organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1011-o1012

Crystal structure of N-[3-(2-chloro­benzo­yl)-5-ethyl­thio­phen-2-yl]-2-[(E)-(2-hy­dr­oxy­benzyl­­idene)amino]­acetamide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 24 July 2014; accepted 8 August 2014; online 16 August 2014)

In the title compound, C22H19ClN2O3S, the dihedral angle between the mean planes of the thio­phene ring and the chloro­phenyl and hy­droxy­phenyl rings are 70.1 (1) and 40.2 (4)°, respectively. The benzene rings are twisted with respect to each other by 88.9 (3)°. The imine bond lies in an E conformation. Intra­molecular O—H⋯N and N—H⋯O hydrogen bonds each generate S(6) ring motifs. In the crystal, weak C—H⋯O inter­actions link the mol­ecules, forming chains along the c axis and zigzag chains along the b axis, generating sheets lying parallel to (100).

1. Related literature

For background to thio­phene derivatives, see: Molvi et al. (2007[Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049-1058.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For applications of 2-amino­thio­phene derivatives, see: Puterová et al. (2010[Puterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, (i), 209-246.]); Cannito et al. (1990[Cannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635-639.]); Nikolakopoulos et al. (2006[Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358-2365.]). For biological and industrial applications of Schiff bases, see: Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Aydogan et al. (2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For a related structure, see: Fun et al. (2012[Fun, H.-K., Chantrapromma, S., Dayananda, A. S., Yathirajan, H. S. & Ramesha, A. R. (2012). Acta Cryst. E68, o547-o548.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H19ClN2O3S

  • Mr = 426.90

  • Monoclinic, P 21 /c

  • a = 9.7888 (2) Å

  • b = 16.9476 (3) Å

  • c = 12.2863 (3) Å

  • β = 90.6654 (19)°

  • V = 2038.11 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.84 mm−1

  • T = 173 K

  • 0.32 × 0.28 × 0.18 mm

2.2. Data collection

  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.802, Tmax = 1.000

  • 14124 measured reflections

  • 3909 independent reflections

  • 3459 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.02

  • 3909 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.94 2.6611 (19) 146
N1—H1⋯O1 0.86 2.08 2.7177 (19) 130
C14—H14⋯O3i 0.93 2.56 3.405 (2) 152
C20—H20⋯O2ii 0.93 2.57 3.209 (2) 126
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Thiophene derivatives have been reported to exhibit a broad spectrum of biological properties such as anti-inflammatory, analgesic, anti-depressant, anti-microbial and anti-convulsant activities (Molvi et al., 2007; Rai et al., 2008). 2-Aminothiophene derivatives have been used in a number of applications in pesticides, dyes and pharmaceuticals. Reviews on the synthesis and properties of these compounds have been reported (Puterová et al., 2010). Substituted 2-aminothiophenes are active as allosteric enhancers at the human A1 adenosine receptor (Cannito et al.,1990; Nikolakopoulos et al., 2006). Schiff base compounds are an important class of compounds both synthetically and biologically. These compounds show biological properties including anti-bacterial, anti-fungal, anti-cancer and herbicidal activities (Desai et al., 2001; Singh & Dash, 1988). Furthermore, Schiff bases are utilized as starting materials in the synthesis of compounds of industrial (Aydogan et al., 2001) and biological interest such as β-lactams (Taggi et al., 2002). The crystal and molecular structure of the reactant 2-aminothiophene has been previously reported by our group (Fun et al., 2012). In view of the importance of 2-aminothiphenes and Schiff bases, we report herein the crystal structure of the Schiff base of the previously reported 2-aminothiophene, the title compound, C22H19ClN2O3S, (I).

In (I), the dihedral angle between the mean planes of the thiophene ring and the chlorophenyl and hydroxyphenyl rings is 70.1 (1)° and 40.2 (4)°, respectively (Fig. 1). The two phenyl rings are twisted with respect to each other by 88.9 (3)°. The imine bond lies in an E conformation. Bond lengths are in normal ranges (Allen et al., 1987). Intramolecular O3—H3···N2 and N1—H1···O1 hydrogen bonds each generate S(6) ring motifs (Table 1). In the crystal, weak C14–H···O3 intermolecular interactions link the molecules forming infinite one-dimensional linear chains along the c axis while weak C20—H···O2 intermolecular interactions form zig-zag chains along the b axis, generating a two- dimensional network structure lying parallel to (100) (Fig. 2).

Related literature top

For the importance of thiophene derivatives, see: Molvi et al. (2007); Rai et al. (2008). For applications of 2-aminothiophene derivatives, see: Puterová et al. (2010); Cannito et al. (1990); Nikolakopoulos et al. (2006). For biological and industrial applications of Schiff bases, see: Desai et al. (2001); Singh & Dash (1988); Aydogan et al. (2001); Taggi et al. (2002). For a related structure, see: Fun et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of 2-amino-N-[3-(2-chloro-benzoyl)-5-ethyl-thiophen-2-yl]- acetamide (200 mg, 0.62 mmol) in 10 ml of methanol an equimolar amount of salicylaldehyde (76 mg, 0.62 mmol) was added dropwise with constant stirring. The mixture was refluxed for 4 hours producing a pale yellow precipitate. The reaction completion was confirmed by thin layer chromatography. The precipitate was filtered and dried at room temperature overnight. The solid was recrystallized using dichloromethane and the crystals were used as such for X-ray diffraction studies.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93Å (CH); 0.97Å (CH2); 0.96Å (CH3); 0.82Å (OH) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me and OH were refined as rotating groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of C22H19N2O3SCl showing the labeling scheme of the molecule with 30% probability displacement ellipsoids. Dashed lines inidicate O—H···N and N—H···O intramolecular hydrogen bonds.
[Figure 2] Fig. 2. Molecular packing for C22H19ClN2O3S in the unit cell viewed along the a axis. Dashed lines indicate weak C—H···O intermolecular interactions which interlink the molecules forming chains along the b and c axes. H atoms not involved in hydrogen- bonding have been removed for clarity.
N-[3-(2-Chlorobenzoyl)-5-ethylthiophen-2-yl]-2-[(E)-(2-hydroxybenzylidene)amino]acetamide top
Crystal data top
C22H19ClN2O3SF(000) = 888
Mr = 426.90Dx = 1.391 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.7888 (2) ÅCell parameters from 6410 reflections
b = 16.9476 (3) Åθ = 4.4–71.5°
c = 12.2863 (3) ŵ = 2.84 mm1
β = 90.6654 (19)°T = 173 K
V = 2038.11 (7) Å3Irregular, pale yellow
Z = 40.32 × 0.28 × 0.18 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3909 independent reflections
Radiation source: Enhance (Cu) X-ray Source3459 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.028
ω scansθmax = 71.4°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1210
Tmin = 0.802, Tmax = 1.000k = 1520
14124 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.7231P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3909 reflectionsΔρmax = 0.42 e Å3
264 parametersΔρmin = 0.29 e Å3
0 restraints
Crystal data top
C22H19ClN2O3SV = 2038.11 (7) Å3
Mr = 426.90Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.7888 (2) ŵ = 2.84 mm1
b = 16.9476 (3) ÅT = 173 K
c = 12.2863 (3) Å0.32 × 0.28 × 0.18 mm
β = 90.6654 (19)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3909 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3459 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 1.000Rint = 0.028
14124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
3909 reflectionsΔρmin = 0.29 e Å3
264 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3): δ 12.39 (s, 1H), 12.18 (s, 1H), 8.51 (s, 1H), 7.45-7.28 (m, 6H), 7.06 (d, J = 8.4 Hz, 1H), 6.92 (t, J = 7.6 Hz, 1H), 6.38 (d, J = 1.2 Hz, 1H), 4.61 (s, 2H), 2.70 (q, J = 7.6 Hz, 2H), 1.27-1.23 (m, 3H).

13C NMR (400 MHz, CDCl3): δ 191.0, 169.4, 166.8, 160.7, 148.4, 139.4, 137.4, 133.3, 132.3, 130.7, 130.5, 129.9, 128.3, 126.6, 121.3, 121.2, 121.1, 119.0, 118.4, 117.4, 62.8, 22.8, 15.5.

MS: m/z = 426.91 (Calculated), m/z = 426.94 [M]+ (found).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51629 (5)0.31401 (3)0.21556 (4)0.04758 (15)
S10.72524 (4)0.53992 (2)0.03408 (3)0.03034 (13)
O10.90220 (15)0.32692 (8)0.14607 (11)0.0450 (4)
O20.89582 (15)0.48587 (9)0.19425 (12)0.0488 (4)
O31.20084 (14)0.26518 (8)0.07197 (10)0.0389 (3)
H31.16190.29590.03040.058*
N10.89927 (14)0.41330 (9)0.04031 (11)0.0298 (3)
H10.93530.37310.00840.036*
N21.09746 (14)0.31536 (9)0.11697 (11)0.0296 (3)
C10.81400 (18)0.37146 (11)0.18143 (14)0.0337 (4)
C20.75997 (17)0.43810 (10)0.12005 (14)0.0301 (4)
C30.65870 (17)0.49297 (10)0.15660 (14)0.0312 (4)
H3A0.61720.48930.22410.037*
C40.62912 (17)0.55044 (10)0.08380 (14)0.0303 (4)
C50.80425 (17)0.45664 (10)0.01659 (14)0.0277 (3)
C60.76476 (19)0.35931 (11)0.29613 (14)0.0347 (4)
C70.6345 (2)0.33302 (10)0.31984 (15)0.0361 (4)
C80.5958 (2)0.31975 (11)0.42645 (17)0.0459 (5)
H80.50780.30250.44160.055*
C90.6891 (3)0.33232 (14)0.50999 (17)0.0542 (6)
H90.66420.32260.58160.065*
C100.8190 (3)0.35918 (16)0.48780 (18)0.0579 (6)
H100.88110.36790.54430.069*
C110.8567 (2)0.37316 (14)0.38070 (17)0.0479 (5)
H110.94380.39190.36580.058*
C120.93954 (17)0.42990 (11)0.14303 (14)0.0325 (4)
C131.04302 (19)0.37442 (12)0.19171 (14)0.0366 (4)
H13A1.00070.34760.25310.044*
H13B1.11840.40540.21930.044*
C141.13375 (17)0.24926 (10)0.15744 (13)0.0288 (3)
H141.11910.24040.23140.035*
C151.19709 (17)0.18724 (10)0.09226 (14)0.0285 (3)
C161.22675 (17)0.19676 (10)0.01912 (13)0.0289 (3)
C171.28505 (19)0.13503 (12)0.07805 (15)0.0376 (4)
H171.30400.14120.15190.045*
C181.3150 (2)0.06443 (12)0.02676 (18)0.0461 (5)
H181.35420.02340.06650.055*
C191.2869 (2)0.05440 (12)0.08316 (19)0.0483 (5)
H191.30710.00680.11710.058*
C201.2291 (2)0.11509 (11)0.14174 (15)0.0387 (4)
H201.21090.10820.21560.046*
C210.52840 (19)0.61717 (10)0.09042 (17)0.0373 (4)
H21A0.47030.61630.02590.045*
H21B0.57800.66670.09070.045*
C220.43888 (19)0.61370 (11)0.19068 (16)0.0387 (4)
H22A0.49480.61930.25490.058*
H22B0.39220.56390.19270.058*
H22C0.37310.65570.18770.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0494 (3)0.0435 (3)0.0499 (3)0.0040 (2)0.0038 (2)0.0039 (2)
S10.0306 (2)0.0277 (2)0.0327 (2)0.00170 (15)0.00142 (16)0.00588 (15)
O10.0500 (8)0.0504 (8)0.0350 (7)0.0261 (6)0.0130 (6)0.0114 (6)
O20.0476 (8)0.0570 (9)0.0421 (8)0.0170 (7)0.0090 (6)0.0233 (7)
O30.0495 (8)0.0438 (7)0.0234 (6)0.0149 (6)0.0037 (5)0.0071 (5)
N10.0283 (7)0.0330 (7)0.0281 (7)0.0051 (6)0.0024 (5)0.0060 (6)
N20.0289 (7)0.0377 (8)0.0222 (7)0.0016 (6)0.0019 (5)0.0006 (6)
C10.0326 (9)0.0373 (9)0.0313 (9)0.0087 (7)0.0046 (7)0.0046 (7)
C20.0282 (8)0.0329 (9)0.0292 (8)0.0048 (7)0.0022 (6)0.0026 (7)
C30.0300 (8)0.0319 (8)0.0318 (9)0.0039 (7)0.0013 (7)0.0003 (7)
C40.0290 (8)0.0273 (8)0.0346 (9)0.0004 (6)0.0021 (7)0.0009 (7)
C50.0263 (8)0.0279 (8)0.0287 (8)0.0002 (6)0.0025 (6)0.0032 (6)
C60.0397 (9)0.0348 (9)0.0298 (9)0.0162 (7)0.0055 (7)0.0061 (7)
C70.0450 (10)0.0277 (8)0.0358 (9)0.0076 (7)0.0076 (8)0.0017 (7)
C80.0620 (13)0.0324 (9)0.0438 (11)0.0026 (9)0.0207 (10)0.0019 (8)
C90.0804 (17)0.0517 (13)0.0308 (10)0.0159 (11)0.0193 (10)0.0085 (9)
C100.0647 (15)0.0753 (16)0.0335 (11)0.0231 (12)0.0056 (10)0.0055 (10)
C110.0395 (10)0.0667 (14)0.0376 (10)0.0179 (9)0.0027 (8)0.0057 (9)
C120.0276 (8)0.0414 (10)0.0284 (8)0.0007 (7)0.0002 (6)0.0081 (7)
C130.0366 (9)0.0484 (10)0.0248 (8)0.0064 (8)0.0062 (7)0.0085 (7)
C140.0292 (8)0.0382 (9)0.0190 (7)0.0056 (7)0.0013 (6)0.0014 (6)
C150.0268 (8)0.0330 (8)0.0259 (8)0.0054 (6)0.0029 (6)0.0027 (6)
C160.0261 (8)0.0356 (9)0.0251 (8)0.0002 (6)0.0044 (6)0.0024 (7)
C170.0362 (9)0.0472 (10)0.0296 (9)0.0042 (8)0.0031 (7)0.0032 (8)
C180.0521 (12)0.0377 (10)0.0486 (12)0.0065 (9)0.0031 (9)0.0087 (9)
C190.0615 (13)0.0306 (9)0.0529 (12)0.0017 (9)0.0053 (10)0.0071 (9)
C200.0465 (10)0.0366 (10)0.0330 (9)0.0048 (8)0.0006 (8)0.0080 (7)
C210.0339 (9)0.0270 (8)0.0511 (11)0.0046 (7)0.0016 (8)0.0019 (8)
C220.0364 (9)0.0349 (9)0.0447 (10)0.0069 (7)0.0049 (8)0.0103 (8)
Geometric parameters (Å, º) top
Cl1—C71.746 (2)C9—C101.381 (4)
S1—C41.7453 (18)C10—H100.9300
S1—C51.7223 (16)C10—C111.391 (3)
O1—C11.230 (2)C11—H110.9300
O2—C121.214 (2)C12—C131.511 (3)
O3—H30.8200C13—H13A0.9700
O3—C161.354 (2)C13—H13B0.9700
N1—H10.8600C14—H140.9300
N1—C51.382 (2)C14—C151.456 (2)
N1—C121.356 (2)C15—C161.405 (2)
N2—C131.455 (2)C15—C201.403 (2)
N2—C141.278 (2)C16—C171.391 (3)
C1—C21.454 (2)C17—H170.9300
C1—C61.509 (2)C17—C181.385 (3)
C2—C31.435 (2)C18—H180.9300
C2—C51.384 (2)C18—C191.386 (3)
C3—H3A0.9300C19—H190.9300
C3—C41.351 (2)C19—C201.373 (3)
C4—C211.503 (2)C20—H200.9300
C6—C71.385 (3)C21—H21A0.9700
C6—C111.387 (3)C21—H21B0.9700
C7—C81.386 (3)C21—C221.521 (3)
C8—H80.9300C22—H22A0.9600
C8—C91.382 (4)C22—H22B0.9600
C9—H90.9300C22—H22C0.9600
C5—S1—C491.60 (8)N1—C12—C13116.29 (15)
C16—O3—H3109.5N2—C13—C12114.87 (14)
C5—N1—H1117.8N2—C13—H13A108.5
C12—N1—H1117.8N2—C13—H13B108.5
C12—N1—C5124.42 (15)C12—C13—H13A108.5
C14—N2—C13117.32 (14)C12—C13—H13B108.5
O1—C1—C2123.10 (16)H13A—C13—H13B107.5
O1—C1—C6118.64 (15)N2—C14—H14118.7
C2—C1—C6118.17 (14)N2—C14—C15122.52 (15)
C3—C2—C1126.12 (15)C15—C14—H14118.7
C5—C2—C1122.47 (15)C16—C15—C14122.33 (15)
C5—C2—C3111.41 (15)C20—C15—C14119.14 (15)
C2—C3—H3A123.1C20—C15—C16118.53 (16)
C4—C3—C2113.79 (16)O3—C16—C15121.85 (15)
C4—C3—H3A123.1O3—C16—C17118.19 (15)
C3—C4—S1111.23 (13)C17—C16—C15119.97 (16)
C3—C4—C21129.94 (17)C16—C17—H17120.0
C21—C4—S1118.82 (14)C18—C17—C16120.03 (17)
N1—C5—S1123.71 (13)C18—C17—H17120.0
N1—C5—C2124.32 (15)C17—C18—H18119.7
C2—C5—S1111.96 (13)C17—C18—C19120.58 (19)
C7—C6—C1123.05 (17)C19—C18—H18119.7
C7—C6—C11119.20 (17)C18—C19—H19120.2
C11—C6—C1117.73 (17)C20—C19—C18119.65 (18)
C6—C7—Cl1120.58 (14)C20—C19—H19120.2
C6—C7—C8120.9 (2)C15—C20—H20119.4
C8—C7—Cl1118.52 (17)C19—C20—C15121.23 (18)
C7—C8—H8120.3C19—C20—H20119.4
C9—C8—C7119.4 (2)C4—C21—H21A108.9
C9—C8—H8120.3C4—C21—H21B108.9
C8—C9—H9119.8C4—C21—C22113.53 (16)
C10—C9—C8120.41 (19)H21A—C21—H21B107.7
C10—C9—H9119.8C22—C21—H21A108.9
C9—C10—H10120.1C22—C21—H21B108.9
C9—C10—C11119.9 (2)C21—C22—H22A109.5
C11—C10—H10120.1C21—C22—H22B109.5
C6—C11—C10120.2 (2)C21—C22—H22C109.5
C6—C11—H11119.9H22A—C22—H22B109.5
C10—C11—H11119.9H22A—C22—H22C109.5
O2—C12—N1122.69 (17)H22B—C22—H22C109.5
O2—C12—C13121.02 (16)
Cl1—C7—C8—C9178.20 (15)C5—S1—C4—C21178.57 (14)
S1—C4—C21—C22172.69 (13)C5—N1—C12—O20.9 (3)
O1—C1—C2—C3179.10 (19)C5—N1—C12—C13179.01 (16)
O1—C1—C2—C50.1 (3)C5—C2—C3—C40.4 (2)
O1—C1—C6—C7111.3 (2)C6—C1—C2—C32.5 (3)
O1—C1—C6—C1166.8 (3)C6—C1—C2—C5176.43 (17)
O2—C12—C13—N2173.46 (17)C6—C7—C8—C90.6 (3)
O3—C16—C17—C18179.09 (18)C7—C6—C11—C101.3 (3)
N1—C12—C13—N26.6 (2)C7—C8—C9—C101.1 (3)
N2—C14—C15—C162.1 (2)C8—C9—C10—C110.5 (4)
N2—C14—C15—C20177.49 (16)C9—C10—C11—C60.8 (4)
C1—C2—C3—C4178.67 (17)C11—C6—C7—Cl1179.40 (15)
C1—C2—C5—S1178.41 (14)C11—C6—C7—C80.7 (3)
C1—C2—C5—N12.3 (3)C12—N1—C5—S11.4 (2)
C1—C6—C7—Cl11.3 (2)C12—N1—C5—C2177.77 (17)
C1—C6—C7—C8177.39 (16)C13—N2—C14—C15176.28 (15)
C1—C6—C11—C10176.8 (2)C14—N2—C13—C12149.92 (16)
C2—C1—C6—C772.0 (2)C14—C15—C16—O31.5 (3)
C2—C1—C6—C11110.0 (2)C14—C15—C16—C17178.81 (15)
C2—C3—C4—S10.1 (2)C14—C15—C20—C19178.92 (18)
C2—C3—C4—C21178.74 (17)C15—C16—C17—C180.6 (3)
C3—C2—C5—S10.69 (19)C16—C15—C20—C190.7 (3)
C3—C2—C5—N1178.61 (16)C16—C17—C18—C190.2 (3)
C3—C4—C21—C226.1 (3)C17—C18—C19—C200.1 (3)
C4—S1—C5—N1178.67 (15)C18—C19—C20—C150.4 (3)
C4—S1—C5—C20.63 (14)C20—C15—C16—O3178.86 (16)
C5—S1—C4—C30.40 (14)C20—C15—C16—C170.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.942.6611 (19)146
N1—H1···O10.862.082.7177 (19)130
C14—H14···O3i0.932.563.405 (2)152
C20—H20···O2ii0.932.573.209 (2)126
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.942.6611 (19)146
N1—H1···O10.862.082.7177 (19)130
C14—H14···O3i0.932.563.405 (2)152
C20—H20···O2ii0.932.573.209 (2)126
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z1/2.
 

Acknowledgements

MK is grateful to CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationCannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639.  CrossRef CAS Web of Science Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Dayananda, A. S., Yathirajan, H. S. & Ramesha, A. R. (2012). Acta Cryst. E68, o547–o548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPuterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, (i), 209–246.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1011-o1012
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds