metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m339-m340

Crystal structure of bis­­{N-[2-(di­methyl­amino)­eth­yl]quinolin-8-amine-κ3N,N′,N′′}nickel(II) dichloride 3.5-hydrate

aSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and bDepartment of Chemistry, College of Science, Baghdad University for Women, Baghdad, Iraq
*Correspondence e-mail: alsudani@uobaghdad.edu.iq

Edited by G. Smith, Queensland University of Technology, Australia (Received 10 August 2014; accepted 22 August 2014; online 30 August 2014)

In the title compound, [Ni(C13H17N3)2]Cl2·3.5H2O, the geom­etry of the NiN6 complex cation is slightly distorted octa­hedral, with a facial arrangement of the two tridentate N-[2-(di­­methyl­amino)­eth­yl]quinolin-8-amine ligands around the metal ion. The asymmetric unit consists of two independent complex half-mol­ecules located on centres of inversion, together with two chloride counter-anions and 3.5 water mol­ecules of solvation, one of which is disordered across an inversion centre. In the crystal, O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen-bonding inter­actions form a three-dimensional network structure.

1. Related literature

For background to N-containing ligands, including quinoline derivatives, see: Kizirian (2008[Kizirian, J.-C. (2008). Chem. Rev. 108, 140-205.]); Miodragovic et al. (2008[Miodragovic, D. U., Mitic, D. M., Miodragovic, Z. M., Bogdanovic, G. A. & Vitnik, Z. (2008). Inorg. Chim. Acta, 361, 86-94.]); Puviarasan et al. (2004[Puviarasan, N., Arjunan, V. & Mohan, S. (2004). Turk. J. Chem. 28, 53-65.]); Singh et al. (2008[Singh, A. K., Kumari, S. & Kumar, K. R. (2008). Polyhedron, 27, 181-186.]); Zhang et al. (2009[Zhang, J.-A., Pan, M., Zhang, J.-Y., Kang, B.-S. & Su, C.-Y. (2009). Inorg. Chim. Acta, 362, 3519-3525.]). For complexes incorporating N-[2-(di­methyl­amino)­eth­yl]quinolin-8-amine, see: Al-Sudani & Kariuki (2013[Al-Sudani, A.-R. H. & Kariuki, B. M. (2013). Acta Cryst. E69, m491-m492.]); Al-Sudani (2014[Al-Sudani, A.-R. H. (2014). Acta Cryst. E70, m1.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(C13H17N3)2]Cl2·3.5H2O

  • Mr = 623.26

  • Triclinic, [P \overline 1]

  • a = 10.6940 (2) Å

  • b = 11.8612 (4) Å

  • c = 12.1088 (3) Å

  • α = 90.520 (1)°

  • β = 101.181 (2)°

  • γ = 102.259 (2)°

  • V = 1470.39 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 150 K

  • 0.18 × 0.16 × 0.08 mm

2.1.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.857, Tmax = 0.933

  • 10258 measured reflections

  • 6714 independent reflections

  • 5592 reflections with I > 2σ(I)

  • Rint = 0.023

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.090

  • S = 1.03

  • 6714 reflections

  • 383 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl2 1.00 2.27 3.2038 (18) 155
N5—H5⋯Cl1 1.00 2.33 3.2715 (19) 156
O1—H1O1⋯O2i 0.83 (1) 1.71 (1) 2.541 (5) 173 (6)
O1—H2O1⋯O2ii 0.84 (1) 2.05 (2) 2.863 (5) 165 (6)
O2—H1O2⋯Cl2iii 0.84 (1) 2.33 (1) 3.162 (3) 172 (4)
O2—H2O2⋯Cl1iv 0.83 (1) 2.37 (2) 3.179 (2) 163 (4)
O3—H1O3⋯Cl2v 0.85 (1) 2.38 (1) 3.222 (2) 174 (3)
O3—H2O3⋯Cl1v 0.85 (1) 2.36 (1) 3.2008 (19) 170 (3)
O4—H1O4⋯O1vi 0.85 (1) 1.91 (1) 2.755 (5) 177 (4)
O4—H2O4⋯Cl1 0.85 (1) 2.33 (1) 3.180 (3) 173 (3)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+2; (iii) -x, -y+1, -z+1; (iv) x, y, z+1; (v) -x+1, -y+1, -z+1; (vi) x, y+1, z-1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As stated previously, (Al-Sudani & Kariuki, 2013), metal complexes of N-containing ligands occupy an important position in coordination chemistry (Singh et al., 2008; Miodragovic et al., 2008; Zhang et al., 2009). Some quinoline-containing ligands show interesting biological activities (Puviarasan et al., 2004). 8-[2-(dimethylamino)ethylamino]quinoline (NN'N"), is an asymmetric and potentially tridentate chelating ligand with the same donor atoms. With zinc (Al-Sudani, 2014) and cadmium ions (Al-Sudani & Kariuki, 2013), it forms neutral 1:1 metal to ligand mole ratio complexes with monomeric distorted square-pyrimidal and dimeric distorted octahedral geometries, respectively.

In the nickel(II) complex with the ligand 8-[2-(dimethylamino)ethylamino] quinoline, the title compound, C26H34N6Ni · 2Cl · 3.5(H2O), is ionic with a 1:2 metal to ligand mole ratio and has a slightly distorted bis-tridentate NiN6 octahedral coordination [Ni—N bond length range, 2.0777 (16)–2.2397 (17) Å] (Fig. 1). The asymmetric unit consists of two independent half molecules with the Ni2+ ions (Ni1 and Ni2) located on centres of inversion, as well as two chloride anions and 3.5 water molecules, one of which (O1) is disordered across an inversion centre. A network of O—H···O, O—H···Cl and N—H···Cl hydtrogen-bonding interactions are present in the crystal structure (Table 1) giving a three-dimensional network (Fig. 2). In the three complexes with this ligand (Zn, Cd and Ni), the unequivelant nitrogen donor atoms of the ligands are arranged facially around the metal ion.

Related literature top

For background to N-containing ligands, including quinoline derivatives, see: Kizirian (2008); Miodragovic et al. (2008); Puviarasan et al. (2004); Singh et al. (2008); Zhang et al.(2009). For complexes incorporating N-[2-(dimethylamino)ethyl]quinolin-8-amine, see: Al-Sudani & Kariuki (2013); Al-Sudani (2014).

Experimental top

To a stirred methanoic solution (30 ml) containing a slight excess of the ligand (NN'N") (0.9 g; 0.0042 mol) kept under a positive nitrogen pressure, a methanoic solution (20 ml) of NiCl2 . 6H2O (0.47 g; 0.002 mol) was slowly added. The resulting brownish violet solution was stirred at room temperature overnight. A small amount of anhydrous MgSO4 was added and the reaction solution was stirred for a further one hour. After the removal of the drying agent by filtration, the solvent was removed by vacuum. The solid was washed twice with a small amount of diethyl ether (15 ml) to remove any of the unreacted ligand and was then dried under vacuum at 50 °C. The mass of the collected solid was 0.5 g which, based on the molecular formula of [Ni(NN'N")2] Cl2 represented a yield of ca. 45%. A suitable light brown–violet block shaped crystal of the title complex was obtained via slow diffusion of diethyl ether into a small amount of an acetonitrile solution of the compound kept under an atmosphere of nitrogen gas. Single crystal X-ray structure determination has identified the complex as [Ni(NN'N")2] Cl2·3.5H2O. In the process of measuring the melting point, the colour of the crystalline brown–violet solid changed to pale green and finally to very dark green. The dark green material was identified as a bimetallic complex of the formula [Ni(NN'N")Cl2]2 which decomposed at ca. 240 °C.

Refinement top

H atoms were positioned geometrically (C—H = 0.95–0.99 Å and N—H = 1.00 Å) and refined using a riding model, with Uiso(H) constrained to be 1.2 times Ueq of the bonded atom except for the methyl groups where it was 1.5 times with free rotation about the C—C bond. The geometry of the water molecules was constrained during refinement with O—H = 0.84 (2) Å and Uiso(H) = 1.5 times Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric of the title complex showing atom labels and 50% probability displacement ellipsoids. Hydrogen atoms have been omitted.
[Figure 2] Fig. 2. Packing in the crystal structure showing the O—H···O, O—H···Cl and N—H···Cl interactions as dotted lines.
Bis{N-[2-(dimethylamino)ethyl]quinolin-8-amine-κ3N,N',N''}nickel(II) dichloride 3.5-hydrate top
Crystal data top
[Ni(C13H17N3)2]Cl2·3.5H2OZ = 2
Mr = 623.26F(000) = 658
Triclinic, P1Dx = 1.408 Mg m3
a = 10.6940 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8612 (4) ÅCell parameters from 5592 reflections
c = 12.1088 (3) Åθ = 2.0–25.2°
α = 90.520 (1)°µ = 0.88 mm1
β = 101.181 (2)°T = 150 K
γ = 102.259 (2)°Block, violet
V = 1470.39 (7) Å30.18 × 0.16 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
6714 independent reflections
Radiation source: fine-focus sealed tube5592 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
CCD slices, ω and ϕ scansθmax = 27.7°, θmin = 2.0°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.857, Tmax = 0.933k = 1415
10258 measured reflectionsl = 1515
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0261P)2 + 1.4643P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6714 reflectionsΔρmax = 0.46 e Å3
383 parametersΔρmin = 0.59 e Å3
Crystal data top
[Ni(C13H17N3)2]Cl2·3.5H2Oγ = 102.259 (2)°
Mr = 623.26V = 1470.39 (7) Å3
Triclinic, P1Z = 2
a = 10.6940 (2) ÅMo Kα radiation
b = 11.8612 (4) ŵ = 0.88 mm1
c = 12.1088 (3) ÅT = 150 K
α = 90.520 (1)°0.18 × 0.16 × 0.08 mm
β = 101.181 (2)°
Data collection top
Nonius KappaCCD
diffractometer
6714 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
5592 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.933Rint = 0.023
10258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03912 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
6714 reflectionsΔρmin = 0.59 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1605 (2)0.0934 (2)0.70598 (18)0.0262 (5)
H10.07990.13820.71800.031*
C20.2745 (2)0.0947 (2)0.78635 (19)0.0335 (5)
H20.27030.13980.85050.040*
C30.3911 (2)0.0301 (2)0.7709 (2)0.0336 (5)
H30.46850.02830.82550.040*
C40.3964 (2)0.0340 (2)0.67356 (19)0.0277 (5)
C50.27726 (19)0.02971 (18)0.59635 (17)0.0212 (4)
C60.27629 (19)0.09175 (18)0.49678 (18)0.0224 (4)
C70.3910 (2)0.1567 (2)0.4765 (2)0.0302 (5)
H70.39080.19830.40980.036*
C80.5094 (2)0.1622 (2)0.5540 (2)0.0358 (6)
H80.58810.20800.53910.043*
C90.5123 (2)0.1027 (2)0.6499 (2)0.0340 (5)
H90.59280.10750.70120.041*
C100.1447 (2)0.00486 (19)0.31787 (17)0.0254 (4)
H10A0.22630.02720.28860.030*
H10B0.07090.01420.25780.030*
C110.1257 (2)0.11934 (19)0.34988 (18)0.0248 (4)
H11A0.12140.16980.28310.030*
H11B0.20100.12880.40830.030*
C120.1075 (2)0.1898 (2)0.29630 (19)0.0314 (5)
H12A0.09590.25770.25590.047*
H12B0.10960.12620.24540.047*
H12C0.18970.20900.32330.047*
C130.0092 (2)0.25829 (19)0.45980 (19)0.0298 (5)
H13A0.02020.32080.41150.045*
H13B0.07190.28270.48790.045*
H13C0.08340.24010.52370.045*
C140.4792 (2)0.57059 (19)0.24055 (17)0.0241 (4)
H140.40000.59220.20810.029*
C150.5159 (2)0.5735 (2)0.35907 (18)0.0279 (5)
H150.46340.59880.40490.034*
C160.6272 (2)0.5397 (2)0.40723 (18)0.0285 (5)
H160.65250.54110.48700.034*
C170.7048 (2)0.50270 (19)0.33842 (17)0.0239 (4)
C180.66485 (19)0.50777 (17)0.21999 (16)0.0204 (4)
C190.7417 (2)0.47741 (18)0.14687 (17)0.0215 (4)
C200.8527 (2)0.43944 (19)0.18998 (18)0.0262 (5)
H200.90510.41990.14090.031*
C210.8896 (2)0.4292 (2)0.30789 (19)0.0285 (5)
H210.96490.40010.33690.034*
C220.8183 (2)0.4607 (2)0.37999 (18)0.0268 (5)
H220.84510.45440.45880.032*
C230.2283 (2)0.4009 (2)0.01160 (18)0.0269 (5)
H23A0.13440.38830.02340.032*
H23B0.23690.40710.09440.032*
C240.2821 (2)0.2997 (2)0.02055 (19)0.0278 (5)
H24A0.23250.22760.00470.033*
H24B0.27050.29220.10360.033*
C250.4344 (2)0.2817 (2)0.15013 (18)0.0282 (5)
H25A0.39040.20060.15220.042*
H25B0.39360.33070.19100.042*
H25C0.52690.29200.18560.042*
C260.4790 (2)0.2333 (2)0.0273 (2)0.0321 (5)
H26A0.57160.24190.00700.048*
H26B0.47020.25000.10720.048*
H26C0.43230.15390.02030.048*
Cl10.17945 (7)0.69447 (6)0.09796 (5)0.04344 (16)
Cl20.17828 (6)0.32313 (5)0.30115 (5)0.03642 (14)
N10.15965 (16)0.03312 (15)0.61464 (14)0.0205 (3)
N20.15207 (16)0.08100 (15)0.41938 (14)0.0203 (3)
H2A0.13920.15900.39580.024*
N30.00298 (16)0.15441 (15)0.39384 (14)0.0216 (4)
N40.54994 (16)0.53923 (15)0.17267 (14)0.0211 (4)
N50.30146 (16)0.51031 (16)0.02755 (14)0.0220 (4)
H50.29170.57840.01670.026*
N60.42293 (17)0.31473 (15)0.03107 (14)0.0235 (4)
Ni10.00000.00000.50000.01664 (9)
Ni20.50000.50000.00000.01794 (9)
O10.0938 (4)0.0324 (3)0.9528 (3)0.0467 (9)0.5
H1O10.059 (6)0.0378 (15)0.943 (6)0.070*0.5
H2O10.055 (6)0.065 (4)0.992 (5)0.070*0.5
O20.0033 (3)0.8165 (2)0.91596 (19)0.0614 (6)
H1O20.038 (4)0.778 (3)0.8572 (18)0.092*
H2O20.034 (4)0.776 (3)0.966 (2)0.092*
O30.78812 (19)0.40276 (17)0.65477 (15)0.0400 (4)
H1O30.794 (3)0.4737 (10)0.670 (2)0.060*
H2O30.804 (3)0.374 (2)0.7181 (14)0.060*
O40.2998 (2)0.9624 (2)0.0870 (2)0.0639 (6)
H1O40.238 (3)0.987 (3)0.046 (3)0.096*
H2O40.274 (4)0.8898 (11)0.093 (4)0.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0267 (11)0.0283 (12)0.0244 (10)0.0095 (9)0.0033 (9)0.0018 (9)
C20.0372 (13)0.0379 (14)0.0260 (11)0.0161 (11)0.0010 (10)0.0061 (10)
C30.0295 (12)0.0382 (14)0.0310 (12)0.0154 (10)0.0074 (10)0.0024 (10)
C40.0236 (10)0.0261 (12)0.0328 (11)0.0112 (9)0.0018 (9)0.0048 (9)
C50.0179 (9)0.0204 (10)0.0250 (10)0.0067 (8)0.0009 (8)0.0034 (8)
C60.0195 (10)0.0204 (10)0.0281 (10)0.0074 (8)0.0033 (8)0.0003 (8)
C70.0246 (11)0.0251 (12)0.0426 (13)0.0062 (9)0.0097 (10)0.0040 (10)
C80.0190 (10)0.0296 (13)0.0577 (16)0.0031 (9)0.0074 (10)0.0013 (11)
C90.0198 (10)0.0329 (13)0.0470 (14)0.0097 (9)0.0028 (10)0.0054 (11)
C100.0273 (11)0.0286 (12)0.0221 (10)0.0071 (9)0.0085 (8)0.0006 (9)
C110.0247 (10)0.0276 (12)0.0245 (10)0.0089 (9)0.0073 (8)0.0033 (9)
C120.0305 (12)0.0312 (13)0.0302 (12)0.0068 (10)0.0007 (9)0.0094 (10)
C130.0395 (13)0.0204 (11)0.0320 (12)0.0101 (9)0.0095 (10)0.0006 (9)
C140.0229 (10)0.0261 (11)0.0249 (10)0.0083 (9)0.0058 (8)0.0012 (9)
C150.0315 (12)0.0333 (13)0.0224 (10)0.0100 (10)0.0104 (9)0.0000 (9)
C160.0331 (12)0.0327 (13)0.0198 (10)0.0073 (10)0.0053 (9)0.0009 (9)
C170.0251 (10)0.0234 (11)0.0220 (10)0.0046 (8)0.0024 (8)0.0027 (8)
C180.0199 (9)0.0187 (10)0.0203 (9)0.0025 (8)0.0003 (8)0.0015 (8)
C190.0225 (10)0.0205 (10)0.0210 (10)0.0045 (8)0.0032 (8)0.0025 (8)
C200.0250 (11)0.0266 (11)0.0278 (11)0.0075 (9)0.0049 (9)0.0039 (9)
C210.0234 (11)0.0312 (12)0.0311 (11)0.0105 (9)0.0003 (9)0.0074 (9)
C220.0273 (11)0.0297 (12)0.0207 (10)0.0057 (9)0.0012 (8)0.0062 (9)
C230.0221 (10)0.0345 (13)0.0253 (10)0.0069 (9)0.0065 (8)0.0096 (9)
C240.0245 (11)0.0268 (12)0.0287 (11)0.0002 (9)0.0027 (9)0.0039 (9)
C250.0331 (12)0.0265 (12)0.0268 (11)0.0087 (9)0.0074 (9)0.0078 (9)
C260.0436 (14)0.0224 (12)0.0353 (12)0.0120 (10)0.0143 (11)0.0018 (9)
Cl10.0589 (4)0.0479 (4)0.0332 (3)0.0311 (3)0.0112 (3)0.0026 (3)
Cl20.0428 (3)0.0371 (3)0.0393 (3)0.0192 (3)0.0201 (3)0.0156 (3)
N10.0195 (8)0.0222 (9)0.0202 (8)0.0077 (7)0.0013 (7)0.0009 (7)
N20.0191 (8)0.0208 (9)0.0216 (8)0.0067 (7)0.0029 (7)0.0015 (7)
N30.0221 (8)0.0204 (9)0.0223 (8)0.0060 (7)0.0031 (7)0.0016 (7)
N40.0222 (8)0.0229 (9)0.0183 (8)0.0057 (7)0.0032 (7)0.0013 (7)
N50.0224 (8)0.0249 (9)0.0196 (8)0.0075 (7)0.0037 (7)0.0026 (7)
N60.0257 (9)0.0212 (9)0.0235 (9)0.0062 (7)0.0039 (7)0.0035 (7)
Ni10.01521 (17)0.01787 (19)0.01697 (17)0.00518 (13)0.00185 (13)0.00047 (13)
Ni20.01852 (18)0.02006 (19)0.01495 (17)0.00518 (14)0.00156 (13)0.00111 (14)
O10.056 (2)0.028 (2)0.051 (2)0.0087 (18)0.0000 (19)0.0011 (17)
O20.0768 (16)0.0634 (15)0.0489 (12)0.0309 (13)0.0067 (11)0.0157 (11)
O30.0440 (10)0.0422 (11)0.0364 (9)0.0131 (9)0.0102 (8)0.0017 (8)
O40.0583 (14)0.0596 (15)0.0636 (15)0.0000 (12)0.0018 (11)0.0004 (12)
Geometric parameters (Å, º) top
C1—N11.322 (3)C19—N5i1.448 (3)
C1—C21.407 (3)C20—C211.419 (3)
C1—H10.9500C20—H200.9500
C2—C31.365 (3)C21—C221.362 (3)
C2—H20.9500C21—H210.9500
C3—C41.412 (3)C22—H220.9500
C3—H30.9500C23—N51.499 (3)
C4—C91.412 (3)C23—C241.515 (3)
C4—C51.418 (3)C23—H23A0.9900
C5—N11.378 (3)C23—H23B0.9900
C5—C61.418 (3)C24—N61.486 (3)
C6—C71.370 (3)C24—H24A0.9900
C6—N21.450 (3)C24—H24B0.9900
C7—C81.411 (3)C25—N61.486 (3)
C7—H70.9500C25—H25A0.9800
C8—C91.364 (4)C25—H25B0.9800
C8—H80.9500C25—H25C0.9800
C9—H90.9500C26—N61.480 (3)
C10—N21.498 (3)C26—H26A0.9800
C10—C111.508 (3)C26—H26B0.9800
C10—H10A0.9900C26—H26C0.9800
C10—H10B0.9900N1—Ni12.0909 (17)
C11—N31.491 (3)N2—Ni12.1189 (16)
C11—H11A0.9900N2—H2A1.0000
C11—H11B0.9900N3—Ni12.2374 (17)
C12—N31.485 (3)N4—Ni22.0778 (16)
C12—H12A0.9800N5—C19i1.448 (3)
C12—H12B0.9800N5—Ni22.1143 (17)
C12—H12C0.9800N5—H51.0000
C13—N31.481 (3)N6—Ni22.2397 (17)
C13—H13A0.9800Ni1—N1ii2.0909 (17)
C13—H13B0.9800Ni1—N2ii2.1189 (16)
C13—H13C0.9800Ni1—N3ii2.2373 (17)
C14—N41.319 (3)Ni2—N4i2.0777 (16)
C14—C151.411 (3)Ni2—N5i2.1144 (17)
C14—H140.9500Ni2—N6i2.2397 (17)
C15—C161.361 (3)O1—H1O10.833 (10)
C15—H150.9500O1—H2O10.836 (10)
C16—C171.411 (3)O2—H1O20.835 (10)
C16—H160.9500O2—H2O20.833 (10)
C17—C221.414 (3)O3—H1O30.846 (10)
C17—C181.420 (3)O3—H2O30.846 (10)
C18—N41.380 (3)O4—H1O40.848 (10)
C18—C191.411 (3)O4—H2O40.854 (10)
C19—C201.370 (3)
N1—C1—C2123.5 (2)H23A—C23—H23B108.2
N1—C1—H1118.2N6—C24—C23111.42 (18)
C2—C1—H1118.2N6—C24—H24A109.3
C3—C2—C1119.1 (2)C23—C24—H24A109.3
C3—C2—H2120.5N6—C24—H24B109.3
C1—C2—H2120.5C23—C24—H24B109.3
C2—C3—C4119.9 (2)H24A—C24—H24B108.0
C2—C3—H3120.1N6—C25—H25A109.5
C4—C3—H3120.1N6—C25—H25B109.5
C9—C4—C3124.0 (2)H25A—C25—H25B109.5
C9—C4—C5118.6 (2)N6—C25—H25C109.5
C3—C4—C5117.4 (2)H25A—C25—H25C109.5
N1—C5—C6117.79 (18)H25B—C25—H25C109.5
N1—C5—C4122.12 (19)N6—C26—H26A109.5
C6—C5—C4120.09 (19)N6—C26—H26B109.5
C7—C6—C5119.51 (19)H26A—C26—H26B109.5
C7—C6—N2123.0 (2)N6—C26—H26C109.5
C5—C6—N2117.51 (17)H26A—C26—H26C109.5
C6—C7—C8120.5 (2)H26B—C26—H26C109.5
C6—C7—H7119.8C1—N1—C5117.98 (18)
C8—C7—H7119.8C1—N1—Ni1128.92 (14)
C9—C8—C7120.8 (2)C5—N1—Ni1112.58 (13)
C9—C8—H8119.6C6—N2—C10110.88 (16)
C7—C8—H8119.6C6—N2—Ni1109.03 (12)
C8—C9—C4120.5 (2)C10—N2—Ni1106.62 (12)
C8—C9—H9119.7C6—N2—H2A110.1
C4—C9—H9119.7C10—N2—H2A110.1
N2—C10—C11109.39 (17)Ni1—N2—H2A110.1
N2—C10—H10A109.8C13—N3—C12106.35 (17)
C11—C10—H10A109.8C13—N3—C11108.99 (16)
N2—C10—H10B109.8C12—N3—C11108.26 (16)
C11—C10—H10B109.8C13—N3—Ni1112.67 (13)
H10A—C10—H10B108.2C12—N3—Ni1116.48 (13)
N3—C11—C10110.47 (17)C11—N3—Ni1103.85 (12)
N3—C11—H11A109.6C14—N4—C18118.37 (17)
C10—C11—H11A109.6C14—N4—Ni2129.17 (14)
N3—C11—H11B109.6C18—N4—Ni2111.46 (13)
C10—C11—H11B109.6C19i—N5—C23111.93 (16)
H11A—C11—H11B108.1C19i—N5—Ni2107.77 (12)
N3—C12—H12A109.5C23—N5—Ni2106.88 (12)
N3—C12—H12B109.5C19i—N5—H5110.1
H12A—C12—H12B109.5C23—N5—H5110.1
N3—C12—H12C109.5Ni2—N5—H5110.1
H12A—C12—H12C109.5C26—N6—C25106.69 (17)
H12B—C12—H12C109.5C26—N6—C24108.98 (17)
N3—C13—H13A109.5C25—N6—C24108.49 (16)
N3—C13—H13B109.5C26—N6—Ni2113.21 (13)
H13A—C13—H13B109.5C25—N6—Ni2117.61 (13)
N3—C13—H13C109.5C24—N6—Ni2101.49 (13)
H13A—C13—H13C109.5N1ii—Ni1—N1180.00 (9)
H13B—C13—H13C109.5N1ii—Ni1—N299.10 (6)
N4—C14—C15123.0 (2)N1—Ni1—N280.90 (6)
N4—C14—H14118.5N1ii—Ni1—N2ii80.90 (6)
C15—C14—H14118.5N1—Ni1—N2ii99.11 (6)
C16—C15—C14119.5 (2)N2—Ni1—N2ii180.00 (7)
C16—C15—H15120.3N1ii—Ni1—N3ii88.88 (6)
C14—C15—H15120.3N1—Ni1—N3ii91.12 (6)
C15—C16—C17119.85 (19)N2—Ni1—N3ii97.02 (6)
C15—C16—H16120.1N2ii—Ni1—N3ii82.98 (6)
C17—C16—H16120.1N1ii—Ni1—N391.12 (6)
C16—C17—C22124.18 (19)N1—Ni1—N388.88 (6)
C16—C17—C18117.32 (19)N2—Ni1—N382.98 (6)
C22—C17—C18118.50 (19)N2ii—Ni1—N397.02 (6)
N4—C18—C19118.02 (17)N3ii—Ni1—N3180.0
N4—C18—C17121.87 (18)N4i—Ni2—N4180.0
C19—C18—C17120.10 (19)N4i—Ni2—N581.04 (6)
C20—C19—C18119.92 (19)N4—Ni2—N598.96 (6)
C20—C19—N5i122.84 (18)N4i—Ni2—N5i98.96 (6)
C18—C19—N5i117.24 (18)N4—Ni2—N5i81.04 (6)
C19—C20—C21120.1 (2)N5—Ni2—N5i180.0
C19—C20—H20120.0N4i—Ni2—N689.87 (6)
C21—C20—H20120.0N4—Ni2—N690.13 (6)
C22—C21—C20120.8 (2)N5—Ni2—N684.17 (7)
C22—C21—H21119.6N5i—Ni2—N695.83 (7)
C20—C21—H21119.6N4i—Ni2—N6i90.13 (6)
C21—C22—C17120.5 (2)N4—Ni2—N6i89.87 (6)
C21—C22—H22119.7N5—Ni2—N6i95.83 (7)
C17—C22—H22119.7N5i—Ni2—N6i84.17 (7)
N5—C23—C24109.85 (17)N6—Ni2—N6i180.00 (4)
N5—C23—H23A109.7H1O1—O1—H2O1110 (3)
C24—C23—H23A109.7H1O2—O2—H2O2113 (2)
N5—C23—H23B109.7H1O3—O3—H2O3105 (2)
C24—C23—H23B109.7H1O4—O4—H2O4108 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl21.002.273.2038 (18)155
N5—H5···Cl11.002.333.2715 (19)156
O1—H1O1···O2iii0.83 (1)1.71 (1)2.541 (5)173 (6)
O1—H2O1···O2iv0.84 (1)2.05 (2)2.863 (5)165 (6)
O2—H1O2···Cl2v0.84 (1)2.33 (1)3.162 (3)172 (4)
O2—H2O2···Cl1vi0.83 (1)2.37 (2)3.179 (2)163 (4)
O3—H1O3···Cl2vii0.85 (1)2.38 (1)3.222 (2)174 (3)
O3—H2O3···Cl1vii0.85 (1)2.36 (1)3.2008 (19)170 (3)
O4—H1O4···O1viii0.85 (1)1.91 (1)2.755 (5)177 (4)
O4—H2O4···Cl10.85 (1)2.33 (1)3.180 (3)173 (3)
Symmetry codes: (iii) x, y1, z; (iv) x, y+1, z+2; (v) x, y+1, z+1; (vi) x, y, z+1; (vii) x+1, y+1, z+1; (viii) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl21.002.273.2038 (18)155
N5—H5···Cl11.002.333.2715 (19)156
O1—H1O1···O2i0.833 (10)1.711 (12)2.541 (5)173 (6)
O1—H2O1···O2ii0.836 (10)2.048 (17)2.863 (5)165 (6)
O2—H1O2···Cl2iii0.835 (10)2.333 (11)3.162 (3)172 (4)
O2—H2O2···Cl1iv0.833 (10)2.373 (15)3.179 (2)163 (4)
O3—H1O3···Cl2v0.846 (10)2.379 (10)3.222 (2)174 (3)
O3—H2O3···Cl1v0.846 (10)2.363 (11)3.2008 (19)170 (3)
O4—H1O4···O1vi0.848 (10)1.908 (11)2.755 (5)177 (4)
O4—H2O4···Cl10.854 (10)2.331 (12)3.180 (3)173 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+2; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x+1, y+1, z+1; (vi) x, y+1, z1.
 

Acknowledgements

Gratitude is expressed to Professor P. G. Edwards of the School of Chemistry, Cardiff University, for the opportunity for ARHAS to work in his laboratory as an academic visitor for many years, without which this work would not have been accomplished, as well as for his invaluable advice and financial support.

References

First citationAl-Sudani, A.-R. H. (2014). Acta Cryst. E70, m1.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Sudani, A.-R. H. & Kariuki, B. M. (2013). Acta Cryst. E69, m491–m492.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKizirian, J.-C. (2008). Chem. Rev. 108, 140–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiodragovic, D. U., Mitic, D. M., Miodragovic, Z. M., Bogdanovic, G. A. & Vitnik, Z. (2008). Inorg. Chim. Acta, 361, 86–94.  CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPuviarasan, N., Arjunan, V. & Mohan, S. (2004). Turk. J. Chem. 28, 53–65.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K., Kumari, S. & Kumar, K. R. (2008). Polyhedron, 27, 181–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-A., Pan, M., Zhang, J.-Y., Kang, B.-S. & Su, C.-Y. (2009). Inorg. Chim. Acta, 362, 3519–3525.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m339-m340
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds