organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1088-o1089

Crystal structure of 3-(3-oxo-2,3,4,4a,5,6-hexa­hydro­benzo[h]cinnolin-2-yl)propionic acid

aDepartment of Pharmaceutical Sciences, University of Milano, via L. Mangiagalli, 25, 20133-Milano, Italy
*Correspondence e-mail: fiorella.meneghetti@unimi.it

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 May 2014; accepted 2 September 2014; online 6 September 2014)

The asymmetric unit of the title compound, C15H16N2O3, contains two independent mol­ecules, which present a different conformation of the carb­oxy­lic acid side chain [C—C—C—OH torsion angles = 65.3 (7) and −170.1 (5)°]. In both mol­ecules, the di­hydro­pyridazinone ring adopts a geometry inter­mediate between a twisted-boat and a half-chair conformation, while the central six-membered ring is almost in a half-boat conformation. In the crystal, mol­ecules are linked by O—H⋯Ok (k = ketone) hydrogen bonds, generating [01-1] chains. Aromatic ππ stacking contacts between the benzene and the di­hydro­pyridazinone rings [centroid–centroid distance [3.879 (9) Å] are also observed.

1. Related literature

For background to the bioactivity of pyridazinone derivatives, see: Masciocchi et al. (2013[Masciocchi, D., Gelain, A., Porta, F., Meneghetti, F., Pedretti, A., Celentano, G., Barlocco, D., Legnani, L., Toma, L., Kwon, B.-M., Asai, A. & Villa, S. (2013). Med. Chem. Commun. 4, 1181-1188.]). For structural and mol­ecular modeling studies, see: Toma et al. (1990[Toma, L., Cignarella, G., Barlocco, D. & Ronchetti, F. (1990). J. Med. Chem. 33, 1591-1594.]). For the chemistry of pyridazinone derivatives, see: Costantino et al. (1996[Costantino, L., Rastelli, G., Vescovili, K., Cignarella, G., Vianello, P., Del Corso, A., Cappiello, M., Mura, U. & Barlocco, D. (1996). J. Med. Chem. 39, 4396-4405.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H16N2O3

  • Mr = 272.3

  • Triclinic, [P \overline 1]

  • a = 11.217 (4) Å

  • b = 11.668 (4) Å

  • c = 12.110 (4) Å

  • α = 79.22 (1)°

  • β = 64.62 (1)°

  • γ = 68.630 (9)°

  • V = 1332.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.65 × 0.45 × 0.40 mm

2.2. Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer

  • 5412 measured reflections

  • 4682 independent reflections

  • 1412 reflections with I > 2σ(I)

  • Rint = 0.081

  • 3 standard reflections every 120 min intensity decay: 9%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.205

  • S = 0.92

  • 4682 reflections

  • 368 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A⋯O1B 0.92 (7) 1.78 (7) 2.651 (6) 158 (6)
O2B—H2B⋯O1A 0.90 (6) 1.75 (6) 2.598 (7) 157 (5)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Structural commentary top

In our previous researches focused on the discovery of new inhibitors targeting aberrant STAT3 signaling for the treatment of human cancers, we evidenced that several pyridazinone derivatives were able to inter­fer within the STAT3 pathway (Masciocchi et al., 2013). As the size of the central ring plays a main role in determining the conformational properties for this class of compounds, we investigated the extent of planarity of the phenyl with respect to the other cycles by crystallographic analysis determining the molecular structure of the title compound. The asymmetric unit of the title compound (Fig. 1) is characterized by two crystallographically independent molecules (a and b). The values obtained for the bond length and angles of the two independent molecules are in accordance with each other, whilst at the same time presenting a different conformation of the carb­oxy­lic chain linked to N1. This difference is best evidenced by the torsion angles N2—N1—C13—C14 of 76 (1)°[-100 (1)°] and O2—C15—C14—C13 of 65 (1)°[-170 (1)°] (the values in the square brackets refer to the b labeled molecule). The tricyclic skeleton of the compound consists of three fused rings slightly twisted with respect to each other. The dihedral angles between their least-square planes α (C1/N1/N2/C4/C3/C2), β (C3/C4/C5/C6/C7/C8) and γ (C5/C6/C12/C11/C10/C9) are: α-β = 5.0 (1)°[3.0 (1)°], α-γ = 11.5 (1)°[10.3 (1)°], β-γ = 6.6 (1)°[7.3 (1)°], respectively. In detail, the di­hydro­pyridazinone ring adopts a geometry inter­mediate between a twisted-boat and a half-chair conformation qu­anti­tatively defined by the parameters QT = 0.321 (6)Å[0.242 (6)Å], ϕ = -87 (1)°[-83 (1)°] and θ = 113.2 (9)°[114 (1)°], while the central six-membered ring is almost in a half-boat conformation, characterized by the puckering parameters QT = 0.372 (7)Å[0.334 (7)Å], ϕ = -64 (1)°[-58 (1)°] and θ = 57 (1)°[59 (1)°], with the flap atom C8 out of the best mean plane calculated over the other five carbons by 0.512 (6)Å[0.462 (6)Å]. In the crystal, the a and b molecules are flattened and lay on planes deviated from that containing the a and c axes by about 30°. The two conformers inter­act through π-π contacts between the benzene and the di­hydro­pyridazinone rings, at a centroid-centroid distance of 3.879 (9)Å. In addition, a and b molecules are inter­connected through hydrogen bonds, where the carb­oxy­lic oxygen O2 is donor of a proton to the ketonic oxygen O1 of the partner molecule (Fig. 2). The inter­molecular contacts involve O2a which is linked to a centrosymmetrically related molecule of b (O2a—H···O1b(i) at a distance of 1.78 (7)Å and angle of 158 (6)° [symmetry code: (i) -x, 1 - y, 1 - z)] and O2b that hydrogen bonds a molecule related to a by a crystallographic inversion centre (O2b–H···O1a(ii) at a distance of 1.75 (6)Å and angle of 157 (5)° [symmetry code:(ii) at -x, 2 - y, - z)].

Crystallization top

After many attempts weakly diffracting yellow prisms were grown by slow evaporation of a 30:70 water/methanol solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-H-atoms were refined anisotropically. The H-atoms positions bonded to heteroatoms were obtained by a close examination of a final difference Fourier, while the remaining ones were introduced at calculated positions and refined with fixed isotropic thermal parameters (1.2 Ueq of the parent atom).

Related literature top

For background to the bioactivity of pyridazinone derivatives, see: Masciocchi et al. (2013). For structural and molecular modeling studies, see: Toma et al. (1990). For the chemistry of pyridazinone derivatives, see: Costantino et al. (1996).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the asymmetric unit of the title compound, showing displacement ellipsoids for non-H atoms at the 40% probability level.
[Figure 2] Fig. 2. : Intermolecular interactions of the title compound. Hydrogen bonds are shown as dashed lines.
3-(3-Oxo-2,3,4,4a,5,6-hexahydrobenzo[h]cinnolin-2-yl)propionic acid top
Crystal data top
C15H16N2O3Z = 4
Mr = 272.3F(000) = 576
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.217 (4) ÅCell parameters from 25 reflections
b = 11.668 (4) Åθ = 9–10°
c = 12.110 (4) ŵ = 0.10 mm1
α = 79.22 (1)°T = 293 K
β = 64.62 (1)°Prism, yellow
γ = 68.630 (9)°0.65 × 0.45 × 0.40 mm
V = 1332.6 (8) Å3
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.081
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 1213
non–profiled ω/2θ scansk = 1313
5412 measured reflectionsl = 114
4682 independent reflections3 standard reflections every 120 min
1412 reflections with I > 2σ(I) intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0932P)2]
where P = (Fo2 + 2Fc2)/3
4682 reflections(Δ/σ)max < 0.001
368 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H16N2O3γ = 68.630 (9)°
Mr = 272.3V = 1332.6 (8) Å3
Triclinic, P1Z = 4
a = 11.217 (4) ÅMo Kα radiation
b = 11.668 (4) ŵ = 0.10 mm1
c = 12.110 (4) ÅT = 293 K
α = 79.22 (1)°0.65 × 0.45 × 0.40 mm
β = 64.62 (1)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.081
5412 measured reflections3 standard reflections every 120 min
4682 independent reflections intensity decay: 9%
1412 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.28 e Å3
4682 reflectionsΔρmin = 0.22 e Å3
368 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.0119 (4)0.6619 (4)0.0134 (4)0.0688 (13)
O2A0.0208 (4)0.3563 (4)0.4257 (4)0.0671 (14)
H2A0.067 (6)0.299 (6)0.451 (6)0.08 (2)*
O3A0.2262 (5)0.4797 (4)0.4325 (5)0.0882 (16)
N1A0.1447 (4)0.5851 (4)0.1231 (4)0.0496 (13)
N2A0.2481 (5)0.5828 (4)0.1591 (4)0.0471 (13)
C1A0.1087 (6)0.6616 (5)0.0356 (6)0.0530 (17)
C2A0.1924 (6)0.7439 (6)0.0252 (6)0.068 (2)
H2A10.20020.75830.10920.081*
H2A20.14150.82240.01400.081*
C3A0.3308 (6)0.7041 (6)0.0269 (6)0.0621 (18)
H3A0.38210.63770.08520.075*
C4A0.3353 (6)0.6383 (5)0.0923 (5)0.0383 (14)
C5A0.4477 (6)0.6302 (5)0.1270 (5)0.0408 (14)
C6A0.5553 (5)0.6744 (5)0.0508 (5)0.0520 (17)
C7A0.5541 (6)0.7381 (7)0.0711 (6)0.081 (2)
H7A10.59200.80510.08790.097*
H7A20.61490.67970.13540.097*
C8A0.4166 (6)0.7870 (6)0.0752 (6)0.067 (2)
H8A10.42810.80980.15950.080*
H8A20.36540.86180.02940.080*
C9A0.4508 (6)0.5720 (5)0.2382 (5)0.0484 (16)
H9A0.37890.54200.29130.058*
C10A0.5593 (6)0.5589 (5)0.2699 (6)0.0576 (18)
H10A0.56000.52000.34420.069*
C11A0.6657 (6)0.6025 (6)0.1934 (7)0.068 (2)
H11A0.73920.59290.21480.081*
C12A0.6632 (6)0.6610 (6)0.0840 (6)0.0662 (19)
H12A0.73500.69170.03200.079*
C13A0.0675 (6)0.4990 (5)0.1958 (6)0.0529 (16)
H13A0.13260.41970.20510.063*
H13B0.01670.48710.15340.063*
C14A0.0311 (6)0.5484 (5)0.3179 (6)0.0610 (18)
H14A0.09900.62550.30810.073*
H14B0.01940.56520.35760.073*
C15A0.1058 (7)0.4600 (5)0.3977 (6)0.0529 (16)
O1B0.1349 (4)0.8168 (3)0.4536 (4)0.0599 (12)
O2B0.0424 (5)1.2275 (4)0.1748 (4)0.0815 (16)
H2B0.038 (6)1.246 (5)0.101 (5)0.070*
O3B0.1379 (6)1.0503 (4)0.0884 (5)0.0973 (19)
N1B0.3133 (4)0.8868 (4)0.3469 (4)0.0422 (12)
N2B0.4445 (4)0.8964 (4)0.3189 (4)0.0374 (11)
C1B0.2460 (6)0.8252 (5)0.4432 (5)0.0435 (15)
C2B0.3141 (6)0.7674 (5)0.5298 (5)0.0506 (16)
H2B10.24260.77920.61210.061*
H2B20.35340.67950.51730.061*
C3B0.4248 (6)0.8110 (6)0.5232 (5)0.0609 (19)
H3B0.37090.88680.56890.073*
C4B0.4978 (5)0.8586 (4)0.3997 (5)0.0347 (13)
C5B0.6346 (5)0.8694 (4)0.3670 (5)0.0355 (14)
C6B0.6924 (5)0.8414 (5)0.4544 (5)0.0425 (15)
C7B0.6210 (6)0.7916 (5)0.5799 (5)0.0535 (17)
H7B10.69020.72640.60350.064*
H7B20.57830.85660.63760.064*
C8B0.5143 (7)0.7434 (6)0.5873 (6)0.069 (2)
H8B10.56080.66060.55710.083*
H8B20.45530.73670.67310.083*
C9B0.7096 (5)0.9085 (5)0.2506 (5)0.0453 (15)
H9B0.67330.92440.19120.054*
C10B0.8366 (6)0.9246 (5)0.2198 (6)0.0570 (18)
H10B0.88440.95270.14180.068*
C11B0.8898 (6)0.8975 (5)0.3091 (6)0.0593 (19)
H11B0.97540.90660.29040.071*
C12B0.8196 (6)0.8580 (5)0.4235 (6)0.0489 (16)
H12B0.85720.84180.48200.059*
C13B0.2663 (5)0.9335 (5)0.2464 (5)0.0463 (15)
H13C0.22320.87910.23770.056*
H13D0.34590.93440.17050.056*
C14B0.1637 (6)1.0613 (5)0.2699 (5)0.0510 (16)
H14C0.20691.11540.27910.061*
H14D0.08421.06010.34580.061*
C15B0.1141 (6)1.1115 (6)0.1669 (6)0.0479 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.069 (3)0.075 (3)0.081 (3)0.027 (2)0.057 (3)0.031 (2)
O2A0.051 (3)0.069 (3)0.083 (3)0.025 (3)0.037 (3)0.031 (3)
O3A0.063 (3)0.064 (3)0.130 (5)0.018 (3)0.044 (3)0.025 (3)
N1A0.044 (3)0.063 (3)0.046 (3)0.024 (3)0.025 (3)0.022 (3)
N2A0.046 (3)0.051 (3)0.057 (3)0.017 (3)0.037 (3)0.017 (3)
C1A0.055 (4)0.046 (4)0.055 (4)0.016 (3)0.028 (4)0.021 (3)
C2A0.073 (5)0.080 (5)0.065 (5)0.035 (4)0.049 (4)0.039 (4)
C3A0.056 (4)0.076 (4)0.052 (4)0.021 (4)0.031 (4)0.026 (4)
C4A0.040 (3)0.039 (3)0.032 (3)0.008 (3)0.019 (3)0.009 (3)
C5A0.043 (3)0.036 (3)0.043 (4)0.000 (3)0.026 (3)0.006 (3)
C6A0.030 (3)0.067 (4)0.048 (4)0.011 (3)0.014 (3)0.012 (3)
C7A0.049 (4)0.117 (6)0.060 (5)0.039 (4)0.013 (4)0.038 (4)
C8A0.078 (5)0.078 (5)0.055 (4)0.041 (4)0.036 (4)0.033 (4)
C9A0.041 (4)0.044 (3)0.049 (4)0.002 (3)0.020 (3)0.004 (3)
C10A0.061 (4)0.054 (4)0.059 (5)0.001 (3)0.042 (4)0.006 (3)
C11A0.046 (4)0.077 (5)0.081 (6)0.008 (4)0.032 (4)0.010 (4)
C12A0.044 (4)0.087 (5)0.067 (5)0.025 (4)0.019 (4)0.001 (4)
C13A0.051 (4)0.050 (4)0.064 (5)0.019 (3)0.029 (4)0.007 (3)
C14A0.067 (4)0.056 (4)0.063 (5)0.019 (4)0.027 (4)0.006 (4)
C15A0.066 (4)0.054 (4)0.052 (4)0.030 (4)0.033 (4)0.016 (3)
O1B0.046 (2)0.061 (3)0.078 (3)0.023 (2)0.036 (2)0.026 (2)
O2B0.128 (4)0.046 (3)0.085 (4)0.002 (3)0.082 (4)0.004 (3)
O3B0.139 (5)0.066 (3)0.081 (4)0.026 (3)0.081 (4)0.018 (3)
N1B0.032 (3)0.052 (3)0.044 (3)0.009 (2)0.026 (2)0.012 (3)
N2B0.031 (3)0.038 (3)0.040 (3)0.008 (2)0.017 (2)0.004 (2)
C1B0.037 (4)0.039 (3)0.055 (4)0.012 (3)0.025 (3)0.016 (3)
C2B0.057 (4)0.060 (4)0.042 (4)0.025 (3)0.029 (3)0.018 (3)
C3B0.056 (4)0.079 (5)0.050 (4)0.032 (4)0.029 (4)0.035 (4)
C4B0.040 (3)0.028 (3)0.037 (4)0.006 (2)0.020 (3)0.001 (3)
C5B0.036 (3)0.034 (3)0.039 (4)0.006 (3)0.023 (3)0.003 (3)
C6B0.040 (4)0.038 (3)0.046 (4)0.001 (3)0.023 (3)0.003 (3)
C7B0.054 (4)0.058 (4)0.053 (4)0.010 (3)0.036 (3)0.007 (3)
C8B0.090 (5)0.083 (5)0.055 (5)0.047 (4)0.047 (4)0.037 (4)
C9B0.040 (4)0.042 (3)0.047 (4)0.003 (3)0.023 (3)0.006 (3)
C10B0.036 (3)0.056 (4)0.062 (5)0.012 (3)0.011 (3)0.012 (3)
C11B0.037 (4)0.056 (4)0.085 (6)0.010 (3)0.031 (4)0.004 (4)
C12B0.039 (4)0.051 (4)0.058 (5)0.003 (3)0.032 (4)0.002 (3)
C13B0.037 (3)0.055 (4)0.046 (4)0.009 (3)0.023 (3)0.004 (3)
C14B0.057 (4)0.051 (4)0.047 (4)0.011 (3)0.032 (3)0.009 (3)
C15B0.052 (4)0.039 (4)0.049 (4)0.005 (3)0.026 (3)0.003 (3)
Geometric parameters (Å, º) top
O1A—C1A1.225 (6)O1B—C1B1.236 (6)
O2A—C15A1.330 (7)O2B—C15B1.295 (7)
O2A—H2A0.92 (6)O2B—H2B0.90 (6)
O3A—C15A1.174 (6)O3B—C15B1.175 (6)
N1A—C1A1.353 (7)N1B—C1B1.332 (6)
N1A—N2A1.395 (5)N1B—N2B1.403 (5)
N1A—C13A1.477 (6)N1B—C13B1.466 (6)
N2A—C4A1.272 (6)N2B—C4B1.287 (6)
C1A—C2A1.465 (8)C1B—C2B1.478 (7)
C2A—C3A1.441 (7)C2B—C3B1.472 (7)
C2A—H2A10.9700C2B—H2B10.9700
C2A—H2A20.9700C2B—H2B20.9700
C3A—C8A1.480 (8)C3B—C8B1.448 (7)
C3A—C4A1.515 (7)C3B—C4B1.478 (7)
C3A—H3A0.9800C3B—H3B0.9800
C4A—C5A1.459 (7)C4B—C5B1.459 (7)
C5A—C6A1.377 (7)C5B—C9B1.388 (7)
C5A—C9A1.399 (7)C5B—C6B1.397 (7)
C6A—C12A1.380 (7)C6B—C12B1.389 (7)
C6A—C7A1.526 (8)C6B—C7B1.501 (7)
C7A—C8A1.457 (7)C7B—C8B1.461 (7)
C7A—H7A10.9700C7B—H7B10.9700
C7A—H7A20.9700C7B—H7B20.9700
C8A—H8A10.9700C8B—H8B10.9700
C8A—H8A20.9700C8B—H8B20.9700
C9A—C10A1.376 (7)C9B—C10B1.384 (7)
C9A—H9A0.9300C9B—H9B0.9300
C10A—C11A1.365 (8)C10B—C11B1.384 (8)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.378 (8)C11B—C12B1.357 (8)
C11A—H11A0.9300C11B—H11B0.9300
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.481 (8)C13B—C14B1.503 (7)
C13A—H13A0.9700C13B—H13C0.9700
C13A—H13B0.9700C13B—H13D0.9700
C14A—C15A1.504 (8)C14B—C15B1.514 (7)
C14A—H14A0.9700C14B—H14C0.9700
C14A—H14B0.9700C14B—H14D0.9700
C15A—O2A—H2A107 (4)C15B—O2B—H2B102 (4)
C1A—N1A—N2A125.5 (5)C1B—N1B—N2B125.6 (4)
C1A—N1A—C13A120.9 (5)C1B—N1B—C13B121.2 (4)
N2A—N1A—C13A113.5 (4)N2B—N1B—C13B112.4 (4)
C4A—N2A—N1A119.2 (4)C4B—N2B—N1B118.6 (4)
O1A—C1A—N1A121.5 (5)O1B—C1B—N1B119.5 (5)
O1A—C1A—C2A124.3 (5)O1B—C1B—C2B124.2 (5)
N1A—C1A—C2A114.2 (5)N1B—C1B—C2B116.2 (5)
C3A—C2A—C1A117.4 (5)C3B—C2B—C1B117.4 (5)
C3A—C2A—H2A1107.9C3B—C2B—H2B1108.0
C1A—C2A—H2A1107.9C1B—C2B—H2B1108.0
C3A—C2A—H2A2107.9C3B—C2B—H2B2108.0
C1A—C2A—H2A2107.9C1B—C2B—H2B2108.0
H2A1—C2A—H2A2107.2H2B1—C2B—H2B2107.2
C2A—C3A—C8A120.7 (5)C8B—C3B—C2B120.4 (5)
C2A—C3A—C4A111.5 (5)C8B—C3B—C4B114.2 (5)
C8A—C3A—C4A112.6 (5)C2B—C3B—C4B112.9 (5)
C2A—C3A—H3A103.2C8B—C3B—H3B101.9
C8A—C3A—H3A103.2C2B—C3B—H3B101.9
C4A—C3A—H3A103.2C4B—C3B—H3B101.9
N2A—C4A—C5A119.0 (5)N2B—C4B—C5B117.1 (5)
N2A—C4A—C3A121.2 (5)N2B—C4B—C3B123.2 (5)
C5A—C4A—C3A119.6 (5)C5B—C4B—C3B119.7 (5)
C6A—C5A—C9A118.3 (5)C9B—C5B—C6B118.4 (5)
C6A—C5A—C4A121.7 (5)C9B—C5B—C4B121.7 (5)
C9A—C5A—C4A119.9 (5)C6B—C5B—C4B119.9 (5)
C5A—C6A—C12A120.4 (5)C12B—C6B—C5B119.1 (5)
C5A—C6A—C7A119.2 (5)C12B—C6B—C7B119.6 (5)
C12A—C6A—C7A120.4 (6)C5B—C6B—C7B121.3 (5)
C8A—C7A—C6A114.2 (5)C8B—C7B—C6B113.1 (5)
C8A—C7A—H7A1108.7C8B—C7B—H7B1109.0
C6A—C7A—H7A1108.7C6B—C7B—H7B1109.0
C8A—C7A—H7A2108.7C8B—C7B—H7B2109.0
C6A—C7A—H7A2108.7C6B—C7B—H7B2109.0
H7A1—C7A—H7A2107.6H7B1—C7B—H7B2107.8
C7A—C8A—C3A116.2 (5)C3B—C8B—C7B118.4 (5)
C7A—C8A—H8A1108.2C3B—C8B—H8B1107.7
C3A—C8A—H8A1108.2C7B—C8B—H8B1107.7
C7A—C8A—H8A2108.2C3B—C8B—H8B2107.7
C3A—C8A—H8A2108.2C7B—C8B—H8B2107.7
H8A1—C8A—H8A2107.4H8B1—C8B—H8B2107.1
C10A—C9A—C5A120.6 (6)C10B—C9B—C5B122.4 (5)
C10A—C9A—H9A119.7C10B—C9B—H9B118.8
C5A—C9A—H9A119.7C5B—C9B—H9B118.8
C11A—C10A—C9A120.5 (6)C11B—C10B—C9B117.6 (6)
C11A—C10A—H10A119.7C11B—C10B—H10B121.2
C9A—C10A—H10A119.7C9B—C10B—H10B121.2
C10A—C11A—C12A119.4 (6)C12B—C11B—C10B121.4 (6)
C10A—C11A—H11A120.3C12B—C11B—H11B119.3
C12A—C11A—H11A120.3C10B—C11B—H11B119.3
C11A—C12A—C6A120.8 (6)C11B—C12B—C6B121.0 (5)
C11A—C12A—H12A119.6C11B—C12B—H12B119.5
C6A—C12A—H12A119.6C6B—C12B—H12B119.5
N1A—C13A—C14A110.2 (5)N1B—C13B—C14B110.8 (4)
N1A—C13A—H13A109.6N1B—C13B—H13C109.5
C14A—C13A—H13A109.6C14B—C13B—H13C109.5
N1A—C13A—H13B109.6N1B—C13B—H13D109.5
C14A—C13A—H13B109.6C14B—C13B—H13D109.5
H13A—C13A—H13B108.1H13C—C13B—H13D108.1
C13A—C14A—C15A111.9 (5)C13B—C14B—C15B111.7 (5)
C13A—C14A—H14A109.2C13B—C14B—H14C109.3
C15A—C14A—H14A109.2C15B—C14B—H14C109.3
C13A—C14A—H14B109.2C13B—C14B—H14D109.3
C15A—C14A—H14B109.2C15B—C14B—H14D109.3
H14A—C14A—H14B107.9H14C—C14B—H14D107.9
O3A—C15A—O2A123.1 (6)O3B—C15B—O2B123.7 (6)
O3A—C15A—C14A124.0 (6)O3B—C15B—C14B122.9 (6)
O2A—C15A—C14A112.9 (6)O2B—C15B—C14B113.3 (6)
C1A—N1A—N2A—C4A14.3 (8)C1B—N1B—N2B—C4B10.7 (7)
C13A—N1A—N2A—C4A169.3 (5)C13B—N1B—N2B—C4B179.9 (4)
N2A—N1A—C1A—O1A176.4 (5)N2B—N1B—C1B—O1B175.2 (5)
C13A—N1A—C1A—O1A0.3 (9)C13B—N1B—C1B—O1B6.7 (8)
N2A—N1A—C1A—C2A2.0 (8)N2B—N1B—C1B—C2B3.0 (8)
C13A—N1A—C1A—C2A178.1 (5)C13B—N1B—C1B—C2B171.5 (5)
O1A—C1A—C2A—C3A156.2 (7)O1B—C1B—C2B—C3B164.7 (6)
N1A—C1A—C2A—C3A25.5 (9)N1B—C1B—C2B—C3B17.2 (8)
C1A—C2A—C3A—C8A173.7 (6)C1B—C2B—C3B—C8B167.9 (6)
C1A—C2A—C3A—C4A38.1 (9)C1B—C2B—C3B—C4B28.0 (8)
N1A—N2A—C4A—C5A176.8 (5)N1B—N2B—C4B—C5B179.7 (4)
N1A—N2A—C4A—C3A1.5 (8)N1B—N2B—C4B—C3B3.0 (7)
C2A—C3A—C4A—N2A26.7 (8)C8B—C3B—C4B—N2B164.1 (5)
C8A—C3A—C4A—N2A166.0 (5)C2B—C3B—C4B—N2B21.7 (8)
C2A—C3A—C4A—C5A158.1 (6)C8B—C3B—C4B—C5B18.6 (8)
C8A—C3A—C4A—C5A18.7 (8)C2B—C3B—C4B—C5B161.0 (5)
N2A—C4A—C5A—C6A171.5 (5)N2B—C4B—C5B—C9B5.4 (7)
C3A—C4A—C5A—C6A3.9 (8)C3B—C4B—C5B—C9B177.1 (5)
N2A—C4A—C5A—C9A6.1 (8)N2B—C4B—C5B—C6B173.8 (5)
C3A—C4A—C5A—C9A178.6 (5)C3B—C4B—C5B—C6B3.7 (7)
C9A—C5A—C6A—C12A0.2 (8)C9B—C5B—C6B—C12B2.4 (8)
C4A—C5A—C6A—C12A177.4 (5)C4B—C5B—C6B—C12B176.8 (5)
C9A—C5A—C6A—C7A179.9 (5)C9B—C5B—C6B—C7B176.4 (5)
C4A—C5A—C6A—C7A2.4 (8)C4B—C5B—C6B—C7B4.4 (7)
C5A—C6A—C7A—C8A22.2 (9)C12B—C6B—C7B—C8B162.0 (5)
C12A—C6A—C7A—C8A158.0 (6)C5B—C6B—C7B—C8B16.8 (8)
C6A—C7A—C8A—C3A46.2 (9)C2B—C3B—C8B—C7B178.9 (6)
C2A—C3A—C8A—C7A179.2 (7)C4B—C3B—C8B—C7B41.7 (8)
C4A—C3A—C8A—C7A44.0 (8)C6B—C7B—C8B—C3B40.6 (8)
C6A—C5A—C9A—C10A0.4 (8)C6B—C5B—C9B—C10B2.3 (8)
C4A—C5A—C9A—C10A177.2 (5)C4B—C5B—C9B—C10B176.9 (5)
C5A—C9A—C10A—C11A0.1 (9)C5B—C9B—C10B—C11B1.5 (8)
C9A—C10A—C11A—C12A0.5 (10)C9B—C10B—C11B—C12B0.8 (9)
C10A—C11A—C12A—C6A0.7 (10)C10B—C11B—C12B—C6B1.0 (9)
C5A—C6A—C12A—C11A0.4 (10)C5B—C6B—C12B—C11B1.8 (8)
C7A—C6A—C12A—C11A179.4 (6)C7B—C6B—C12B—C11B177.0 (5)
C1A—N1A—C13A—C14A101.3 (6)C1B—N1B—C13B—C14B89.7 (6)
N2A—N1A—C13A—C14A75.3 (6)N2B—N1B—C13B—C14B100.4 (5)
N1A—C13A—C14A—C15A176.6 (5)N1B—C13B—C14B—C15B179.8 (4)
C13A—C14A—C15A—O3A115.0 (7)C13B—C14B—C15B—O3B10.4 (9)
C13A—C14A—C15A—O2A65.3 (7)C13B—C14B—C15B—O2B170.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1B0.92 (7)1.78 (7)2.651 (6)158 (6)
O2B—H2B···O1A0.90 (6)1.75 (6)2.598 (7)157 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1B0.92 (7)1.78 (7)2.651 (6)158 (6)
O2B—H2B···O1A0.90 (6)1.75 (6)2.598 (7)157 (5)
 

Acknowledgements

This study was supported by funds from PRIN 2010–2011.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCostantino, L., Rastelli, G., Vescovili, K., Cignarella, G., Vianello, P., Del Corso, A., Cappiello, M., Mura, U. & Barlocco, D. (1996). J. Med. Chem. 39, 4396–4405.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMasciocchi, D., Gelain, A., Porta, F., Meneghetti, F., Pedretti, A., Celentano, G., Barlocco, D., Legnani, L., Toma, L., Kwon, B.-M., Asai, A. & Villa, S. (2013). Med. Chem. Commun. 4, 1181–1188.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToma, L., Cignarella, G., Barlocco, D. & Ronchetti, F. (1990). J. Med. Chem. 33, 1591–1594.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1088-o1089
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds