organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-[4-(methyl­sulfan­yl)quinazolin-2-yl]-1-phenyl­ethanol

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cCriminal Evidence, Ministry of Interior, Riyadh 11632, PO Box 86985, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 17 August 2014; accepted 4 September 2014; online 10 September 2014)

In the mol­ecule of the title compound, C17H16N2OS, the almost planar methyl­sulfanylquinazoline group [the methyl C atom deviates by 0.032 (2) Å from the plane through the ring system] forms an inter­planar angle of 76.26 (4)° with the plane of the phenyl group. An intra­molecular O—H⋯N hydrogen bond is present between the quinazoline and hy­droxy groups. In the crystal, mol­ecules are stacked along the b-axis direction.

1. Related literature

For the synthesis of 4-(methyl­sulfan­yl)quinazoline derivatives, see: Smith et al. (2005a[Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005a). J. Sulfur Chem. 26, 121-131.],b[Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005b). Synthesis, pp. 2951-2961.]); Leonard & Curtin (1946[Leonard, N. J. & Curtin, D. Y. (1946). J. Org. Chem. 11, 349-352.]); Meerwein et al. (1956[Meerwein, H., Laasch, P., Mersch, R. & Nentwig, J. (1956). Chem. Ber. 89, 224-238.]). For the crystal structures of related compounds, see: Alshammari et al. (2014a[Alshammari, M. B., Smith, K., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2014a). Acta Cryst. E70, o919-o920.],b[Alshammari, M. B., Smith, K., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2014b). Acta Cryst. E70, o953.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H16N2OS

  • Mr = 296.38

  • Monoclinic, P 21 /n

  • a = 15.6142 (3) Å

  • b = 5.6142 (1) Å

  • c = 17.2355 (3) Å

  • β = 101.138 (2)°

  • V = 1482.43 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.93 mm−1

  • T = 293 K

  • 0.32 × 0.19 × 0.14 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.867, Tmax = 1.000

  • 9606 measured reflections

  • 2938 independent reflections

  • 2688 reflections with I > 2σ(I)

  • Rint = 0.014

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.094

  • S = 1.06

  • 2938 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.12 2.7531 (15) 134

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In C17H16N2OS (Fig. 1), the methylsulfanylquinazoline group is planar and is oriented at an angle of 76.26 (4)° with the phenyl group. The hydroxyl group forms an intramolecular hydrogen bond to one of the quinazoline ring nitrogen atoms (Table 1) whereas the second N atom is not involved in hydrogen bonding. In the crystal structure, molecules are stacked along the b-axis direction (Fig. 2).

Related literature top

For the synthesis of 4-(methylsulfanyl)quinazoline derivatives, see: Smith et al. (2005a,b); Leonard & Curtin (1946); Meerwein et al. (1956). For the X-ray structures of related compounds, see: Alshammari et al. (2014a,b).

Experimental top

Synthesis and crystallization: 2-(2-hydroxy-2-phenylethyl)-4-(methylsulfanyl)quinazoline was obtained in 83% yield from lithiation of 2-methyl-4-(methylsulfanyl)quinazoline with n-butyllithium at 78°C in anhydrous THF under nitrogen followed by reaction with benzaldehyde (Smith et al., 2005b). Crystallization from a mixture of ethyl acetate and diethyl ether (1:3 by volume) gave the title compound as colorless crystals. The NMR and low and high resolution mass spectra for the title compound were consistent with those reported (Smith et al., 2005b).

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq(C) except for the methyl group where it was 1.5 times with free rotation about the C—C bond. For the OH group, Uiso(H) 1.5 times Ueq(O) was used with free rotation about the C—O bond.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al. 2006), ORTEP-3 for Windows (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001); software used to prepare material for publication: publCIF, (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A molecule of C17H16N2OS with atom labels and 50% probability displacement ellipsoids for nonhydrogen atoms.
[Figure 2] Fig. 2. Crystal structure packing viewed down the b axis.
2-[4-(Methylsulfanyl)quinazolin-2-yl]-1-phenylethanol top
Crystal data top
C17H16N2OSF(000) = 624
Mr = 296.38Dx = 1.328 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 15.6142 (3) ÅCell parameters from 5816 reflections
b = 5.6142 (1) Åθ = 3.5–73.7°
c = 17.2355 (3) ŵ = 1.93 mm1
β = 101.138 (2)°T = 293 K
V = 1482.43 (5) Å3Block, colourless
Z = 40.32 × 0.19 × 0.14 mm
Data collection top
Agilent SuperNova (Dual, Cu at 0, Atlas)
diffractometer
2688 reflections with I > 2σ(I)
ω scansRint = 0.014
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
θmax = 74.0°, θmin = 3.5°
Tmin = 0.867, Tmax = 1.000h = 1919
9606 measured reflectionsk = 66
2938 independent reflectionsl = 1121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.2343P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2938 reflectionsΔρmax = 0.16 e Å3
192 parametersΔρmin = 0.28 e Å3
Crystal data top
C17H16N2OSV = 1482.43 (5) Å3
Mr = 296.38Z = 4
Monoclinic, P21/nCu Kα radiation
a = 15.6142 (3) ŵ = 1.93 mm1
b = 5.6142 (1) ÅT = 293 K
c = 17.2355 (3) Å0.32 × 0.19 × 0.14 mm
β = 101.138 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at 0, Atlas)
diffractometer
2938 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
2688 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 1.000Rint = 0.014
9606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
2938 reflectionsΔρmin = 0.28 e Å3
192 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction in SCALE3 ABSPACK.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67633 (8)0.0261 (2)0.10297 (7)0.0458 (3)
C20.68632 (8)0.1600 (2)0.04845 (7)0.0450 (3)
C30.62090 (9)0.3225 (3)0.01440 (8)0.0553 (3)
H30.56520.31100.02580.066*
C40.63923 (10)0.4967 (3)0.03523 (9)0.0601 (4)
H40.59610.60480.05690.072*
C50.72249 (10)0.5136 (3)0.05366 (8)0.0569 (3)
H50.73420.63360.08730.068*
C60.78660 (9)0.3561 (3)0.02273 (8)0.0523 (3)
H60.84130.36690.03630.063*
C70.76994 (8)0.1775 (2)0.02961 (7)0.0444 (3)
C80.81859 (8)0.1354 (2)0.11131 (7)0.0445 (3)
C90.59215 (12)0.3019 (3)0.19721 (11)0.0734 (5)
H9A0.63920.26260.24000.110*
H9B0.54010.33120.21760.110*
H9C0.60700.44210.17080.110*
C100.88942 (8)0.3057 (2)0.14745 (8)0.0479 (3)
H10A0.88700.32610.20290.058*
H10B0.87750.45950.12200.058*
C110.98167 (8)0.2298 (2)0.14133 (7)0.0429 (3)
H110.99410.07640.16830.051*
C121.04767 (8)0.4094 (2)0.18105 (7)0.0414 (3)
C131.06970 (9)0.6065 (2)0.14024 (8)0.0483 (3)
H131.04410.62800.08730.058*
C141.12977 (9)0.7713 (2)0.17802 (9)0.0538 (3)
H141.14490.90110.14990.065*
C151.16716 (9)0.7448 (2)0.25659 (9)0.0544 (3)
H151.20750.85560.28150.065*
C161.14426 (9)0.5519 (3)0.29825 (8)0.0541 (3)
H161.16810.53500.35170.065*
C171.08585 (8)0.3841 (2)0.26030 (8)0.0477 (3)
H171.07200.25260.28830.057*
N10.83603 (7)0.0253 (2)0.06177 (6)0.0475 (3)
N20.74020 (7)0.1686 (2)0.13399 (6)0.0475 (3)
O10.99198 (7)0.2036 (2)0.06187 (6)0.0606 (3)
H10.95630.10700.03930.091*
S10.57374 (2)0.05921 (7)0.12865 (2)0.06185 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (6)0.0551 (7)0.0426 (6)0.0077 (5)0.0110 (5)0.0052 (5)
C20.0415 (6)0.0531 (7)0.0399 (6)0.0044 (5)0.0071 (5)0.0040 (5)
C30.0463 (7)0.0683 (9)0.0517 (7)0.0049 (6)0.0101 (6)0.0006 (6)
C40.0609 (8)0.0649 (8)0.0529 (8)0.0122 (7)0.0070 (6)0.0060 (6)
C50.0654 (9)0.0565 (8)0.0487 (7)0.0011 (7)0.0105 (6)0.0077 (6)
C60.0504 (7)0.0597 (8)0.0474 (7)0.0065 (6)0.0107 (5)0.0063 (6)
C70.0414 (6)0.0508 (7)0.0405 (6)0.0059 (5)0.0065 (5)0.0007 (5)
C80.0398 (6)0.0514 (7)0.0418 (6)0.0076 (5)0.0072 (5)0.0004 (5)
C90.0777 (11)0.0691 (10)0.0845 (11)0.0061 (8)0.0435 (9)0.0105 (8)
C100.0431 (6)0.0510 (7)0.0492 (7)0.0052 (5)0.0078 (5)0.0062 (5)
C110.0433 (6)0.0459 (6)0.0410 (6)0.0028 (5)0.0123 (5)0.0009 (5)
C120.0376 (6)0.0434 (6)0.0451 (6)0.0061 (5)0.0129 (5)0.0006 (5)
C130.0508 (7)0.0475 (7)0.0482 (6)0.0057 (5)0.0139 (5)0.0037 (5)
C140.0538 (7)0.0434 (6)0.0691 (8)0.0010 (6)0.0244 (6)0.0017 (6)
C150.0451 (7)0.0510 (7)0.0677 (8)0.0014 (6)0.0123 (6)0.0110 (6)
C160.0479 (7)0.0604 (8)0.0517 (7)0.0045 (6)0.0038 (6)0.0037 (6)
C170.0468 (6)0.0489 (7)0.0477 (6)0.0037 (5)0.0098 (5)0.0039 (5)
N10.0390 (5)0.0554 (6)0.0482 (5)0.0046 (4)0.0084 (4)0.0067 (5)
N20.0429 (5)0.0546 (6)0.0462 (5)0.0072 (5)0.0116 (4)0.0021 (5)
O10.0655 (6)0.0740 (7)0.0477 (5)0.0177 (5)0.0247 (4)0.0148 (5)
S10.0459 (2)0.0755 (3)0.0698 (2)0.00317 (16)0.02499 (17)0.00692 (17)
Geometric parameters (Å, º) top
C1—N21.3092 (17)C9—H9C0.9600
C1—C21.4340 (18)C10—C111.5252 (16)
C1—S11.7521 (13)C10—H10A0.9700
C2—C71.4083 (17)C10—H10B0.9700
C2—C31.4100 (19)C11—O11.4173 (14)
C3—C41.365 (2)C11—C121.5082 (17)
C3—H30.9300C11—H110.9800
C4—C51.400 (2)C12—C171.3880 (17)
C4—H40.9300C12—C131.3894 (18)
C5—C61.365 (2)C13—C141.3873 (19)
C5—H50.9300C13—H130.9300
C6—C71.4065 (18)C14—C151.375 (2)
C6—H60.9300C14—H140.9300
C7—N11.3713 (17)C15—C161.384 (2)
C8—N11.3067 (16)C15—H150.9300
C8—N21.3678 (16)C16—C171.3843 (19)
C8—C101.5032 (18)C16—H160.9300
C9—S11.7902 (17)C17—H170.9300
C9—H9A0.9600O1—H10.8200
C9—H9B0.9600
N2—C1—C2122.82 (11)C11—C10—H10A108.5
N2—C1—S1119.58 (10)C8—C10—H10B108.5
C2—C1—S1117.60 (10)C11—C10—H10B108.5
C7—C2—C3119.24 (12)H10A—C10—H10B107.5
C7—C2—C1115.14 (11)O1—C11—C12108.24 (10)
C3—C2—C1125.62 (12)O1—C11—C10112.40 (10)
C4—C3—C2120.08 (13)C12—C11—C10110.70 (10)
C4—C3—H3120.0O1—C11—H11108.5
C2—C3—H3120.0C12—C11—H11108.5
C3—C4—C5120.48 (13)C10—C11—H11108.5
C3—C4—H4119.8C17—C12—C13118.57 (12)
C5—C4—H4119.8C17—C12—C11120.28 (11)
C6—C5—C4120.70 (13)C13—C12—C11121.12 (11)
C6—C5—H5119.7C14—C13—C12120.31 (12)
C4—C5—H5119.7C14—C13—H13119.8
C5—C6—C7120.01 (13)C12—C13—H13119.8
C5—C6—H6120.0C15—C14—C13120.65 (13)
C7—C6—H6120.0C15—C14—H14119.7
N1—C7—C6119.03 (12)C13—C14—H14119.7
N1—C7—C2121.49 (11)C14—C15—C16119.52 (13)
C6—C7—C2119.47 (12)C14—C15—H15120.2
N1—C8—N2126.28 (12)C16—C15—H15120.2
N1—C8—C10118.73 (11)C15—C16—C17119.99 (13)
N2—C8—C10114.98 (11)C15—C16—H16120.0
S1—C9—H9A109.5C17—C16—H16120.0
S1—C9—H9B109.5C16—C17—C12120.92 (12)
H9A—C9—H9B109.5C16—C17—H17119.5
S1—C9—H9C109.5C12—C17—H17119.5
H9A—C9—H9C109.5C8—N1—C7117.30 (11)
H9B—C9—H9C109.5C1—N2—C8116.95 (11)
C8—C10—C11115.00 (10)C11—O1—H1109.5
C8—C10—H10A108.5C1—S1—C9102.08 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.122.7531 (15)134
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.122.7531 (15)134
 

Acknowledgements

The authors thank the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAlshammari, M. B., Smith, K., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2014a). Acta Cryst. E70, o919–o920.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlshammari, M. B., Smith, K., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2014b). Acta Cryst. E70, o953.  CSD CrossRef IUCr Journals Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeonard, N. J. & Curtin, D. Y. (1946). J. Org. Chem. 11, 349–352.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeerwein, H., Laasch, P., Mersch, R. & Nentwig, J. (1956). Chem. Ber. 89, 224–238.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Hegazy, A. S. (2005a). J. Sulfur Chem. 26, 121–131.  CrossRef CAS Google Scholar
First citationSmith, K., El-Hiti, G. A. & Hegazy, A. S. (2005b). Synthesis, pp. 2951–2961.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds