), two carboxylic acid O—H···O hydrogen bonds are observed (Table 1), forming dimers through an R22(8) ring motif. In addition, weak intermolecular ππ interactions between the pyridyl ring systems [Cg1···Cg2i, 3.799 (4) Å and Cg2···Cg1ii, 3.810 (4) Å], link the dimers into one-dimensional chains extending along (100) (Cg1 and Cg2 are the centeroids of the N1···C5 and N2···C12 rings, respectively). In addition, a short Cl···Cl contact [Cl1···Cl1iii, 3.458 (2) Å] is present [for symmetry codes: (i), -x + 1, -y + 1, -z + 1, (ii), -x + 2, -y+ + 1, -z + 1, and (iii), -x + 1, -y + 1, -z + 2]. The crystal studied was found to be affected by non-merohedral twinning (Spek, 2009) and the data was treated accordingly, giving a final refined BASF parameter of 0.175 (4).

Related literature top

For information on the toxicity and herbicidal properties of the title compound, see: McMullin et al. (2011); Carney et al. (2007). For a related crystal structure, see: Smith et al. (1976). Non-merohedral twinning in the crystal was identified usinTwinRotMat within PLATON (Spek, 2009).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CHCl3 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H, d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for Csp3—H, and d(O—H) = 0.84 Å, Uiso = 1.5Ueq(C) for O—H groups. Non-merohedral twinning in the crystal was identified [TwinRotMat within PLATON (Spek, 2009)]: [twin law -1 0 0, 0 -1 0, 0.751 0 1] giving a final refined BASF parameter of 0.175 (4).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Brandenburg, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis. The intermolecular O—H···O hydrogen bonds, weak ππ interactions, and short Cl···Cl contacts are shown as dashed lines.
2-[(3,5,6-Trichloropyridin-2-yl)oxy]acetic acid top
Crystal data top
C7H4Cl3NO3F(000) = 1024
Mr = 256.46Dx = 1.813 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3761 reflections
a = 7.5771 (9) Åθ = 2.2–25.5°
b = 25.409 (3) ŵ = 0.95 mm1
c = 10.1668 (12) ÅT = 173 K
β = 106.261 (8)°Needle, colourless
V = 1879.1 (4) Å30.50 × 0.09 × 0.06 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3699 independent reflections
Radiation source: fine-focus sealed tube3080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 98
Tmin = 0.648, Tmax = 0.945k = 3131
3699 measured reflectionsl = 512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0219P)2 + 2.0682P]
where P = (Fo2 + 2Fc2)/3
3699 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C7H4Cl3NO3V = 1879.1 (4) Å3
Mr = 256.46Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.5771 (9) ŵ = 0.95 mm1
b = 25.409 (3) ÅT = 173 K
c = 10.1668 (12) Å0.50 × 0.09 × 0.06 mm
β = 106.261 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
3699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3080 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.945Rint = 0.000
3699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.12Δρmax = 0.32 e Å3
3699 reflectionsΔρmin = 0.28 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66278 (13)0.53311 (3)0.94222 (8)0.0336 (2)
Cl20.86627 (14)0.62564 (3)1.13208 (9)0.0397 (2)
Cl30.67175 (14)0.75251 (3)0.69082 (10)0.0408 (2)
Cl41.00995 (14)0.31553 (3)0.50221 (9)0.0380 (2)
Cl50.79593 (15)0.23214 (3)0.28102 (10)0.0432 (3)
Cl60.66657 (14)0.38875 (3)0.09150 (8)0.0403 (2)
O10.4722 (3)0.65825 (8)0.5624 (2)0.0317 (5)
O20.6886 (3)0.58941 (10)0.4787 (3)0.0386 (6)
O30.4491 (3)0.53970 (9)0.3695 (3)0.0382 (6)
H3O0.52900.52310.34340.057*
O40.9075 (3)0.44645 (8)0.1341 (2)0.0315 (5)
O50.9552 (3)0.54570 (9)0.3905 (2)0.0316 (5)
H5O0.87840.55990.42500.047*
O60.7219 (3)0.49064 (9)0.2971 (3)0.0361 (6)
N10.5733 (4)0.60258 (10)0.7479 (3)0.0248 (6)
N20.9432 (4)0.38215 (10)0.3000 (3)0.0258 (6)
C10.6641 (4)0.59584 (11)0.8776 (3)0.0242 (7)
C20.7565 (5)0.63593 (12)0.9613 (3)0.0267 (7)
C30.7598 (5)0.68502 (11)0.9024 (3)0.0278 (7)
H30.82540.71330.95520.033*
C40.6673 (5)0.69213 (11)0.7674 (3)0.0254 (7)
C50.5714 (4)0.64974 (12)0.6938 (3)0.0241 (7)
C60.3859 (5)0.61313 (13)0.4863 (3)0.0331 (8)
H6A0.29050.62470.40320.040*
H6B0.32510.59200.54300.040*
C70.5265 (5)0.57983 (12)0.4455 (3)0.0283 (7)
C80.9176 (5)0.33276 (12)0.3324 (3)0.0266 (7)
C90.8219 (5)0.29661 (12)0.2378 (3)0.0276 (7)
C100.7423 (5)0.31367 (12)0.1045 (3)0.0279 (7)
H100.67170.29010.03760.033*
C110.7668 (5)0.36496 (12)0.0706 (3)0.0266 (7)
C120.8738 (4)0.39780 (11)0.1722 (3)0.0255 (7)
C131.0054 (5)0.48192 (12)0.2385 (3)0.0301 (8)
H13A1.06240.51000.19670.036*
H13B1.10480.46270.30530.036*
C140.8768 (5)0.50619 (12)0.3117 (3)0.0269 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0447 (5)0.0215 (4)0.0343 (4)0.0055 (4)0.0106 (4)0.0039 (3)
Cl20.0511 (6)0.0334 (4)0.0276 (4)0.0038 (4)0.0006 (4)0.0000 (3)
Cl30.0532 (6)0.0246 (4)0.0453 (5)0.0031 (4)0.0153 (5)0.0085 (4)
Cl40.0483 (6)0.0327 (4)0.0293 (4)0.0081 (4)0.0048 (4)0.0055 (3)
Cl50.0617 (7)0.0248 (4)0.0466 (5)0.0052 (4)0.0210 (5)0.0019 (4)
Cl60.0517 (6)0.0405 (5)0.0244 (4)0.0102 (4)0.0035 (4)0.0000 (3)
O10.0372 (14)0.0290 (12)0.0261 (12)0.0025 (11)0.0044 (11)0.0002 (9)
O20.0295 (15)0.0436 (14)0.0423 (15)0.0027 (12)0.0092 (12)0.0138 (11)
O30.0304 (14)0.0387 (14)0.0430 (15)0.0022 (12)0.0064 (12)0.0143 (11)
O40.0415 (15)0.0223 (11)0.0290 (12)0.0005 (10)0.0072 (11)0.0008 (9)
O50.0290 (13)0.0293 (12)0.0355 (13)0.0032 (11)0.0074 (11)0.0063 (10)
O60.0315 (15)0.0296 (12)0.0471 (15)0.0033 (11)0.0110 (12)0.0094 (11)
N10.0244 (15)0.0246 (13)0.0270 (14)0.0031 (12)0.0098 (12)0.0019 (11)
N20.0274 (16)0.0230 (13)0.0253 (14)0.0030 (12)0.0044 (12)0.0023 (11)
C10.0277 (18)0.0185 (14)0.0297 (17)0.0006 (13)0.0136 (15)0.0012 (12)
C20.0278 (19)0.0281 (16)0.0238 (16)0.0001 (14)0.0066 (14)0.0012 (13)
C30.033 (2)0.0186 (15)0.0332 (18)0.0043 (14)0.0117 (16)0.0043 (13)
C40.0314 (19)0.0181 (14)0.0301 (17)0.0001 (14)0.0141 (15)0.0033 (12)
C50.0248 (18)0.0252 (16)0.0244 (16)0.0021 (13)0.0105 (14)0.0001 (12)
C60.031 (2)0.0383 (19)0.0274 (18)0.0025 (16)0.0038 (16)0.0071 (14)
C70.034 (2)0.0296 (17)0.0194 (16)0.0003 (15)0.0038 (15)0.0009 (13)
C80.0269 (19)0.0256 (16)0.0279 (17)0.0085 (14)0.0089 (15)0.0038 (13)
C90.0301 (19)0.0227 (15)0.0331 (18)0.0020 (14)0.0138 (16)0.0015 (13)
C100.0268 (19)0.0272 (16)0.0305 (18)0.0004 (14)0.0096 (15)0.0083 (13)
C110.0265 (18)0.0297 (16)0.0235 (16)0.0066 (15)0.0069 (15)0.0018 (13)
C120.0252 (18)0.0210 (15)0.0322 (18)0.0063 (14)0.0113 (15)0.0021 (13)
C130.032 (2)0.0223 (15)0.0353 (19)0.0010 (14)0.0080 (16)0.0012 (14)
C140.031 (2)0.0197 (15)0.0267 (17)0.0019 (15)0.0028 (15)0.0028 (13)
Geometric parameters (Å, º) top
Cl1—C11.725 (3)N2—C121.319 (4)
Cl2—C21.722 (3)N2—C81.325 (4)
Cl3—C41.725 (3)C1—C21.385 (4)
Cl4—C81.728 (3)C2—C31.387 (4)
Cl5—C91.721 (3)C3—C41.367 (4)
Cl6—C111.720 (3)C3—H30.9500
O1—C51.354 (4)C4—C51.394 (4)
O1—C61.434 (4)C6—C71.507 (5)
O2—C71.204 (4)C6—H6A0.9900
O3—C71.314 (4)C6—H6B0.9900
O3—H3O0.8400C8—C91.379 (4)
O4—C121.341 (4)C9—C101.389 (4)
O4—C131.431 (4)C10—C111.374 (4)
O5—C141.318 (4)C10—H100.9500
O5—H5O0.8400C11—C121.397 (4)
O6—C141.208 (4)C13—C141.513 (5)
N1—C11.317 (4)C13—H13A0.9900
N1—C51.317 (4)C13—H13B0.9900
C5—O1—C6116.6 (2)O2—C7—O3125.0 (3)
C7—O3—H3O109.5O2—C7—C6123.6 (3)
C12—O4—C13117.9 (2)O3—C7—C6111.3 (3)
C14—O5—H5O109.5N2—C8—C9122.8 (3)
C1—N1—C5118.6 (3)N2—C8—Cl4116.2 (2)
C12—N2—C8119.0 (3)C9—C8—Cl4120.9 (2)
N1—C1—C2123.5 (3)C8—C9—C10118.1 (3)
N1—C1—Cl1116.4 (2)C8—C9—Cl5122.1 (3)
C2—C1—Cl1120.1 (2)C10—C9—Cl5119.7 (2)
C1—C2—C3117.6 (3)C11—C10—C9119.3 (3)
C1—C2—Cl2121.7 (2)C11—C10—H10120.4
C3—C2—Cl2120.7 (2)C9—C10—H10120.4
C4—C3—C2119.1 (3)C10—C11—C12118.1 (3)
C4—C3—H3120.5C10—C11—Cl6121.3 (3)
C2—C3—H3120.5C12—C11—Cl6120.5 (2)
C3—C4—C5118.7 (3)N2—C12—O4120.4 (3)
C3—C4—Cl3120.1 (2)N2—C12—C11122.5 (3)
C5—C4—Cl3121.2 (2)O4—C12—C11117.0 (3)
N1—C5—O1119.7 (3)O4—C13—C14110.5 (3)
N1—C5—C4122.4 (3)O4—C13—H13A109.6
O1—C5—C4117.9 (3)C14—C13—H13A109.6
O1—C6—C7110.3 (3)O4—C13—H13B109.6
O1—C6—H6A109.6C14—C13—H13B109.6
C7—C6—H6A109.6H13A—C13—H13B108.1
O1—C6—H6B109.6O6—C14—O5125.5 (3)
C7—C6—H6B109.6O6—C14—C13122.9 (3)
H6A—C6—H6B108.1O5—C14—C13111.5 (3)
C5—N1—C1—C20.8 (5)C12—N2—C8—C90.3 (5)
C5—N1—C1—Cl1179.5 (2)C12—N2—C8—Cl4179.1 (2)
N1—C1—C2—C33.1 (5)N2—C8—C9—C103.0 (5)
Cl1—C1—C2—C3177.2 (2)Cl4—C8—C9—C10176.4 (2)
N1—C1—C2—Cl2177.6 (3)N2—C8—C9—Cl5178.1 (3)
Cl1—C1—C2—Cl22.1 (4)Cl4—C8—C9—Cl52.5 (4)
C1—C2—C3—C42.3 (5)C8—C9—C10—C112.3 (5)
Cl2—C2—C3—C4178.4 (3)Cl5—C9—C10—C11178.8 (3)
C2—C3—C4—C50.5 (5)C9—C10—C11—C120.8 (5)
C2—C3—C4—Cl3179.1 (3)C9—C10—C11—Cl6178.3 (2)
C1—N1—C5—O1177.0 (3)C8—N2—C12—O4175.5 (3)
C1—N1—C5—C42.3 (5)C8—N2—C12—C113.1 (5)
C6—O1—C5—N14.9 (4)C13—O4—C12—N25.8 (4)
C6—O1—C5—C4175.7 (3)C13—O4—C12—C11175.5 (3)
C3—C4—C5—N13.0 (5)C10—C11—C12—N23.6 (5)
Cl3—C4—C5—N1176.6 (2)Cl6—C11—C12—N2175.5 (2)
C3—C4—C5—O1176.4 (3)C10—C11—C12—O4175.0 (3)
Cl3—C4—C5—O14.1 (4)Cl6—C11—C12—O45.9 (4)
C5—O1—C6—C775.3 (3)C12—O4—C13—C1480.9 (3)
O1—C6—C7—O23.1 (5)O4—C13—C14—O611.0 (4)
O1—C6—C7—O3176.7 (3)O4—C13—C14—O5168.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O60.841.852.688 (3)174
O5—H5O···O20.841.842.671 (3)172
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O60.841.852.688 (3)174
O5—H5O···O20.841.842.671 (3)172
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarney, E. W., Billington, R. & Barlow, S. M. (2007). Reprod. Toxicol. 23, 165–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcMullin, R. T., Bell, F. W. & Newmaster, S. G. (2011). For. Ecol. Manage. 264, 90–97.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Kennard, C. H. L. & White, A. H. (1976). Aust. J. Chem. 29, 2727–2730.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds